1. 27 12月, 2019 28 次提交
  2. 21 12月, 2019 4 次提交
    • G
      tcp: Protect accesses to .ts_recent_stamp with {READ,WRITE}_ONCE() · fbcf85b0
      Guillaume Nault 提交于
      [ Upstream commit 721c8dafad26ccfa90ff659ee19755e3377b829d ]
      
      Syncookies borrow the ->rx_opt.ts_recent_stamp field to store the
      timestamp of the last synflood. Protect them with READ_ONCE() and
      WRITE_ONCE() since reads and writes aren't serialised.
      
      Use of .rx_opt.ts_recent_stamp for storing the synflood timestamp was
      introduced by a0f82f64 ("syncookies: remove last_synq_overflow from
      struct tcp_sock"). But unprotected accesses were already there when
      timestamp was stored in .last_synq_overflow.
      
      Fixes: 1da177e4 ("Linux-2.6.12-rc2")
      Signed-off-by: NGuillaume Nault <gnault@redhat.com>
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      fbcf85b0
    • G
      tcp: tighten acceptance of ACKs not matching a child socket · 4b8a9869
      Guillaume Nault 提交于
      [ Upstream commit cb44a08f8647fd2e8db5cc9ac27cd8355fa392d8 ]
      
      When no synflood occurs, the synflood timestamp isn't updated.
      Therefore it can be so old that time_after32() can consider it to be
      in the future.
      
      That's a problem for tcp_synq_no_recent_overflow() as it may report
      that a recent overflow occurred while, in fact, it's just that jiffies
      has grown past 'last_overflow' + TCP_SYNCOOKIE_VALID + 2^31.
      
      Spurious detection of recent overflows lead to extra syncookie
      verification in cookie_v[46]_check(). At that point, the verification
      should fail and the packet dropped. But we should have dropped the
      packet earlier as we didn't even send a syncookie.
      
      Let's refine tcp_synq_no_recent_overflow() to report a recent overflow
      only if jiffies is within the
      [last_overflow, last_overflow + TCP_SYNCOOKIE_VALID] interval. This
      way, no spurious recent overflow is reported when jiffies wraps and
      'last_overflow' becomes in the future from the point of view of
      time_after32().
      
      However, if jiffies wraps and enters the
      [last_overflow, last_overflow + TCP_SYNCOOKIE_VALID] interval (with
      'last_overflow' being a stale synflood timestamp), then
      tcp_synq_no_recent_overflow() still erroneously reports an
      overflow. In such cases, we have to rely on syncookie verification
      to drop the packet. We unfortunately have no way to differentiate
      between a fresh and a stale syncookie timestamp.
      
      In practice, using last_overflow as lower bound is problematic.
      If the synflood timestamp is concurrently updated between the time
      we read jiffies and the moment we store the timestamp in
      'last_overflow', then 'now' becomes smaller than 'last_overflow' and
      tcp_synq_no_recent_overflow() returns true, potentially dropping a
      valid syncookie.
      
      Reading jiffies after loading the timestamp could fix the problem,
      but that'd require a memory barrier. Let's just accommodate for
      potential timestamp growth instead and extend the interval using
      'last_overflow - HZ' as lower bound.
      Signed-off-by: NGuillaume Nault <gnault@redhat.com>
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      4b8a9869
    • G
      tcp: fix rejected syncookies due to stale timestamps · bac9e8f3
      Guillaume Nault 提交于
      [ Upstream commit 04d26e7b159a396372646a480f4caa166d1b6720 ]
      
      If no synflood happens for a long enough period of time, then the
      synflood timestamp isn't refreshed and jiffies can advance so much
      that time_after32() can't accurately compare them any more.
      
      Therefore, we can end up in a situation where time_after32(now,
      last_overflow + HZ) returns false, just because these two values are
      too far apart. In that case, the synflood timestamp isn't updated as
      it should be, which can trick tcp_synq_no_recent_overflow() into
      rejecting valid syncookies.
      
      For example, let's consider the following scenario on a system
      with HZ=1000:
      
        * The synflood timestamp is 0, either because that's the timestamp
          of the last synflood or, more commonly, because we're working with
          a freshly created socket.
      
        * We receive a new SYN, which triggers synflood protection. Let's say
          that this happens when jiffies == 2147484649 (that is,
          'synflood timestamp' + HZ + 2^31 + 1).
      
        * Then tcp_synq_overflow() doesn't update the synflood timestamp,
          because time_after32(2147484649, 1000) returns false.
          With:
            - 2147484649: the value of jiffies, aka. 'now'.
            - 1000: the value of 'last_overflow' + HZ.
      
        * A bit later, we receive the ACK completing the 3WHS. But
          cookie_v[46]_check() rejects it because tcp_synq_no_recent_overflow()
          says that we're not under synflood. That's because
          time_after32(2147484649, 120000) returns false.
          With:
            - 2147484649: the value of jiffies, aka. 'now'.
            - 120000: the value of 'last_overflow' + TCP_SYNCOOKIE_VALID.
      
          Of course, in reality jiffies would have increased a bit, but this
          condition will last for the next 119 seconds, which is far enough
          to accommodate for jiffie's growth.
      
      Fix this by updating the overflow timestamp whenever jiffies isn't
      within the [last_overflow, last_overflow + HZ] range. That shouldn't
      have any performance impact since the update still happens at most once
      per second.
      
      Now we're guaranteed to have fresh timestamps while under synflood, so
      tcp_synq_no_recent_overflow() can safely use it with time_after32() in
      such situations.
      
      Stale timestamps can still make tcp_synq_no_recent_overflow() return
      the wrong verdict when not under synflood. This will be handled in the
      next patch.
      
      For 64 bits architectures, the problem was introduced with the
      conversion of ->tw_ts_recent_stamp to 32 bits integer by commit
      cca9bab1 ("tcp: use monotonic timestamps for PAWS").
      The problem has always been there on 32 bits architectures.
      
      Fixes: cca9bab1 ("tcp: use monotonic timestamps for PAWS")
      Fixes: 1da177e4 ("Linux-2.6.12-rc2")
      Signed-off-by: NGuillaume Nault <gnault@redhat.com>
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      bac9e8f3
    • E
      inet: protect against too small mtu values. · d80d67cd
      Eric Dumazet 提交于
      [ Upstream commit 501a90c945103e8627406763dac418f20f3837b2 ]
      
      syzbot was once again able to crash a host by setting a very small mtu
      on loopback device.
      
      Let's make inetdev_valid_mtu() available in include/net/ip.h,
      and use it in ip_setup_cork(), so that we protect both ip_append_page()
      and __ip_append_data()
      
      Also add a READ_ONCE() when the device mtu is read.
      
      Pairs this lockless read with one WRITE_ONCE() in __dev_set_mtu(),
      even if other code paths might write over this field.
      
      Add a big comment in include/linux/netdevice.h about dev->mtu
      needing READ_ONCE()/WRITE_ONCE() annotations.
      
      Hopefully we will add the missing ones in followup patches.
      
      [1]
      
      refcount_t: saturated; leaking memory.
      WARNING: CPU: 0 PID: 9464 at lib/refcount.c:22 refcount_warn_saturate+0x138/0x1f0 lib/refcount.c:22
      Kernel panic - not syncing: panic_on_warn set ...
      CPU: 0 PID: 9464 Comm: syz-executor850 Not tainted 5.4.0-syzkaller #0
      Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
      Call Trace:
       __dump_stack lib/dump_stack.c:77 [inline]
       dump_stack+0x197/0x210 lib/dump_stack.c:118
       panic+0x2e3/0x75c kernel/panic.c:221
       __warn.cold+0x2f/0x3e kernel/panic.c:582
       report_bug+0x289/0x300 lib/bug.c:195
       fixup_bug arch/x86/kernel/traps.c:174 [inline]
       fixup_bug arch/x86/kernel/traps.c:169 [inline]
       do_error_trap+0x11b/0x200 arch/x86/kernel/traps.c:267
       do_invalid_op+0x37/0x50 arch/x86/kernel/traps.c:286
       invalid_op+0x23/0x30 arch/x86/entry/entry_64.S:1027
      RIP: 0010:refcount_warn_saturate+0x138/0x1f0 lib/refcount.c:22
      Code: 06 31 ff 89 de e8 c8 f5 e6 fd 84 db 0f 85 6f ff ff ff e8 7b f4 e6 fd 48 c7 c7 e0 71 4f 88 c6 05 56 a6 a4 06 01 e8 c7 a8 b7 fd <0f> 0b e9 50 ff ff ff e8 5c f4 e6 fd 0f b6 1d 3d a6 a4 06 31 ff 89
      RSP: 0018:ffff88809689f550 EFLAGS: 00010286
      RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
      RDX: 0000000000000000 RSI: ffffffff815e4336 RDI: ffffed1012d13e9c
      RBP: ffff88809689f560 R08: ffff88809c50a3c0 R09: fffffbfff15d31b1
      R10: fffffbfff15d31b0 R11: ffffffff8ae98d87 R12: 0000000000000001
      R13: 0000000000040100 R14: ffff888099041104 R15: ffff888218d96e40
       refcount_add include/linux/refcount.h:193 [inline]
       skb_set_owner_w+0x2b6/0x410 net/core/sock.c:1999
       sock_wmalloc+0xf1/0x120 net/core/sock.c:2096
       ip_append_page+0x7ef/0x1190 net/ipv4/ip_output.c:1383
       udp_sendpage+0x1c7/0x480 net/ipv4/udp.c:1276
       inet_sendpage+0xdb/0x150 net/ipv4/af_inet.c:821
       kernel_sendpage+0x92/0xf0 net/socket.c:3794
       sock_sendpage+0x8b/0xc0 net/socket.c:936
       pipe_to_sendpage+0x2da/0x3c0 fs/splice.c:458
       splice_from_pipe_feed fs/splice.c:512 [inline]
       __splice_from_pipe+0x3ee/0x7c0 fs/splice.c:636
       splice_from_pipe+0x108/0x170 fs/splice.c:671
       generic_splice_sendpage+0x3c/0x50 fs/splice.c:842
       do_splice_from fs/splice.c:861 [inline]
       direct_splice_actor+0x123/0x190 fs/splice.c:1035
       splice_direct_to_actor+0x3b4/0xa30 fs/splice.c:990
       do_splice_direct+0x1da/0x2a0 fs/splice.c:1078
       do_sendfile+0x597/0xd00 fs/read_write.c:1464
       __do_sys_sendfile64 fs/read_write.c:1525 [inline]
       __se_sys_sendfile64 fs/read_write.c:1511 [inline]
       __x64_sys_sendfile64+0x1dd/0x220 fs/read_write.c:1511
       do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294
       entry_SYSCALL_64_after_hwframe+0x49/0xbe
      RIP: 0033:0x441409
      Code: e8 ac e8 ff ff 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00
      RSP: 002b:00007fffb64c4f78 EFLAGS: 00000246 ORIG_RAX: 0000000000000028
      RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 0000000000441409
      RDX: 0000000000000000 RSI: 0000000000000006 RDI: 0000000000000005
      RBP: 0000000000073b8a R08: 0000000000000010 R09: 0000000000000010
      R10: 0000000000010001 R11: 0000000000000246 R12: 0000000000402180
      R13: 0000000000402210 R14: 0000000000000000 R15: 0000000000000000
      Kernel Offset: disabled
      Rebooting in 86400 seconds..
      
      Fixes: 1470ddf7 ("inet: Remove explicit write references to sk/inet in ip_append_data")
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Reported-by: Nsyzbot <syzkaller@googlegroups.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      d80d67cd
  3. 18 12月, 2019 4 次提交
  4. 13 12月, 2019 4 次提交