- 11 4月, 2015 4 次提交
-
-
由 Josef Bacik 提交于
We're triggering a huge number of commits from btrfs_async_reclaim_metadata_space. These aren't really requried, because everyone calling the async reclaim code is going to end up triggering a commit on their own. Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
This changes our delayed refs calculations to include the space needed to write back dirty block groups. Signed-off-by: NChris Mason <clm@fb.com>
-
由 Chris Mason 提交于
When truncate starts, it allocates some space in the block reserves so that we'll have enough to update metadata along the way. For very large files, we can easily go through all of that space as we loop through the extents. This changes truncate to refill the space reservation as it progresses through the file. Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
As we delete large extents, we end up doing huge amounts of COW in order to delete the corresponding crcs. This adds accounting so that we keep track of that space and flushing of delayed refs so that we don't build up too much delayed crc work. This helps limit the delayed work that must be done at commit time and tries to avoid ENOSPC aborts because the crcs eat all the global reserves. Signed-off-by: NChris Mason <clm@fb.com>
-
- 01 4月, 2015 1 次提交
-
-
由 Chris Mason 提交于
The error handling path for alloc_reserved_tree_block is calling btrfs_free_and_pin_reserved_extent with a spinning tree lock held. This might sleep as we allocate extent_state objects: BUG: sleeping function called from invalid context at mm/slub.c:1268 in_atomic(): 1, irqs_disabled(): 0, pid: 11093, name: kworker/u4:7 5 locks held by kworker/u4:7/11093: #0: ("%s-%s""btrfs", name){++++.+}, at: [<ffffffff81091d51>] process_one_work+0x151/0x520 #1: ((&work->normal_work)){+.+.+.}, at: [<ffffffff81091d51>] process_one_work+0x151/0x520 #2: (sb_internal){++++.+}, at: [<ffffffffa003a70e>] start_transaction+0x43e/0x590 [btrfs] #3: (&head_ref->mutex){+.+...}, at: [<ffffffffa0089f8c>] btrfs_delayed_ref_lock+0x4c/0x240 [btrfs] #4: (btrfs-extent-00){++++..}, at: [<ffffffffa007697b>] btrfs_clear_lock_blocking_rw+0x9b/0x150 [btrfs] CPU: 0 PID: 11093 Comm: kworker/u4:7 Tainted: G W 4.0.0-rc6-default+ #246 Hardware name: Intel Corporation Santa Rosa platform/Matanzas, BIOS TSRSCRB1.86C.0047.B00.0610170821 10/17/06 Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs] 00000000000004f4 ffff88006dd17848 ffffffff81ab0e3b ffff88006dd17848 ffff88007a944760 ffff88006dd17868 ffffffff8109d516 ffff88006dd17898 0000000000000000 ffff88006dd17898 ffffffff8109d5b2 ffffffff81aba2bb Call Trace: [<ffffffff81ab0e3b>] dump_stack+0x4f/0x6c [<ffffffff8109d516>] ___might_sleep+0xf6/0x140 [<ffffffff8109d5b2>] __might_sleep+0x52/0x90 [<ffffffff81aba2bb>] ? ftrace_call+0x5/0x34 [<ffffffff81196363>] kmem_cache_alloc+0x163/0x1b0 [<ffffffffa0056f31>] ? alloc_extent_state+0x31/0x150 [btrfs] [<ffffffffa0056f20>] ? alloc_extent_state+0x20/0x150 [btrfs] [<ffffffffa0056f31>] alloc_extent_state+0x31/0x150 [btrfs] [<ffffffffa005805b>] __set_extent_bit+0x37b/0x5d0 [btrfs] [<ffffffff81aba2bb>] ? ftrace_call+0x5/0x34 [<ffffffffa005888d>] ? set_extent_bit+0xd/0x30 [btrfs] [<ffffffffa00588a3>] set_extent_bit+0x23/0x30 [btrfs] [<ffffffffa0058e80>] set_extent_dirty+0x20/0x30 [btrfs] [<ffffffffa00195ba>] pin_down_extent+0xaa/0x170 [btrfs] [<ffffffffa001d8ef>] __btrfs_free_reserved_extent+0xcf/0x160 [btrfs] [<ffffffffa0023856>] btrfs_free_and_pin_reserved_extent+0x16/0x20 [btrfs] [<ffffffffa002482a>] __btrfs_run_delayed_refs+0xfca/0x1290 [btrfs] [<ffffffffa0026eae>] btrfs_run_delayed_refs+0x6e/0x2e0 [btrfs] [<ffffffffa0027378>] delayed_ref_async_start+0x48/0xb0 [btrfs] [<ffffffffa006c883>] normal_work_helper+0x83/0x350 [btrfs] [<ffffffffa006cd79>] ? btrfs_extent_refs_helper+0x9/0x20 [btrfs] [<ffffffffa006cd82>] btrfs_extent_refs_helper+0x12/0x20 [btrfs] [<ffffffff81091dcb>] process_one_work+0x1cb/0x520 [<ffffffff81091d51>] ? process_one_work+0x151/0x520 [<ffffffff811c7abf>] ? seq_read+0x3f/0x400 [<ffffffff8109260b>] worker_thread+0x5b/0x4e0 [<ffffffff81097be2>] ? __kthread_parkme+0x12/0xa0 [<ffffffff810925b0>] ? rescuer_thread+0x450/0x450 [<ffffffff81098686>] kthread+0xf6/0x120 [<ffffffff81098590>] ? flush_kthread_worker+0x1b0/0x1b0 [<ffffffff81ab8088>] ret_from_fork+0x58/0x90 [<ffffffff81098590>] ? flush_kthread_worker+0x1b0/0x1b0 ------------[ cut here ]------------ This changes things to free the path first, which will also unlock the extent buffer. Signed-off-by: NChris Mason <clm@fb.com> Reported-by: NDave Sterba <dsterba@suse.cz> Tested-by: NDave Sterba <dsterba@suse.cz>
-
- 27 3月, 2015 1 次提交
-
-
由 Filipe Manana 提交于
While committing a transaction we free the log roots before we write the new super block. Freeing the log roots implies marking the disk location of every node/leaf (metadata extent) as pinned before the new super block is written. This is to prevent the disk location of log metadata extents from being reused before the new super block is written, otherwise we would have a corrupted log tree if before the new super block is written a crash/reboot happens and the location of any log tree metadata extent ended up being reused and rewritten. Even though we pinned the log tree's metadata extents, we were issuing a discard against them if the fs was mounted with the -o discard option, resulting in corruption of the log tree if a crash/reboot happened before writing the new super block - the next time the fs was mounted, during the log replay process we would find nodes/leafs of the log btree with a content full of zeroes, causing the process to fail and require the use of the tool btrfs-zero-log to wipeout the log tree (and all data previously fsynced becoming lost forever). Fix this by not doing a discard when pinning an extent. The discard will be done later when it's safe (after the new super block is committed) at extent-tree.c:btrfs_finish_extent_commit(). Fixes: e688b725 (Btrfs: fix extent pinning bugs in the tree log) CC: <stable@vger.kernel.org> Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 18 3月, 2015 1 次提交
-
-
由 Josef Bacik 提交于
I introduced a regression wrt outstanding_extents accounting. These are tricky areas that aren't easily covered by xfstests as we could change MAX_EXTENT_SIZE at any time. So add sanity tests to cover the various conditions that are tricky in order to make sure we don't introduce regressions in the future. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com>
-
- 17 3月, 2015 1 次提交
-
-
由 Josef Bacik 提交于
Writing the block group cache will modify the extent tree quite a bit because it truncates the old space cache and pre-allocates new stuff. To try and cut down on the churn lets do the setup dance first, then later on hopefully we can avoid looping with newly dirtied roots. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com>
-
- 14 3月, 2015 1 次提交
-
-
由 Josef Bacik 提交于
Direct IO can easily pass in an buffer that is greater than BTRFS_MAX_EXTENT_SIZE, so take this into account when reserving extents in the delalloc reservation code. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 04 3月, 2015 5 次提交
-
-
由 David Sterba 提交于
Switch to div_u64_rem that does type checking and has more obvious semantics than do_div. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
由 David Sterba 提交于
The divisor is derived from nodesize or PAGE_SIZE, fits into 32bit type. Get rid of a few more do_div instances. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
由 David Sterba 提交于
Switch to div_u64 if the divisor is a numeric constant or sum of sizeof()s. We can remove a few instances of do_div that has the hidden semtantics of changing the 1st argument. Small power-of-two divisors are converted to bitshifts, large values are kept intact for clarity. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
由 David Sterba 提交于
Switch to div_u64_rem that does type checking and has more obvious semantics than do_div. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
由 David Sterba 提交于
The divisor is derived from nodesize or PAGE_SIZE, fits into 32bit type. Get rid of a few more do_div instances. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
- 03 3月, 2015 1 次提交
-
-
由 Josef Bacik 提交于
Our gluster boxes were hitting a problem where they'd run out of space when updating the block group cache and therefore wouldn't be able to update the free space inode. This is a problem because this is how we invalidate the cache and protect ourselves from errors further down the stack, so if this fails we have to abort the transaction so we make sure we don't end up with stale free space cache. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 21 2月, 2015 1 次提交
-
-
由 David Sterba 提交于
Switch to div_u64 if the divisor is a numeric constant or sum of sizeof()s. We can remove a few instances of do_div that has the hidden semtantics of changing the 1st argument. Small power-of-two divisors are converted to bitshifts, large values are kept intact for clarity. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
- 17 2月, 2015 2 次提交
-
-
由 Zhao Lei 提交于
int alloc_chunk is never used in this function, remove it. Signed-off-by: NZhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
由 Daniel Dressler 提交于
This is the 3rd independent patch of a larger project to cleanup btrfs's internal usage of btrfs_root. Many functions take btrfs_root only to grab the fs_info struct. By requiring a root these functions cause programmer overhead. That these functions can accept any valid root is not obvious until inspection. This patch reduces the specificity of such functions to accept the fs_info directly. These patches can be applied independently and thus are not being submitted as a patch series. There should be about 26 patches by the project's completion. Each patch will cleanup between 1 and 34 functions apiece. Each patch covers a single file's functions. This patch affects the following function(s): 1) csum_tree_block 2) csum_dirty_buffer 3) check_tree_block_fsid 4) btrfs_find_tree_block 5) clean_tree_block Signed-off-by: NDaniel Dressler <danieru.dressler@gmail.com> Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
- 15 2月, 2015 2 次提交
-
-
由 Forrest Liu 提交于
Removing large amount of block group in a transaction may encounters BUG_ON() in btrfs_orphan_add(). That is because btrfs_orphan_reserve_metadata() will grab metadata reservation from transaction handle, and btrfs_delete_unused_bgs() didn't reserve metadata for trnasaction handle when delete unused block group. The problem can be reproduce by following script mntpath=/btrfs loopdev=/dev/loop0 filepath=/home/forrest/image umount $mntpath losetup -d $loopdev truncate --size 1000g $filepath losetup $loopdev $filepath mkfs.btrfs -f $loopdev mount $loopdev $mntpath for j in `seq 1 1 1000`; do fallocate -l 1g $mntpath/$j done # wait cleaner thread remove unused block group sleep 300 The call trace that results from the BUG_ON() is: [ 613.093084] ------------[ cut here ]------------ [ 613.097928] kernel BUG at fs/btrfs/inode.c:3142! [ 613.105855] invalid opcode: 0000 [#1] SMP [ 613.112702] Modules linked in: coretemp(E) crc32_pclmul(E) ghash_clmulni_intel(E) aesni_intel(E) snd_ens1371(E) snd_ac97_codec(E) aes_x86_64(E) lrw(E) gf128mul(E) glue_helper(E) ppdev(E) ac97_bus(E) ablk_helper(E) gameport(E) cryptd(E) snd_rawmidi(E) snd_seq_device(E) snd_pcm(E) vmw_balloon(E) snd_timer(E) snd(E) soundcore(E) serio_raw(E) vmwgfx(E) ttm(E) drm_kms_helper(E) drm(E) vmw_vmci(E) parport_pc(E) shpchp(E) i2c_piix4(E) mac_hid(E) lp(E) parport(E) btrfs(E) xor(E) raid6_pq(E) hid_generic(E) usbhid(E) hid(E) psmouse(E) ahci(E) libahci(E) e1000(E) mptspi(E) mptscsih(E) mptbase(E) floppy(E) vmw_pvscsi(E) vmxnet3(E) [ 613.144196] CPU: 0 PID: 1480 Comm: btrfs-cleaner Tainted: G E 3.19.0-rc7-custom #2 [ 613.148501] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013 [ 613.152694] task: ffff880035cdb1a0 ti: ffff880039cf4000 task.ti: ffff880039cf4000 [ 613.154969] RIP: 0010:[<ffffffffa01441c2>] [<ffffffffa01441c2>] btrfs_orphan_add+0x1d2/0x1e0 [btrfs] [ 613.157780] RSP: 0018:ffff880039cf7c48 EFLAGS: 00010286 [ 613.159560] RAX: 00000000ffffffe4 RBX: ffff88003bd981a0 RCX: ffff88003c9e4000 [ 613.161904] RDX: 0000000000002244 RSI: 0000000000040000 RDI: ffff88003c9e4138 [ 613.164264] RBP: ffff880039cf7c88 R08: 000060ffc0000850 R09: 0000000000000000 [ 613.166507] R10: ffff88003bc4b7a0 R11: ffffea0000eb6740 R12: ffff88003c9c0000 [ 613.168681] R13: ffff88003c102160 R14: ffff88003c9c0458 R15: 0000000000000001 [ 613.170932] FS: 0000000000000000(0000) GS:ffff88003f600000(0000) knlGS:0000000000000000 [ 613.173316] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 613.175227] CR2: 00007f6343537000 CR3: 0000000036329000 CR4: 00000000000407f0 [ 613.177554] Stack: [ 613.178712] ffff880039cf7c88 ffffffffa0182a54 ffff88003c9e4b04 ffff88003c9c7800 [ 613.181297] ffff88003bc4b7a0 ffff88003bd981a0 ffff88003c8db200 ffff88003c2fcc60 [ 613.183782] ffff880039cf7d18 ffffffffa012da97 ffff88003bc4b7a4 ffff88003bc4b7a0 [ 613.186171] Call Trace: [ 613.187493] [<ffffffffa0182a54>] ? lookup_free_space_inode+0x44/0x100 [btrfs] [ 613.189801] [<ffffffffa012da97>] btrfs_remove_block_group+0x137/0x740 [btrfs] [ 613.192126] [<ffffffffa0166912>] btrfs_remove_chunk+0x672/0x780 [btrfs] [ 613.194267] [<ffffffffa012e2ff>] btrfs_delete_unused_bgs+0x25f/0x280 [btrfs] [ 613.196567] [<ffffffffa0135e4c>] cleaner_kthread+0x12c/0x190 [btrfs] [ 613.198687] [<ffffffffa0135d20>] ? check_leaf+0x350/0x350 [btrfs] [ 613.200758] [<ffffffff8108f232>] kthread+0xd2/0xf0 [ 613.202616] [<ffffffff8108f160>] ? kthread_create_on_node+0x180/0x180 [ 613.204738] [<ffffffff8175dabc>] ret_from_fork+0x7c/0xb0 [ 613.206652] [<ffffffff8108f160>] ? kthread_create_on_node+0x180/0x180 [ 613.208741] Code: ff ff 0f 1f 80 00 00 00 00 89 45 c8 3e 80 63 80 fd 48 89 df e8 d0 23 fe ff 8b 45 c8 e9 14 ff ff ff b8 f4 ff ff ff e9 12 ff ff ff <0f> 0b 66 66 66 2e 0f 1f 84 00 00 00 00 00 66 66 66 66 90 55 48 [ 613.216562] RIP [<ffffffffa01441c2>] btrfs_orphan_add+0x1d2/0x1e0 [btrfs] [ 613.218828] RSP <ffff880039cf7c48> [ 613.220382] ---[ end trace 71073106deb8a457 ]--- This patch replace btrfs_join_transaction() with btrfs_start_transaction() in btrfs_delete_unused_bgs() to revent BUG_ON() in btrfs_orphan_add() Signed-off-by: NForrest Liu <forrestl@synology.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
On our gluster boxes we stream large tar balls of backups onto our fses. With 160gb of ram this means we get really large contiguous ranges of dirty data, but the way our ENOSPC stuff works is that as long as it's contiguous we only hold metadata reservation for one extent. The problem is we limit our extents to 128mb, so we'll end up with at least 800 extents so our enospc accounting is quite a bit lower than what we need. To keep track of this make sure we increase outstanding_extents for every multiple of the max extent size so we can be sure to have enough reserved metadata space. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 03 2月, 2015 2 次提交
-
-
由 Shaohua Li 提交于
Below test will fail currently: mkfs.ext4 -F /dev/sda btrfs-convert /dev/sda mount /dev/sda /mnt btrfs device add -f /dev/sdb /mnt btrfs balance start -v -dconvert=raid1 -mconvert=raid1 /mnt The reason is there are some block groups with usage 0, but the whole disk hasn't free space to allocate new chunk, so we even can't set such block group readonly. This patch deletes the chunk allocation when setting block group ro. For META, we already have reserve. But for SYSTEM, we don't have, so the check_system_chunk is still required. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
Committing a transaction can race with automatic removal of empty block groups (cleaner kthread), leading to a BUG_ON() in the transaction commit code while running btrfs_finish_extent_commit(). The following sequence diagram shows how it can happen: CPU 1 CPU 2 btrfs_commit_transaction() fs_info->running_transaction = NULL btrfs_finish_extent_commit() find_first_extent_bit() -> found range for block group X in fs_info->freed_extents[] btrfs_delete_unused_bgs() -> found block group X Removed block group X's range from fs_info->freed_extents[] btrfs_remove_chunk() btrfs_remove_block_group(bg X) unpin_extent_range(bg X range) btrfs_lookup_block_group(bg X) -> returns NULL -> BUG_ON() The trace that results from the BUG_ON() is: [48665.187808] ------------[ cut here ]------------ [48665.188032] kernel BUG at fs/btrfs/extent-tree.c:5675! [48665.188032] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC [48665.188032] Modules linked in: dm_flakey dm_mod crc32c_generic btrfs xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop parport_pc evdev microcode [48665.197388] CPU: 2 PID: 31211 Comm: kworker/u32:16 Tainted: G W 3.19.0-rc5-btrfs-next-4+ #1 [48665.197388] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [48665.197388] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs] [48665.197388] task: ffff880222011810 ti: ffff8801b56a4000 task.ti: ffff8801b56a4000 [48665.197388] RIP: 0010:[<ffffffffa0350d05>] [<ffffffffa0350d05>] unpin_extent_range+0x6a/0x1ba [btrfs] [48665.197388] RSP: 0018:ffff8801b56a7b88 EFLAGS: 00010246 [48665.197388] RAX: 0000000000000000 RBX: ffff8802143a6000 RCX: ffff8802220120c8 [48665.197388] RDX: 0000000000000001 RSI: 0000000000000001 RDI: ffff8800a3c140b0 [48665.197388] RBP: ffff8801b56a7bd8 R08: 0000000000000003 R09: 0000000000000000 [48665.197388] R10: 0000000000000000 R11: 000000000000bbac R12: 0000000012e8e000 [48665.197388] R13: ffff8800a3c14000 R14: 0000000000000000 R15: 0000000000000000 [48665.197388] FS: 0000000000000000(0000) GS:ffff88023ec40000(0000) knlGS:0000000000000000 [48665.197388] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [48665.197388] CR2: 00007f065e42f270 CR3: 0000000206f70000 CR4: 00000000000006e0 [48665.197388] Stack: [48665.197388] ffff8801b56a7bd8 0000000012ea0000 01ff8800a3c14138 0000000012e9ffff [48665.197388] ffff880141df3dd8 ffff8802143a6000 ffff8800a3c14138 ffff880141df3df0 [48665.197388] ffff880141df3dd8 0000000000000000 ffff8801b56a7c08 ffffffffa0354227 [48665.197388] Call Trace: [48665.197388] [<ffffffffa0354227>] btrfs_finish_extent_commit+0xb0/0xd9 [btrfs] [48665.197388] [<ffffffffa0366b4b>] btrfs_commit_transaction+0x791/0x92c [btrfs] [48665.197388] [<ffffffffa0352432>] flush_space+0x43d/0x452 [btrfs] [48665.197388] [<ffffffff814295c3>] ? _raw_spin_unlock+0x28/0x33 [48665.197388] [<ffffffffa035255f>] btrfs_async_reclaim_metadata_space+0x118/0x164 [btrfs] [48665.197388] [<ffffffff81059917>] ? process_one_work+0x14b/0x3ab [48665.197388] [<ffffffff810599ac>] process_one_work+0x1e0/0x3ab [48665.197388] [<ffffffff81079fa9>] ? trace_hardirqs_off+0xd/0xf [48665.197388] [<ffffffff8105a55b>] worker_thread+0x210/0x2d0 [48665.197388] [<ffffffff8105a34b>] ? rescuer_thread+0x2c3/0x2c3 [48665.197388] [<ffffffff8105e5c0>] kthread+0xef/0xf7 [48665.197388] [<ffffffff81429682>] ? _raw_spin_unlock_irq+0x2d/0x39 [48665.197388] [<ffffffff8105e4d1>] ? __kthread_parkme+0xad/0xad [48665.197388] [<ffffffff81429dec>] ret_from_fork+0x7c/0xb0 [48665.197388] [<ffffffff8105e4d1>] ? __kthread_parkme+0xad/0xad [48665.197388] Code: 85 f6 74 14 49 8b 06 49 03 46 09 49 39 c4 72 1d 4c 89 f7 e8 83 ec ff ff 4c 89 e6 4c 89 ef e8 1e f1 ff ff 48 85 c0 49 89 c6 75 02 <0f> 0b 49 8b 1e 49 03 5e 09 48 8b [48665.197388] RIP [<ffffffffa0350d05>] unpin_extent_range+0x6a/0x1ba [btrfs] [48665.197388] RSP <ffff8801b56a7b88> [48665.272246] ---[ end trace b9c6ab9957521376 ]--- Fix this by ensuring that unpining the block group's range in btrfs_finish_extent_commit() is done in a synchronized fashion with removing the block group's range from freed_extents[] in btrfs_delete_unused_bgs() This race got introduced with the change: Btrfs: remove empty block groups automatically commit 47ab2a6cSigned-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 22 1月, 2015 4 次提交
-
-
由 Liu Bo 提交于
"run_most" is not used anymore. Signed-off-by: NLiu Bo <bo.li.liu@oracle.com> Reviewed-by: NSatoru Takeuchi <takeuchi_satoru@jp.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Zhao Lei 提交于
1: ref_count is simple than current RBIO_HOLD_BBIO_MAP_BIT flag to keep btrfs_bio's memory in raid56 recovery implement. 2: free function for bbio will make code clean and flexible, plus forced data type checking in compile. Changelog v1->v2: Rename following by David Sterba's suggestion: put_btrfs_bio() -> btrfs_put_bio() get_btrfs_bio() -> btrfs_get_bio() bbio->ref_count -> bbio->refs Signed-off-by: NZhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
Very often our extent buffer's header generation doesn't match the current transaction's id or it is also referenced by other trees (snapshots), so we don't need the corresponding block group cache object. Therefore only search for it if we are going to use it, so we avoid an unnecessary search in the block groups rbtree (and acquiring and releasing its spinlock). Freeing a tree block is performed when COWing or deleting a node/leaf, which implies we are holding the node/leaf's parent node lock, therefore reducing the amount of time spent when freeing a tree block helps reducing the amount of time we are holding the parent node's lock. For example, for a run of xfstests/generic/083, the block group cache object was needed only 682 times for a total of 226691 calls to free a tree block. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
Currently any time we try to update the block groups on disk we will walk _all_ block groups and check for the ->dirty flag to see if it is set. This function can get called several times during a commit. So if you have several terabytes of data you will be a very sad panda as we will loop through _all_ of the block groups several times, which makes the commit take a while which slows down the rest of the file system operations. This patch introduces a dirty list for the block groups that we get added to when we dirty the block group for the first time. Then we simply update any block groups that have been dirtied since the last time we called btrfs_write_dirty_block_groups. This allows us to clean up how we write the free space cache out so it is much cleaner. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 20 1月, 2015 1 次提交
-
-
由 Filipe Manana 提交于
When removing a block group we were deleting it from its space_info's ro_bgs list without the correct protection - the space info's spinlock. Fix this by doing the list delete while holding the spinlock of the corresponding space info, which is the correct lock for any operation on that list. This issue was introduced in the 3.19 kernel by the following change: Btrfs: move read only block groups onto their own list V2 commit 633c0aad I ran into a kernel crash while a task was running statfs, which iterates the space_info->ro_bgs list while holding the space info's spinlock, and another task was deleting it from the same list, without holding that spinlock, as part of the block group remove operation (while running the function btrfs_remove_block_group). This happened often when running the stress test xfstests/generic/038 I recently made. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 03 1月, 2015 1 次提交
-
-
由 Josef Bacik 提交于
We shouldn't BUG_ON() if there is corruption. I hit this while testing my block group patch and the abort worked properly. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 13 12月, 2014 3 次提交
-
-
由 David Sterba 提交于
Finally it's clear that the requested blocksize is always equal to nodesize, with one exception, the superblock. Superblock has fixed size regardless of the metadata block size, but uses the same helpers to initialize sys array/chunk tree and to work with the chunk items. So it pretends to be an extent_buffer for a moment, btrfs_read_sys_array is full of special cases, we're adding one more. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
由 David Sterba 提交于
Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
由 David Sterba 提交于
All callers pass nodesize. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
- 11 12月, 2014 3 次提交
-
-
由 Filipe Manana 提交于
It doesn't do anything special, it just calls btrfs_discard_extent(), so just remove it. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
When we abort a transaction we iterate over all the ranges marked as dirty in fs_info->freed_extents[0] and fs_info->freed_extents[1], clear them from those trees, add them back (unpin) to the free space caches and, if the fs was mounted with "-o discard", perform a discard on those regions. Also, after adding the regions to the free space caches, a fitrim ioctl call can see those ranges in a block group's free space cache and perform a discard on the ranges, so the same issue can happen without "-o discard" as well. This causes corruption, affecting one or multiple btree nodes (in the worst case leaving the fs unmountable) because some of those ranges (the ones in the fs_info->pinned_extents tree) correspond to btree nodes/leafs that are referred by the last committed super block - breaking the rule that anything that was committed by a transaction is untouched until the next transaction commits successfully. I ran into this while running in a loop (for several hours) the fstest that I recently submitted: [PATCH] fstests: add btrfs test to stress chunk allocation/removal and fstrim The corruption always happened when a transaction aborted and then fsck complained like this: _check_btrfs_filesystem: filesystem on /dev/sdc is inconsistent *** fsck.btrfs output *** Check tree block failed, want=94945280, have=0 Check tree block failed, want=94945280, have=0 Check tree block failed, want=94945280, have=0 Check tree block failed, want=94945280, have=0 Check tree block failed, want=94945280, have=0 read block failed check_tree_block Couldn't open file system In this case 94945280 corresponded to the root of a tree. Using frace what I observed was the following sequence of steps happened: 1) transaction N started, fs_info->pinned_extents pointed to fs_info->freed_extents[0]; 2) node/eb 94945280 is created; 3) eb is persisted to disk; 4) transaction N commit starts, fs_info->pinned_extents now points to fs_info->freed_extents[1], and transaction N completes; 5) transaction N + 1 starts; 6) eb is COWed, and btrfs_free_tree_block() called for this eb; 7) eb range (94945280 to 94945280 + 16Kb) is added to fs_info->pinned_extents (fs_info->freed_extents[1]); 8) Something goes wrong in transaction N + 1, like hitting ENOSPC for example, and the transaction is aborted, turning the fs into readonly mode. The stack trace I got for example: [112065.253935] [<ffffffff8140c7b6>] dump_stack+0x4d/0x66 [112065.254271] [<ffffffff81042984>] warn_slowpath_common+0x7f/0x98 [112065.254567] [<ffffffffa0325990>] ? __btrfs_abort_transaction+0x50/0x10b [btrfs] [112065.261674] [<ffffffff810429e5>] warn_slowpath_fmt+0x48/0x50 [112065.261922] [<ffffffffa032949e>] ? btrfs_free_path+0x26/0x29 [btrfs] [112065.262211] [<ffffffffa0325990>] __btrfs_abort_transaction+0x50/0x10b [btrfs] [112065.262545] [<ffffffffa036b1d6>] btrfs_remove_chunk+0x537/0x58b [btrfs] [112065.262771] [<ffffffffa033840f>] btrfs_delete_unused_bgs+0x1de/0x21b [btrfs] [112065.263105] [<ffffffffa0343106>] cleaner_kthread+0x100/0x12f [btrfs] (...) [112065.264493] ---[ end trace dd7903a975a31a08 ]--- [112065.264673] BTRFS: error (device sdc) in btrfs_remove_chunk:2625: errno=-28 No space left [112065.264997] BTRFS info (device sdc): forced readonly 9) The clear kthread sees that the BTRFS_FS_STATE_ERROR bit is set in fs_info->fs_state and calls btrfs_cleanup_transaction(), which in turn calls btrfs_destroy_pinned_extent(); 10) Then btrfs_destroy_pinned_extent() iterates over all the ranges marked as dirty in fs_info->freed_extents[], and for each one it calls discard, if the fs was mounted with "-o discard", and adds the range to the free space cache of the respective block group; 11) btrfs_trim_block_group(), invoked from the fitrim ioctl code path, sees the free space entries and performs a discard; 12) After an umount and mount (or fsck), our eb's location on disk was full of zeroes, and it should have been untouched, because it was marked as dirty in the fs_info->pinned_extents tree, and therefore used by the trees that the last committed superblock points to. Fix this by not performing a discard and not adding the ranges to the free space caches - it's useless from this point since the fs is now in readonly mode and we won't write free space caches to disk anymore (otherwise we would leak space) nor any new superblock. By not adding the ranges to the free space caches, it prevents other code paths from allocating that space and write to it as well, therefore being safer and simpler. This isn't a new problem, as it's been present since 2011 (git commit acce952b). Cc: stable@vger.kernel.org # any kernel released after 2011-01-06 Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
Always clear a block group's rbnode after removing it from the rbtree to ensure that any tasks that might be holding a reference on the block group don't end up accessing stale rbnode left and right child pointers through next_block_group(). This is a leftover from the change titled: "Btrfs: fix invalid block group rbtree access after bg is removed" Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 03 12月, 2014 6 次提交
-
-
由 Josef Bacik 提交于
This was written when we didn't do a caching control for the fast free space cache loading. However we started doing that a long time ago, and there is still a small window of time that we could be caching the block group the fast way, so if there is a caching_ctl at all on the block group just return it, the callers all wait properly for what they want. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
On block group remove if the corresponding extent map was on the transaction->pending_chunks list, we were deleting the extent map from that list, through remove_extent_mapping(), without any synchronization with chunk allocation (which iterates that list and adds new elements to it). Fix this by ensure that this is done while the chunk mutex is held, since that's the mutex that protects the list in the chunk allocation code path. This applies on top (depends on) of my previous patch titled: "Btrfs: fix race between fs trimming and block group remove/allocation" But the issue in fact was already present before that change, it only became easier to hit after Josef's 3.18 patch that added automatic removal of empty block groups. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
On chunk allocation error (label "error_del_extent"), after adding the extent map to the tree and to the pending chunks list, we would leave decrementing the extent map's refcount by 2 instead of 3 (our allocation + tree reference + list reference). Also, on chunk/block group removal, if the block group was on the list pending_chunks we weren't decrementing the respective list reference. Detected by 'rmmod btrfs': [20770.105881] kmem_cache_destroy btrfs_extent_map: Slab cache still has objects [20770.106127] CPU: 2 PID: 11093 Comm: rmmod Tainted: G W L 3.17.0-rc5-btrfs-next-1+ #1 [20770.106128] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [20770.106130] 0000000000000000 ffff8800ba867eb8 ffffffff813e7a13 ffff8800a2e11040 [20770.106132] ffff8800ba867ed0 ffffffff81105d0c 0000000000000000 ffff8800ba867ee0 [20770.106134] ffffffffa035d65e ffff8800ba867ef0 ffffffffa03b0654 ffff8800ba867f78 [20770.106136] Call Trace: [20770.106142] [<ffffffff813e7a13>] dump_stack+0x45/0x56 [20770.106145] [<ffffffff81105d0c>] kmem_cache_destroy+0x4b/0x90 [20770.106164] [<ffffffffa035d65e>] extent_map_exit+0x1a/0x1c [btrfs] [20770.106176] [<ffffffffa03b0654>] exit_btrfs_fs+0x27/0x9d3 [btrfs] [20770.106179] [<ffffffff8109dc97>] SyS_delete_module+0x153/0x1c4 [20770.106182] [<ffffffff8121261b>] ? trace_hardirqs_on_thunk+0x3a/0x3c [20770.106184] [<ffffffff813ebf52>] system_call_fastpath+0x16/0x1b This applies on top (depends on) of my previous patch titled: "Btrfs: fix race between fs trimming and block group remove/allocation" But the issue in fact was already present before that change, it only became easier to hit after Josef's 3.18 patch that added automatic removal of empty block groups. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
If the transaction handle doesn't have used blocks but has created new block groups make sure we turn the fs into readonly mode too. This is because the new block groups didn't get all their metadata persisted into the chunk and device trees, and therefore if a subsequent transaction starts, allocates space from the new block groups, writes data or metadata into that space, commits successfully and then after we unmount and mount the filesystem again, the same space can be allocated again for a new block group, resulting in file data or metadata corruption. Example where we don't abort the transaction when we fail to finish the chunk allocation (add items to the chunk and device trees) and later a future transaction where the block group is removed fails because it can't find the chunk item in the chunk tree: [25230.404300] WARNING: CPU: 0 PID: 7721 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x50/0xfc [btrfs]() [25230.404301] BTRFS: Transaction aborted (error -28) [25230.404302] Modules linked in: btrfs dm_flakey nls_utf8 fuse xor raid6_pq ntfs vfat msdos fat xfs crc32c_generic libcrc32c ext3 jbd ext2 dm_mod nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc loop psmouse i2c_piix4 i2ccore parport_pc parport processor button pcspkr serio_raw thermal_sys evdev microcode ext4 crc16 jbd2 mbcache sr_mod cdrom ata_generic sg sd_mod crc_t10dif crct10dif_generic crct10dif_common virtio_scsi floppy e1000 ata_piix libata virtio_pci virtio_ring scsi_mod virtio [last unloaded: btrfs] [25230.404325] CPU: 0 PID: 7721 Comm: xfs_io Not tainted 3.17.0-rc5-btrfs-next-1+ #1 [25230.404326] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [25230.404328] 0000000000000000 ffff88004581bb08 ffffffff813e7a13 ffff88004581bb50 [25230.404330] ffff88004581bb40 ffffffff810423aa ffffffffa049386a 00000000ffffffe4 [25230.404332] ffffffffa05214c0 000000000000240c ffff88010fc8f800 ffff88004581bba8 [25230.404334] Call Trace: [25230.404338] [<ffffffff813e7a13>] dump_stack+0x45/0x56 [25230.404342] [<ffffffff810423aa>] warn_slowpath_common+0x7f/0x98 [25230.404351] [<ffffffffa049386a>] ? __btrfs_abort_transaction+0x50/0xfc [btrfs] [25230.404353] [<ffffffff8104240b>] warn_slowpath_fmt+0x48/0x50 [25230.404362] [<ffffffffa049386a>] __btrfs_abort_transaction+0x50/0xfc [btrfs] [25230.404374] [<ffffffffa04a8c43>] btrfs_create_pending_block_groups+0x10c/0x135 [btrfs] [25230.404387] [<ffffffffa04b77fd>] __btrfs_end_transaction+0x7e/0x2de [btrfs] [25230.404398] [<ffffffffa04b7a6d>] btrfs_end_transaction+0x10/0x12 [btrfs] [25230.404408] [<ffffffffa04a3d64>] btrfs_check_data_free_space+0x111/0x1f0 [btrfs] [25230.404421] [<ffffffffa04c53bd>] __btrfs_buffered_write+0x160/0x48d [btrfs] [25230.404425] [<ffffffff811a9268>] ? cap_inode_need_killpriv+0x2d/0x37 [25230.404429] [<ffffffff810f6501>] ? get_page+0x1a/0x2b [25230.404441] [<ffffffffa04c7c95>] btrfs_file_write_iter+0x321/0x42f [btrfs] [25230.404443] [<ffffffff8110f5d9>] ? handle_mm_fault+0x7f3/0x846 [25230.404446] [<ffffffff813e98c5>] ? mutex_unlock+0x16/0x18 [25230.404449] [<ffffffff81138d68>] new_sync_write+0x7c/0xa0 [25230.404450] [<ffffffff81139401>] vfs_write+0xb0/0x112 [25230.404452] [<ffffffff81139c9d>] SyS_pwrite64+0x66/0x84 [25230.404454] [<ffffffff813ebf52>] system_call_fastpath+0x16/0x1b [25230.404455] ---[ end trace 5aa5684fdf47ab38 ]--- [25230.404458] BTRFS warning (device sdc): btrfs_create_pending_block_groups:9228: Aborting unused transaction(No space left). [25288.084814] BTRFS: error (device sdc) in btrfs_free_chunk:2509: errno=-2 No such entry (Failed lookup while freeing chunk.) Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
Our fs trim operation, which is completely transactionless (doesn't start or joins an existing transaction) consists of visiting all block groups and then for each one to iterate its free space entries and perform a discard operation against the space range represented by the free space entries. However before performing a discard, the corresponding free space entry is removed from the free space rbtree, and when the discard completes it is added back to the free space rbtree. If a block group remove operation happens while the discard is ongoing (or before it starts and after a free space entry is hidden), we end up not waiting for the discard to complete, remove the extent map that maps logical address to physical addresses and the corresponding chunk metadata from the the chunk and device trees. After that and before the discard completes, the current running transaction can finish and a new one start, allowing for new block groups that map to the same physical addresses to be allocated and written to. So fix this by keeping the extent map in memory until the discard completes so that the same physical addresses aren't reused before it completes. If the physical locations that are under a discard operation end up being used for a new metadata block group for example, and dirty metadata extents are written before the discard finishes (the VM might call writepages() of our btree inode's i_mapping for example, or an fsync log commit happens) we end up overwriting metadata with zeroes, which leads to errors from fsck like the following: checking extents Check tree block failed, want=833912832, have=0 Check tree block failed, want=833912832, have=0 Check tree block failed, want=833912832, have=0 Check tree block failed, want=833912832, have=0 Check tree block failed, want=833912832, have=0 read block failed check_tree_block owner ref check failed [833912832 16384] Errors found in extent allocation tree or chunk allocation checking free space cache checking fs roots Check tree block failed, want=833912832, have=0 Check tree block failed, want=833912832, have=0 Check tree block failed, want=833912832, have=0 Check tree block failed, want=833912832, have=0 Check tree block failed, want=833912832, have=0 read block failed check_tree_block root 5 root dir 256 error root 5 inode 260 errors 2001, no inode item, link count wrong unresolved ref dir 256 index 0 namelen 8 name foobar_3 filetype 1 errors 6, no dir index, no inode ref root 5 inode 262 errors 2001, no inode item, link count wrong unresolved ref dir 256 index 0 namelen 8 name foobar_5 filetype 1 errors 6, no dir index, no inode ref root 5 inode 263 errors 2001, no inode item, link count wrong (...) Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
There's a race between adding a block group to the list of the unused block groups and removing an unused block group (cleaner kthread) that leads to freeing extents that are in use or a crash during transaction commmit. Basically the cleaner kthread, when executing btrfs_delete_unused_bgs(), might catch the newly added block group to the list fs_info->unused_bgs and clear the range representing the whole group from fs_info->freed_extents[] before the task that added the block group to the list (running update_block_group()) marked the last freed extent as dirty in fs_info->freed_extents (pinned_extents). That is: CPU 1 CPU 2 btrfs_delete_unused_bgs() update_block_group() add block group to fs_info->unused_bgs got block group from the list clear_extent_bits for the whole block group range in freed_extents[] set_extent_dirty for the range covering the freed extent in freed_extents[] (fs_info->pinned_extents) block group deleted, and a new block group with the same logical address is created reserve space from the new block group for new data or metadata - the reserved space overlaps the range specified by CPU 1 for set_extent_dirty() commit transaction find all ranges marked as dirty in fs_info->pinned_extents, clear them and add them to the free space cache Alternatively, if CPU 2 doesn't create a new block group with the same logical address, we get a crash/BUG_ON at transaction commit when unpining extent ranges because we can't find a block group for the range marked as dirty by CPU 1. Sample trace: [ 2163.426462] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC [ 2163.426640] Modules linked in: btrfs xor raid6_pq dm_thin_pool dm_persistent_data dm_bio_prison dm_bufio crc32c_generic libcrc32c dm_mod nfsd auth_rpc gss oid_registry nfs_acl nfs lockd fscache sunrpc loop psmouse parport_pc parport i2c_piix4 processor thermal_sys i2ccore evdev button pcspkr microcode serio_raw ext4 crc16 jbd2 mbcache sg sr_mod cdrom sd_mod crc_t10dif crct10dif_generic crct10dif_common ata_generic virtio_scsi floppy ata_piix libata e1000 scsi_mod virtio_pci virtio_ring virtio [ 2163.428209] CPU: 0 PID: 11858 Comm: btrfs-transacti Tainted: G W 3.17.0-rc5-btrfs-next-1+ #1 [ 2163.428519] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [ 2163.428875] task: ffff88009f2c0650 ti: ffff8801356bc000 task.ti: ffff8801356bc000 [ 2163.429157] RIP: 0010:[<ffffffffa037728e>] [<ffffffffa037728e>] unpin_extent_range.isra.58+0x62/0x192 [btrfs] [ 2163.429562] RSP: 0018:ffff8801356bfda8 EFLAGS: 00010246 [ 2163.429802] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 [ 2163.429990] RDX: 0000000041bfffff RSI: 0000000001c00000 RDI: ffff880024307080 [ 2163.430042] RBP: ffff8801356bfde8 R08: 0000000000000068 R09: ffff88003734f118 [ 2163.430042] R10: ffff8801356bfcb8 R11: fffffffffffffb69 R12: ffff8800243070d0 [ 2163.430042] R13: 0000000083c04000 R14: ffff8800751b0f00 R15: ffff880024307000 [ 2163.430042] FS: 0000000000000000(0000) GS:ffff88013f400000(0000) knlGS:0000000000000000 [ 2163.430042] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 2163.430042] CR2: 00007ff10eb43fc0 CR3: 0000000004cb8000 CR4: 00000000000006f0 [ 2163.430042] Stack: [ 2163.430042] ffff8800243070d0 0000000083c08000 0000000083c07fff ffff88012d6bc800 [ 2163.430042] ffff8800243070d0 ffff8800751b0f18 ffff8800751b0f00 0000000000000000 [ 2163.430042] ffff8801356bfe18 ffffffffa037a481 0000000083c04000 0000000083c07fff [ 2163.430042] Call Trace: [ 2163.430042] [<ffffffffa037a481>] btrfs_finish_extent_commit+0xac/0xbf [btrfs] [ 2163.430042] [<ffffffffa038c06d>] btrfs_commit_transaction+0x6ee/0x882 [btrfs] [ 2163.430042] [<ffffffffa03881f1>] transaction_kthread+0xf2/0x1a4 [btrfs] [ 2163.430042] [<ffffffffa03880ff>] ? btrfs_cleanup_transaction+0x3d8/0x3d8 [btrfs] [ 2163.430042] [<ffffffff8105966b>] kthread+0xb7/0xbf [ 2163.430042] [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67 [ 2163.430042] [<ffffffff813ebeac>] ret_from_fork+0x7c/0xb0 [ 2163.430042] [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67 So fix this by making update_block_group() first set the range as dirty in pinned_extents before adding the block group to the unused_bgs list. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-