- 16 2月, 2016 1 次提交
-
-
由 Alexey Kardashevskiy 提交于
At the moment only spapr_tce_tables updates are protected against races but not lookups. This fixes missing protection by using RCU for the list. As lookups also happen in real mode, this uses list_for_each_entry_lockless() (which is expected not to access any vmalloc'd memory). This converts release_spapr_tce_table() to a RCU scheduled handler. Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 09 1月, 2016 1 次提交
-
-
由 Paolo Bonzini 提交于
Since the numbers now overlap, it makes sense to enumerate them in asm/kvm_host.h rather than linux/kvm_host.h. Functions that refer to architecture-specific requests are also moved to arch/. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 10 12月, 2015 1 次提交
-
-
由 Thomas Huth 提交于
Only using 32 memslots for KVM on powerpc is way too low, you can nowadays hit this limit quite fast by adding a couple of PCI devices and/or pluggable memory DIMMs to the guest. x86 already increased the KVM_USER_MEM_SLOTS to 509, to satisfy 256 pluggable DIMM slots, 3 private slots and 253 slots for other things like PCI devices (i.e. resulting in 256 + 3 + 253 = 512 slots in total). We should do something similar for powerpc, and since we do not use private slots here, we can set the value to 512 directly. While we're at it, also remove the KVM_MEM_SLOTS_NUM definition from the powerpc-specific header since this gets defined in the generic kvm_host.h header anyway. Signed-off-by: NThomas Huth <thuth@redhat.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 23 10月, 2015 1 次提交
-
-
由 Christoffer Dall 提交于
Some times it is useful for architecture implementations of KVM to know when the VCPU thread is about to block or when it comes back from blocking (arm/arm64 needs to know this to properly implement timers, for example). Therefore provide a generic architecture callback function in line with what we do elsewhere for KVM generic-arch interactions. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 21 10月, 2015 1 次提交
-
-
由 Paul Mackerras 提交于
This reverts commit 9678cdaa ("Use the POWER8 Micro Partition Prefetch Engine in KVM HV on POWER8") because the original commit had multiple, partly self-cancelling bugs, that could cause occasional memory corruption. In fact the logmpp instruction was incorrectly using register r0 as the source of the buffer address and operation code, and depending on what was in r0, it would either do nothing or corrupt the 64k page pointed to by r0. The logmpp instruction encoding and the operation code definitions could be corrected, but then there is the problem that there is no clearly defined way to know when the hardware has finished writing to the buffer. The original commit attempted to work around this by aborting the write-out before starting the prefetch, but this is ineffective in the case where the virtual core is now executing on a different physical core from the one where the write-out was initiated. These problems plus advice from the hardware designers not to use the function (since the measured performance improvement from using the feature was actually mostly negative), mean that reverting the code is the best option. Fixes: 9678cdaa ("Use the POWER8 Micro Partition Prefetch Engine in KVM HV on POWER8") Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 25 9月, 2015 1 次提交
-
-
由 David Hildenbrand 提交于
We observed some performance degradation on s390x with dynamic halt polling. Until we can provide a proper fix, let's enable halt_poll_ns as default only for supported architectures. Architectures are now free to set their own halt_poll_ns default value. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 16 9月, 2015 1 次提交
-
-
由 Paolo Bonzini 提交于
This new statistic can help diagnosing VCPUs that, for any reason, trigger bad behavior of halt_poll_ns autotuning. For example, say halt_poll_ns = 480000, and wakeups are spaced exactly like 479us, 481us, 479us, 481us. Then KVM always fails polling and wastes 10+20+40+80+160+320+480 = 1110 microseconds out of every 479+481+479+481+479+481+479 = 3359 microseconds. The VCPU then is consuming about 30% more CPU than it would use without polling. This would show as an abnormally high number of attempted polling compared to the successful polls. Acked-by: Christian Borntraeger <borntraeger@de.ibm.com< Reviewed-by: NDavid Matlack <dmatlack@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 03 9月, 2015 1 次提交
-
-
由 Thomas Huth 提交于
The size of the Problem State Priority Boost Register is only 32 bits, but the kvm_vcpu_arch->pspb variable is declared as "ulong", ie. 64-bit. However, the assembler code accesses this variable with 32-bit accesses, and the KVM_REG_PPC_PSPB macro is defined with SIZE_U32, too, so that the current code is broken on big endian hosts: kvmppc_get_one_reg_hv() will only return zero for this register since it is using the wrong half of the pspb variable. Let's fix this problem by adjusting the size of the pspb field in the kvm_vcpu_arch structure. Signed-off-by: NThomas Huth <thuth@redhat.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 22 8月, 2015 3 次提交
-
-
由 Paul Mackerras 提交于
This fixes a bug in the tracking of pages that get modified by the guest. If the guest creates a large-page HPTE, writes to memory somewhere within the large page, and then removes the HPTE, we only record the modified state for the first normal page within the large page, when in fact the guest might have modified some other normal page within the large page. To fix this we use some unused bits in the rmap entry to record the order (log base 2) of the size of the page that was modified, when removing an HPTE. Then in kvm_test_clear_dirty_npages() we use that order to return the correct number of modified pages. The same thing could in principle happen when removing a HPTE at the host's request, i.e. when paging out a page, except that we never page out large pages, and the guest can only create large-page HPTEs if the guest RAM is backed by large pages. However, we also fix this case for the sake of future-proofing. The reference bit is also subject to the same loss of information. We don't make the same fix here for the reference bit because there isn't an interface for userspace to find out which pages the guest has referenced, whereas there is one for userspace to find out which pages the guest has modified. Because of this loss of information, the kvm_age_hva_hv() and kvm_test_age_hva_hv() functions might incorrectly say that a page has not been referenced when it has, but that doesn't matter greatly because we never page or swap out large pages. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This builds on the ability to run more than one vcore on a physical core by using the micro-threading (split-core) modes of the POWER8 chip. Previously, only vcores from the same VM could be run together, and (on POWER8) only if they had just one thread per core. With the ability to split the core on guest entry and unsplit it on guest exit, we can run up to 8 vcpu threads from up to 4 different VMs, and we can run multiple vcores with 2 or 4 vcpus per vcore. Dynamic micro-threading is only available if the static configuration of the cores is whole-core mode (unsplit), and only on POWER8. To manage this, we introduce a new kvm_split_mode struct which is shared across all of the subcores in the core, with a pointer in the paca on each thread. In addition we extend the core_info struct to have information on each subcore. When deciding whether to add a vcore to the set already on the core, we now have two possibilities: (a) piggyback the vcore onto an existing subcore, or (b) start a new subcore. Currently, when any vcpu needs to exit the guest and switch to host virtual mode, we interrupt all the threads in all subcores and switch the core back to whole-core mode. It may be possible in future to allow some of the subcores to keep executing in the guest while subcore 0 switches to the host, but that is not implemented in this patch. This adds a module parameter called dynamic_mt_modes which controls which micro-threading (split-core) modes the code will consider, as a bitmap. In other words, if it is 0, no micro-threading mode is considered; if it is 2, only 2-way micro-threading is considered; if it is 4, only 4-way, and if it is 6, both 2-way and 4-way micro-threading mode will be considered. The default is 6. With this, we now have secondary threads which are the primary thread for their subcore and therefore need to do the MMU switch. These threads will need to be started even if they have no vcpu to run, so we use the vcore pointer in the PACA rather than the vcpu pointer to trigger them. It is now possible for thread 0 to find that an exit has been requested before it gets to switch the subcore state to the guest. In that case we haven't added the guest's timebase offset to the timebase, so we need to be careful not to subtract the offset in the guest exit path. In fact we just skip the whole path that switches back to host context, since we haven't switched to the guest context. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
When running a virtual core of a guest that is configured with fewer threads per core than the physical cores have, the extra physical threads are currently unused. This makes it possible to use them to run one or more other virtual cores from the same guest when certain conditions are met. This applies on POWER7, and on POWER8 to guests with one thread per virtual core. (It doesn't apply to POWER8 guests with multiple threads per vcore because they require a 1-1 virtual to physical thread mapping in order to be able to use msgsndp and the TIR.) The idea is that we maintain a list of preempted vcores for each physical cpu (i.e. each core, since the host runs single-threaded). Then, when a vcore is about to run, it checks to see if there are any vcores on the list for its physical cpu that could be piggybacked onto this vcore's execution. If so, those additional vcores are put into state VCORE_PIGGYBACK and their runnable VCPU threads are started as well as the original vcore, which is called the master vcore. After the vcores have exited the guest, the extra ones are put back onto the preempted list if any of their VCPUs are still runnable and not idle. This means that vcpu->arch.ptid is no longer necessarily the same as the physical thread that the vcpu runs on. In order to make it easier for code that wants to send an IPI to know which CPU to target, we now store that in a new field in struct vcpu_arch, called thread_cpu. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Tested-by: NLaurent Vivier <lvivier@redhat.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 26 5月, 2015 1 次提交
-
-
由 Paolo Bonzini 提交于
Prepare for the case of multiple address spaces. Reviewed-by: NRadim Krcmar <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 21 4月, 2015 8 次提交
-
-
由 Paul Mackerras 提交于
Currently, the entry_exit_count field in the kvmppc_vcore struct contains two 8-bit counts, one of the threads that have started entering the guest, and one of the threads that have started exiting the guest. This changes it to an entry_exit_map field which contains two bitmaps of 8 bits each. The advantage of doing this is that it gives us a bitmap of which threads need to be signalled when exiting the guest. That means that we no longer need to use the trick of setting the HDEC to 0 to pull the other threads out of the guest, which led in some cases to a spurious HDEC interrupt on the next guest entry. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
We can tell when a secondary thread has finished running a guest by the fact that it clears its kvm_hstate.kvm_vcpu pointer, so there is no real need for the nap_count field in the kvmppc_vcore struct. This changes kvmppc_wait_for_nap to poll the kvm_hstate.kvm_vcpu pointers of the secondary threads rather than polling vc->nap_count. Besides reducing the size of the kvmppc_vcore struct by 8 bytes, this also means that we can tell which secondary threads have got stuck and thus print a more informative error message. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Rather than calling cond_resched() in kvmppc_run_core() before doing the post-processing for the vcpus that we have just run (that is, calling kvmppc_handle_exit_hv(), kvmppc_set_timer(), etc.), we now do that post-processing before calling cond_resched(), and that post- processing is moved out into its own function, post_guest_process(). The reschedule point is now in kvmppc_run_vcpu() and we define a new vcore state, VCORE_PREEMPT, to indicate that that the vcore's runner task is runnable but not running. (Doing the reschedule with the vcore in VCORE_INACTIVE state would be bad because there are potentially other vcpus waiting for the runner in kvmppc_wait_for_exec() which then wouldn't get woken up.) Also, we make use of the handy cond_resched_lock() function, which unlocks and relocks vc->lock for us around the reschedule. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
* Remove unused kvmppc_vcore::n_busy field. * Remove setting of RMOR, since it was only used on PPC970 and the PPC970 KVM support has been removed. * Don't use r1 or r2 in setting the runlatch since they are conventionally reserved for other things; use r0 instead. * Streamline the code a little and remove the ext_interrupt_to_host label. * Add some comments about register usage. * hcall_try_real_mode doesn't need to be global, and can't be called from C code anyway. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Previously, if kvmppc_run_core() was running a VCPU that needed a VPA update (i.e. one of its 3 virtual processor areas needed to be pinned in memory so the host real mode code can update it on guest entry and exit), we would drop the vcore lock and do the update there and then. Future changes will make it inconvenient to drop the lock, so instead we now remove it from the list of runnable VCPUs and wake up its VCPU task. This will have the effect that the VCPU task will exit kvmppc_run_vcpu(), go around the do loop in kvmppc_vcpu_run_hv(), and re-enter kvmppc_run_vcpu(), whereupon it will do the necessary call to kvmppc_update_vpas() and then rejoin the vcore. The one complication is that the runner VCPU (whose VCPU task is the current task) might be one of the ones that gets removed from the runnable list. In that case we just return from kvmppc_run_core() and let the code in kvmppc_run_vcpu() wake up another VCPU task to be the runner if necessary. This all means that the VCORE_STARTING state is no longer used, so we remove it. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This reads the timebase at various points in the real-mode guest entry/exit code and uses that to accumulate total, minimum and maximum time spent in those parts of the code. Currently these times are accumulated per vcpu in 5 parts of the code: * rm_entry - time taken from the start of kvmppc_hv_entry() until just before entering the guest. * rm_intr - time from when we take a hypervisor interrupt in the guest until we either re-enter the guest or decide to exit to the host. This includes time spent handling hcalls in real mode. * rm_exit - time from when we decide to exit the guest until the return from kvmppc_hv_entry(). * guest - time spend in the guest * cede - time spent napping in real mode due to an H_CEDE hcall while other threads in the same vcore are active. These times are exposed in debugfs in a directory per vcpu that contains a file called "timings". This file contains one line for each of the 5 timings above, with the name followed by a colon and 4 numbers, which are the count (number of times the code has been executed), the total time, the minimum time, and the maximum time, all in nanoseconds. The overhead of the extra code amounts to about 30ns for an hcall that is handled in real mode (e.g. H_SET_DABR), which is about 25%. Since production environments may not wish to incur this overhead, the new code is conditional on a new config symbol, CONFIG_KVM_BOOK3S_HV_EXIT_TIMING. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This creates a debugfs directory for each HV guest (assuming debugfs is enabled in the kernel config), and within that directory, a file by which the contents of the guest's HPT (hashed page table) can be read. The directory is named vmnnnn, where nnnn is the PID of the process that created the guest. The file is named "htab". This is intended to help in debugging problems in the host's management of guest memory. The contents of the file consist of a series of lines like this: 3f48 4000d032bf003505 0000000bd7ff1196 00000003b5c71196 The first field is the index of the entry in the HPT, the second and third are the HPT entry, so the third entry contains the real page number that is mapped by the entry if the entry's valid bit is set. The fourth field is the guest's view of the second doubleword of the entry, so it contains the guest physical address. (The format of the second through fourth fields are described in the Power ISA and also in arch/powerpc/include/asm/mmu-hash64.h.) Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
We don't support real-mode areas now that 970 support is removed. Remove the remaining details of rma from the code. Also rename rma_setup_done to hpte_setup_done to better reflect the changes. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 24 3月, 2015 1 次提交
-
-
由 David Gibson 提交于
Sometimes the KVM code on powerpc needs to emulate load or store instructions from the guest, which can include both normal and byte reversed forms. We currently (AFAICT) handle this correctly, but some variable names are very misleading. In particular we use "is_bigendian" in several places to actually mean "is the IO the same endian as the host", but we now support little-endian powerpc hosts. This also ties into the misleadingly named ld_le*() and st_le*() functions, which in fact always byteswap, even on an LE host. This patch cleans this up by renaming to more accurate "host_swabbed", and uses the generic swab*() functions instead of the powerpc specific and misleadingly named ld_le*() and st_le*() functions. Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au> Reviewed-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 06 2月, 2015 1 次提交
-
-
由 Paolo Bonzini 提交于
This patch introduces a new module parameter for the KVM module; when it is present, KVM attempts a bit of polling on every HLT before scheduling itself out via kvm_vcpu_block. This parameter helps a lot for latency-bound workloads---in particular I tested it with O_DSYNC writes with a battery-backed disk in the host. In this case, writes are fast (because the data doesn't have to go all the way to the platters) but they cannot be merged by either the host or the guest. KVM's performance here is usually around 30% of bare metal, or 50% if you use cache=directsync or cache=writethrough (these parameters avoid that the guest sends pointless flush requests, and at the same time they are not slow because of the battery-backed cache). The bad performance happens because on every halt the host CPU decides to halt itself too. When the interrupt comes, the vCPU thread is then migrated to a new physical CPU, and in general the latency is horrible because the vCPU thread has to be scheduled back in. With this patch performance reaches 60-65% of bare metal and, more important, 99% of what you get if you use idle=poll in the guest. This means that the tunable gets rid of this particular bottleneck, and more work can be done to improve performance in the kernel or QEMU. Of course there is some price to pay; every time an otherwise idle vCPUs is interrupted by an interrupt, it will poll unnecessarily and thus impose a little load on the host. The above results were obtained with a mostly random value of the parameter (500000), and the load was around 1.5-2.5% CPU usage on one of the host's core for each idle guest vCPU. The patch also adds a new stat, /sys/kernel/debug/kvm/halt_successful_poll, that can be used to tune the parameter. It counts how many HLT instructions received an interrupt during the polling period; each successful poll avoids that Linux schedules the VCPU thread out and back in, and may also avoid a likely trip to C1 and back for the physical CPU. While the VM is idle, a Linux 4 VCPU VM halts around 10 times per second. Of these halts, almost all are failed polls. During the benchmark, instead, basically all halts end within the polling period, except a more or less constant stream of 50 per second coming from vCPUs that are not running the benchmark. The wasted time is thus very low. Things may be slightly different for Windows VMs, which have a ~10 ms timer tick. The effect is also visible on Marcelo's recently-introduced latency test for the TSC deadline timer. Though of course a non-RT kernel has awful latency bounds, the latency of the timer is around 8000-10000 clock cycles compared to 20000-120000 without setting halt_poll_ns. For the TSC deadline timer, thus, the effect is both a smaller average latency and a smaller variance. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 17 12月, 2014 4 次提交
-
-
由 Sam Bobroff 提交于
Currently the H_CONFER hcall is implemented in kernel virtual mode, meaning that whenever a guest thread does an H_CONFER, all the threads in that virtual core have to exit the guest. This is bad for performance because it interrupts the other threads even if they are doing useful work. The H_CONFER hcall is called by a guest VCPU when it is spinning on a spinlock and it detects that the spinlock is held by a guest VCPU that is currently not running on a physical CPU. The idea is to give this VCPU's time slice to the holder VCPU so that it can make progress towards releasing the lock. To avoid having the other threads exit the guest unnecessarily, we add a real-mode implementation of H_CONFER that checks whether the other threads are doing anything. If all the other threads are idle (i.e. in H_CEDE) or trying to confer (i.e. in H_CONFER), it returns H_TOO_HARD which causes a guest exit and allows the H_CONFER to be handled in virtual mode. Otherwise it spins for a short time (up to 10 microseconds) to give other threads the chance to observe that this thread is trying to confer. The spin loop also terminates when any thread exits the guest or when all other threads are idle or trying to confer. If the timeout is reached, the H_CONFER returns H_SUCCESS. In this case the guest VCPU will recheck the spinlock word and most likely call H_CONFER again. This also improves the implementation of the H_CONFER virtual mode handler. If the VCPU is part of a virtual core (vcore) which is runnable, there will be a 'runner' VCPU which has taken responsibility for running the vcore. In this case we yield to the runner VCPU rather than the target VCPU. We also introduce a check on the target VCPU's yield count: if it differs from the yield count passed to H_CONFER, the target VCPU has run since H_CONFER was called and may have already released the lock. This check is required by PAPR. Signed-off-by: NSam Bobroff <sam.bobroff@au1.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
There are two ways in which a guest instruction can be obtained from the guest in the guest exit code in book3s_hv_rmhandlers.S. If the exit was caused by a Hypervisor Emulation interrupt (i.e. an illegal instruction), the offending instruction is in the HEIR register (Hypervisor Emulation Instruction Register). If the exit was caused by a load or store to an emulated MMIO device, we load the instruction from the guest by turning data relocation on and loading the instruction with an lwz instruction. Unfortunately, in the case where the guest has opposite endianness to the host, these two methods give results of different endianness, but both get put into vcpu->arch.last_inst. The HEIR value has been loaded using guest endianness, whereas the lwz will load the instruction using host endianness. The rest of the code that uses vcpu->arch.last_inst assumes it was loaded using host endianness. To fix this, we define a new vcpu field to store the HEIR value. Then, in kvmppc_handle_exit_hv(), we transfer the value from this new field to vcpu->arch.last_inst, doing a byte-swap if the guest and host endianness differ. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This removes the code that was added to enable HV KVM to work on PPC970 processors. The PPC970 is an old CPU that doesn't support virtualizing guest memory. Removing PPC970 support also lets us remove the code for allocating and managing contiguous real-mode areas, the code for the !kvm->arch.using_mmu_notifiers case, the code for pinning pages of guest memory when first accessed and keeping track of which pages have been pinned, and the code for handling H_ENTER hypercalls in virtual mode. Book3S HV KVM is now supported only on POWER7 and POWER8 processors. The KVM_CAP_PPC_RMA capability now always returns 0. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Currently the calculations of stolen time for PPC Book3S HV guests uses fields in both the vcpu struct and the kvmppc_vcore struct. The fields in the kvmppc_vcore struct are protected by the vcpu->arch.tbacct_lock of the vcpu that has taken responsibility for running the virtual core. This works correctly but confuses lockdep, because it sees that the code takes the tbacct_lock for a vcpu in kvmppc_remove_runnable() and then takes another vcpu's tbacct_lock in vcore_stolen_time(), and it thinks there is a possibility of deadlock, causing it to print reports like this: ============================================= [ INFO: possible recursive locking detected ] 3.18.0-rc7-kvm-00016-g8db4bc6 #89 Not tainted --------------------------------------------- qemu-system-ppc/6188 is trying to acquire lock: (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb1fe8>] .vcore_stolen_time+0x48/0xd0 [kvm_hv] but task is already holding lock: (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&vcpu->arch.tbacct_lock)->rlock); lock(&(&vcpu->arch.tbacct_lock)->rlock); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by qemu-system-ppc/6188: #0: (&vcpu->mutex){+.+.+.}, at: [<d00000000eb93f98>] .vcpu_load+0x28/0xe0 [kvm] #1: (&(&vcore->lock)->rlock){+.+...}, at: [<d00000000ecb41b0>] .kvmppc_vcpu_run_hv+0x530/0x1530 [kvm_hv] #2: (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv] stack backtrace: CPU: 40 PID: 6188 Comm: qemu-system-ppc Not tainted 3.18.0-rc7-kvm-00016-g8db4bc6 #89 Call Trace: [c000000b2754f3f0] [c000000000b31b6c] .dump_stack+0x88/0xb4 (unreliable) [c000000b2754f470] [c0000000000faeb8] .__lock_acquire+0x1878/0x2190 [c000000b2754f600] [c0000000000fbf0c] .lock_acquire+0xcc/0x1a0 [c000000b2754f6d0] [c000000000b2954c] ._raw_spin_lock_irq+0x4c/0x70 [c000000b2754f760] [d00000000ecb1fe8] .vcore_stolen_time+0x48/0xd0 [kvm_hv] [c000000b2754f7f0] [d00000000ecb25b4] .kvmppc_remove_runnable.part.3+0x44/0xd0 [kvm_hv] [c000000b2754f880] [d00000000ecb43ec] .kvmppc_vcpu_run_hv+0x76c/0x1530 [kvm_hv] [c000000b2754f9f0] [d00000000eb9f46c] .kvmppc_vcpu_run+0x2c/0x40 [kvm] [c000000b2754fa60] [d00000000eb9c9a4] .kvm_arch_vcpu_ioctl_run+0x54/0x160 [kvm] [c000000b2754faf0] [d00000000eb94538] .kvm_vcpu_ioctl+0x498/0x760 [kvm] [c000000b2754fcb0] [c000000000267eb4] .do_vfs_ioctl+0x444/0x770 [c000000b2754fd90] [c0000000002682a4] .SyS_ioctl+0xc4/0xe0 [c000000b2754fe30] [c0000000000092e4] syscall_exit+0x0/0x98 In order to make the locking easier to analyse, we change the code to use a spinlock in the kvmppc_vcore struct to protect the stolen_tb and preempt_tb fields. This lock needs to be an irq-safe lock since it is used in the kvmppc_core_vcpu_load_hv() and kvmppc_core_vcpu_put_hv() functions, which are called with the scheduler rq lock held, which is an irq-safe lock. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 24 9月, 2014 2 次提交
-
-
由 Tang Chen 提交于
This will be used to let the guest run while the APIC access page is not pinned. Because subsequent patches will fill in the function for x86, place the (still empty) x86 implementation in the x86.c file instead of adding an inline function in kvm_host.h. Signed-off-by: NTang Chen <tangchen@cn.fujitsu.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Andres Lagar-Cavilla 提交于
1. We were calling clear_flush_young_notify in unmap_one, but we are within an mmu notifier invalidate range scope. The spte exists no more (due to range_start) and the accessed bit info has already been propagated (due to kvm_pfn_set_accessed). Simply call clear_flush_young. 2. We clear_flush_young on a primary MMU PMD, but this may be mapped as a collection of PTEs by the secondary MMU (e.g. during log-dirty). This required expanding the interface of the clear_flush_young mmu notifier, so a lot of code has been trivially touched. 3. In the absence of shadow_accessed_mask (e.g. EPT A bit), we emulate the access bit by blowing the spte. This requires proper synchronizing with MMU notifier consumers, like every other removal of spte's does. Signed-off-by: NAndres Lagar-Cavilla <andreslc@google.com> Acked-by: NRik van Riel <riel@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 22 9月, 2014 3 次提交
-
-
由 Mihai Caraman 提交于
Powerpc timer implementation is a copycat version of s390. Now that they removed the tasklet with commit ea74c0ea follow this optimization. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NBogdan Purcareata <bogdan.purcareata@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Bharat Bhushan 提交于
Guest visible debug register and hardware visible debug registers are same, so ther is no need to have arch->shadow_dbg_reg, instead use arch->dbg_reg. Signed-off-by: NBharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Bharat Bhushan 提交于
This patch adds "rfdi" instruction emulation which is required for guest debug hander on BOOKE-HV Signed-off-by: NBharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 29 8月, 2014 3 次提交
-
-
由 Radim Krčmář 提交于
In the beggining was on_each_cpu(), which required an unused argument to kvm_arch_ops.hardware_{en,dis}able, but this was soon forgotten. Remove unnecessary arguments that stem from this. Signed-off-by: NRadim KrÄmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Radim Krčmář 提交于
Using static inline is going to save few bytes and cycles. For example on powerpc, the difference is 700 B after stripping. (5 kB before) This patch also deals with two overlooked empty functions: kvm_arch_flush_shadow was not removed from arch/mips/kvm/mips.c 2df72e9b KVM: split kvm_arch_flush_shadow and kvm_arch_sched_in never made it into arch/ia64/kvm/kvm-ia64.c. e790d9ef KVM: add kvm_arch_sched_in Signed-off-by: NRadim KrÄmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
Opaque KVM structs are useful for prototypes in asm/kvm_host.h, to avoid "'struct foo' declared inside parameter list" warnings (and consequent breakage due to conflicting types). Move them from individual files to a generic place in linux/kvm_types.h. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 29 7月, 2014 1 次提交
-
-
由 Alexander Graf 提交于
DCR handling was only needed for 440 KVM. Since we removed it, we can also remove handling of DCR accesses. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 28 7月, 2014 5 次提交
-
-
由 Alexander Graf 提交于
We have enough common infrastructure now to resolve GVA->GPA mappings at runtime. With this we can move our book3s specific helpers to load / store in guest virtual address space to common code as well. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Stewart Smith 提交于
The POWER8 processor has a Micro Partition Prefetch Engine, which is a fancy way of saying "has way to store and load contents of L2 or L2+MRU way of L3 cache". We initiate the storing of the log (list of addresses) using the logmpp instruction and start restore by writing to a SPR. The logmpp instruction takes parameters in a single 64bit register: - starting address of the table to store log of L2/L2+L3 cache contents - 32kb for L2 - 128kb for L2+L3 - Aligned relative to maximum size of the table (32kb or 128kb) - Log control (no-op, L2 only, L2 and L3, abort logout) We should abort any ongoing logging before initiating one. To initiate restore, we write to the MPPR SPR. The format of what to write to the SPR is similar to the logmpp instruction parameter: - starting address of the table to read from (same alignment requirements) - table size (no data, until end of table) - prefetch rate (from fastest possible to slower. about every 8, 16, 24 or 32 cycles) The idea behind loading and storing the contents of L2/L3 cache is to reduce memory latency in a system that is frequently swapping vcores on a physical CPU. The best case scenario for doing this is when some vcores are doing very cache heavy workloads. The worst case is when they have about 0 cache hits, so we just generate needless memory operations. This implementation just does L2 store/load. In my benchmarks this proves to be useful. Benchmark 1: - 16 core POWER8 - 3x Ubuntu 14.04LTS guests (LE) with 8 VCPUs each - No split core/SMT - two guests running sysbench memory test. sysbench --test=memory --num-threads=8 run - one guest running apache bench (of default HTML page) ab -n 490000 -c 400 http://localhost/ This benchmark aims to measure performance of real world application (apache) where other guests are cache hot with their own workloads. The sysbench memory benchmark does pointer sized writes to a (small) memory buffer in a loop. In this benchmark with this patch I can see an improvement both in requests per second (~5%) and in mean and median response times (again, about 5%). The spread of minimum and maximum response times were largely unchanged. benchmark 2: - Same VM config as benchmark 1 - all three guests running sysbench memory benchmark This benchmark aims to see if there is a positive or negative affect to this cache heavy benchmark. Although due to the nature of the benchmark (stores) we may not see a difference in performance, but rather hopefully an improvement in consistency of performance (when vcore switched in, don't have to wait many times for cachelines to be pulled in) The results of this benchmark are improvements in consistency of performance rather than performance itself. With this patch, the few outliers in duration go away and we get more consistent performance in each guest. benchmark 3: - same 3 guests and CPU configuration as benchmark 1 and 2. - two idle guests - 1 guest running STREAM benchmark This scenario also saw performance improvement with this patch. On Copy and Scale workloads from STREAM, I got 5-6% improvement with this patch. For Add and triad, it was around 10% (or more). benchmark 4: - same 3 guests as previous benchmarks - two guests running sysbench --memory, distinctly different cache heavy workload - one guest running STREAM benchmark. Similar improvements to benchmark 3. benchmark 5: - 1 guest, 8 VCPUs, Ubuntu 14.04 - Host configured with split core (SMT8, subcores-per-core=4) - STREAM benchmark In this benchmark, we see a 10-20% performance improvement across the board of STREAM benchmark results with this patch. Based on preliminary investigation and microbenchmarks by Prerna Saxena <prerna@linux.vnet.ibm.com> Signed-off-by: NStewart Smith <stewart@linux.vnet.ibm.com> Acked-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
The 440 target hasn't been properly functioning for a few releases and before I was the only one who fixes a very serious bug that indicates to me that nobody used it before either. Furthermore KVM on 440 is slow to the extent of unusable. We don't have to carry along completely unused code. Remove 440 and give us one less thing to worry about. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Bharat Bhushan 提交于
SPRN_SPRG is used by debug interrupt handler, so this is required for debug support. Signed-off-by: NBharat Bhushan <Bharat.Bhushan@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
When building KVM with a lot of vcores (NR_CPUS is big), we can potentially get out of the ld immediate range for dereferences inside that struct. Move the array to the end of our kvm_arch struct. This fixes compilation issues with NR_CPUS=2048 for me. Signed-off-by: NAlexander Graf <agraf@suse.de>
-