- 27 5月, 2011 2 次提交
-
-
由 Namhyung Kim 提交于
The 'max_part' parameter controls the number of maximum partition a brd device can have. However if a user specifies very large value it would exceed the limitation of device minor number and can cause a kernel panic (or, at least, produce invalid device nodes in some cases). On my desktop system, following command kills the kernel. On qemu, it triggers similar oops but the kernel was alive: $ sudo modprobe brd max_part=100000 BUG: unable to handle kernel NULL pointer dereference at 0000000000000058 IP: [<ffffffff81110a9a>] sysfs_create_dir+0x2d/0xae PGD 7af1067 PUD 7b19067 PMD 0 Oops: 0000 [#1] SMP last sysfs file: CPU 0 Modules linked in: brd(+) Pid: 44, comm: insmod Tainted: G W 2.6.39-qemu+ #158 Bochs Bochs RIP: 0010:[<ffffffff81110a9a>] [<ffffffff81110a9a>] sysfs_create_dir+0x2d/0xae RSP: 0018:ffff880007b15d78 EFLAGS: 00000286 RAX: ffff880007b05478 RBX: ffff880007a52760 RCX: ffff880007b15dc8 RDX: ffff880007a4f900 RSI: ffff880007b15e48 RDI: ffff880007a52760 RBP: ffff880007b15da8 R08: 0000000000000002 R09: 0000000000000000 R10: ffff880007b15e48 R11: ffff880007b05478 R12: 0000000000000000 R13: ffff880007b05478 R14: 0000000000400920 R15: 0000000000000063 FS: 0000000002160880(0063) GS:ffff880007c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000058 CR3: 0000000007b1c000 CR4: 00000000000006b0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 0000000000000000 DR7: 0000000000000000 Process insmod (pid: 44, threadinfo ffff880007b14000, task ffff880007acb980) Stack: ffff880007b15dc8 ffff880007b05478 ffff880007b15da8 00000000fffffffe ffff880007a52760 ffff880007b05478 ffff880007b15de8 ffffffff81143c0a 0000000000400920 ffff880007a52760 ffff880007b05478 0000000000000000 Call Trace: [<ffffffff81143c0a>] kobject_add_internal+0xdf/0x1a0 [<ffffffff81143da1>] kobject_add_varg+0x41/0x50 [<ffffffff81143e6b>] kobject_add+0x64/0x66 [<ffffffff8113bbe7>] blk_register_queue+0x5f/0xb8 [<ffffffff81140f72>] add_disk+0xdf/0x289 [<ffffffffa00040df>] brd_init+0xdf/0x1aa [brd] [<ffffffffa0004000>] ? 0xffffffffa0003fff [<ffffffffa0004000>] ? 0xffffffffa0003fff [<ffffffff8100020a>] do_one_initcall+0x7a/0x12e [<ffffffff8108516c>] sys_init_module+0x9c/0x1dc [<ffffffff812ff4bb>] system_call_fastpath+0x16/0x1b Code: 89 e5 41 55 41 54 53 48 89 fb 48 83 ec 18 48 85 ff 75 04 0f 0b eb fe 48 8b 47 18 49 c7 c4 70 1e 4d 81 48 85 c0 74 04 4c 8b 60 30 8b 44 24 58 45 31 ed 0f b6 c4 85 c0 74 0d 48 8b 43 28 48 89 RIP [<ffffffff81110a9a>] sysfs_create_dir+0x2d/0xae RSP <ffff880007b15d78> CR2: 0000000000000058 ---[ end trace aebb1175ce1f6739 ]--- Signed-off-by: NNamhyung Kim <namhyung@gmail.com> Cc: Laurent Vivier <Laurent.Vivier@bull.net> Cc: stable@kernel.org Signed-off-by: NJens Axboe <jaxboe@fusionio.com>
-
由 Namhyung Kim 提交于
brd_refcnt, brd_offset, brd_sizelimit and brd_blocksize in struct brd_device seem to be copied from struct loop_device but they're not used anywhere. Let get rid of them. Signed-off-by: NNamhyung Kim <namhyung@gmail.com> Signed-off-by: NJens Axboe <jaxboe@fusionio.com>
-
- 05 10月, 2010 1 次提交
-
-
由 Arnd Bergmann 提交于
The block device drivers have all gained new lock_kernel calls from a recent pushdown, and some of the drivers were already using the BKL before. This turns the BKL into a set of per-driver mutexes. Still need to check whether this is safe to do. file=$1 name=$2 if grep -q lock_kernel ${file} ; then if grep -q 'include.*linux.mutex.h' ${file} ; then sed -i '/include.*<linux\/smp_lock.h>/d' ${file} else sed -i 's/include.*<linux\/smp_lock.h>.*$/include <linux\/mutex.h>/g' ${file} fi sed -i ${file} \ -e "/^#include.*linux.mutex.h/,$ { 1,/^\(static\|int\|long\)/ { /^\(static\|int\|long\)/istatic DEFINE_MUTEX(${name}_mutex); } }" \ -e "s/\(un\)*lock_kernel\>[ ]*()/mutex_\1lock(\&${name}_mutex)/g" \ -e '/[ ]*cycle_kernel_lock();/d' else sed -i -e '/include.*\<smp_lock.h\>/d' ${file} \ -e '/cycle_kernel_lock()/d' fi Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
- 10 9月, 2010 2 次提交
-
-
由 Tejun Heo 提交于
Barrier is deemed too heavy and will soon be replaced by FLUSH/FUA requests. Deprecate barrier. All REQ_HARDBARRIERs are failed with -EOPNOTSUPP and blk_queue_ordered() is replaced with simpler blk_queue_flush(). blk_queue_flush() takes combinations of REQ_FLUSH and FUA. If a device has write cache and can flush it, it should set REQ_FLUSH. If the device can handle FUA writes, it should also set REQ_FUA. All blk_queue_ordered() users are converted. * ORDERED_DRAIN is mapped to 0 which is the default value. * ORDERED_DRAIN_FLUSH is mapped to REQ_FLUSH. * ORDERED_DRAIN_FLUSH_FUA is mapped to REQ_FLUSH | REQ_FUA. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NBoaz Harrosh <bharrosh@panasas.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com> Cc: David S. Miller <davem@davemloft.net> Cc: Alasdair G Kergon <agk@redhat.com> Cc: Pierre Ossman <drzeus@drzeus.cx> Cc: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: NJens Axboe <jaxboe@fusionio.com>
-
由 Tejun Heo 提交于
Nobody is making meaningful use of ORDERED_BY_TAG now and queue draining for barrier requests will be removed soon which will render the advantage of tag ordering moot. Kill ORDERED_BY_TAG. The following users are affected. * brd: converted to ORDERED_DRAIN. * virtio_blk: ORDERED_TAG path was already marked deprecated. Removed. * xen-blkfront: ORDERED_TAG case dropped. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Chris Wright <chrisw@sous-sol.org> Signed-off-by: NJens Axboe <jaxboe@fusionio.com>
-
- 08 8月, 2010 3 次提交
-
-
由 Arnd Bergmann 提交于
As a preparation for the removal of the big kernel lock in the block layer, this removes the BKL from the common ioctl handling code, moving it into every single driver still using it. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NChristoph Hellwig <hch@infradead.org> Signed-off-by: NJens Axboe <jaxboe@fusionio.com>
-
由 FUJITA Tomonori 提交于
This removes q->prepare_flush_fn completely (changes the blk_queue_ordered API). Signed-off-by: NFUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <jaxboe@fusionio.com>
-
由 Christoph Hellwig 提交于
Remove the current bio flags and reuse the request flags for the bio, too. This allows to more easily trace the type of I/O from the filesystem down to the block driver. There were two flags in the bio that were missing in the requests: BIO_RW_UNPLUG and BIO_RW_AHEAD. Also I've renamed two request flags that had a superflous RW in them. Note that the flags are in bio.h despite having the REQ_ name - as blkdev.h includes bio.h that is the only way to go for now. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <jaxboe@fusionio.com>
-
- 01 6月, 2010 1 次提交
-
-
由 Nick Piggin 提交于
Support discard requests in brd by zeroing or deleting the underlying backing pages. This is simply to help with testing and documentation nature of brd code. Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 30 3月, 2010 1 次提交
-
-
由 Tejun Heo 提交于
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: NTejun Heo <tj@kernel.org> Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
-
- 26 2月, 2010 1 次提交
-
-
由 Martin K. Petersen 提交于
The block layer calling convention is blk_queue_<limit name>. blk_queue_max_sectors predates this practice, leading to some confusion. Rename the function to appropriately reflect that its intended use is to set max_hw_sectors. Also introduce a temporary wrapper for backwards compability. This can be removed after the merge window is closed. Signed-off-by: NMartin K. Petersen <martin.petersen@oracle.com> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 22 9月, 2009 1 次提交
-
-
由 Alexey Dobriyan 提交于
Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 6月, 2009 1 次提交
-
-
由 Robert P. J. Day 提交于
The "ramdisk" parameter was removed from the defunct rd.c file quite some time ago, in favour of the more specific "ramdisk_size" parameter so, for consistency, the same should be done here. Signed-off-by: NRobert P. J. Day <rpjday@crashcourse.ca> Acked-by: NNick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 15 4月, 2009 2 次提交
-
-
由 Nick Piggin 提交于
brd is missing a flush_dcache_page. On 2nd thoughts, perhaps it is the pagecache's responsibility to flush user virtual aliases (the driver of course should flush kernel virtual mappings)... but anyway, there already exists cache flushing for one direction of transfer, so we should add the other. Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
由 Nick Piggin 提交于
brd is always ordered (not that it matters, as it is defined not to survive when the system goes down). So tell the block layer it is ordered, which might be of help with testing filesystems. Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 21 10月, 2008 2 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
To keep the size of changesets sane we split the switch by drivers; to keep the damn thing bisectable we do the following: 1) rename the affected methods, add ones with correct prototypes, make (few) callers handle both. That's this changeset. 2) for each driver convert to new methods. *ALL* drivers are converted in this series. 3) kill the old (renamed) methods. Note that it _is_ a flagday; all in-tree drivers are converted and by the end of this series no trace of old methods remain. The only reason why we do that this way is to keep the damn thing bisectable and allow per-driver debugging if anything goes wrong. New methods: open(bdev, mode) release(disk, mode) ioctl(bdev, mode, cmd, arg) /* Called without BKL */ compat_ioctl(bdev, mode, cmd, arg) locked_ioctl(bdev, mode, cmd, arg) /* Called with BKL, legacy */ Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 21 8月, 2008 1 次提交
-
-
由 Akinobu Mita 提交于
The name of brd block device is "ramdisk", it's not "brd". (The block device is registered by register_blkdev(RAMDISK_MAJOR, "ramdisk") So it should be unregistered by unregister_blkdev(RAMDISK_MAJOR, "ramdisk") Signed-off-by: NAkinobu Mita <akinobu.mita@gmail.com> Acked-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 6月, 2008 1 次提交
-
-
由 Nick Piggin 提交于
Alias brd to rd in the hope of helping legacy users. Suggested by Jan. Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 5月, 2008 1 次提交
-
-
由 Marcin Krol 提交于
In 2.6.25, ramdisk devices show up in /proc/partitions, which is a behaviour change from the old rd.c. Add GENHD_FL_SUPPRESS_PARTITION_INFO, which was present in rd.c. All kernels prior to 2.6.25 weren't displaying ramdisks in /proc/partitions. Since there are many userspace tools using information from /proc/partitions some of them may now behave incorrectly (I didn't tested any though). For example before 2.6.25 /proc/partitions was empty if no block devices like hard disks and such were detected by kernel. Now all 16 ramdisks are always visible there. Some software may rely on such information (I mean, on empty /proc/partitions). There was quite similar situation back in 2004, and ramdisks were excluded back from displaying. Thats why I called this a regression (maybe a bit unfortunate). See this patch for info: http://kernel.org/pub/linux/kernel/people/akpm/patches/2.6/2.6.3-rc2/2.6.3-rc2-mm1/broken-out/nbd-proc-partitions-fix.patch I also think that someone somewhere (long time ago) excluded ramdisks from /proc/partitions for good reasons. It is possible that now such new "feature" is harmless, but I think there are more chances that someone will say "hey, /proc/partitions has changed, now my software doesn't work" then "hey where did my new 2.6.25 feature go". nbd devices are also excluded, maybe for very same (unknown to me) reasons. Signed-off-by: NMarcin Krol <hawk@pld-linux.org> Signed-off-by: NNick Piggin <npiggin@suse.de> Cc: <stable@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 4月, 2008 1 次提交
-
-
由 Laurent Vivier 提交于
This patch adds partition management for Block RAM Device (BRD). This patch is done to keep in sync BRD and loop device drivers. This patch adds a parameter to the module, max_part, to specify the maximum number of partitions per RAM device. Example: # modprobe brd max_part=63 # ls -l /dev/ram* brw-rw---- 1 root disk 1, 0 2008-04-03 13:39 /dev/ram0 brw-rw---- 1 root disk 1, 64 2008-04-03 13:39 /dev/ram1 brw-rw---- 1 root disk 1, 640 2008-04-03 13:39 /dev/ram10 brw-rw---- 1 root disk 1, 704 2008-04-03 13:39 /dev/ram11 brw-rw---- 1 root disk 1, 768 2008-04-03 13:39 /dev/ram12 brw-rw---- 1 root disk 1, 832 2008-04-03 13:39 /dev/ram13 brw-rw---- 1 root disk 1, 896 2008-04-03 13:39 /dev/ram14 brw-rw---- 1 root disk 1, 960 2008-04-03 13:39 /dev/ram15 brw-rw---- 1 root disk 1, 128 2008-04-03 13:39 /dev/ram2 brw-rw---- 1 root disk 1, 192 2008-04-03 13:39 /dev/ram3 brw-rw---- 1 root disk 1, 256 2008-04-03 13:39 /dev/ram4 brw-rw---- 1 root disk 1, 320 2008-04-03 13:39 /dev/ram5 brw-rw---- 1 root disk 1, 384 2008-04-03 13:39 /dev/ram6 brw-rw---- 1 root disk 1, 448 2008-04-03 13:39 /dev/ram7 brw-rw---- 1 root disk 1, 512 2008-04-03 13:39 /dev/ram8 brw-rw---- 1 root disk 1, 576 2008-04-03 13:39 /dev/ram9 # fdisk /dev/ram0 Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel Building a new DOS disklabel. Changes will remain in memory only, until you decide to write them. After that, of course, the previous content won't be recoverable. Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite) Command (m for help): o Building a new DOS disklabel. Changes will remain in memory only, until you decide to write them. After that, of course, the previous content won't be recoverable. Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite) Command (m for help): n Command action e extended p primary partition (1-4) p Partition number (1-4): 1 First cylinder (1-2, default 1): 1 Last cylinder or +size or +sizeM or +sizeK (1-2, default 2): 2 Command (m for help): w The partition table has been altered! Calling ioctl() to re-read partition table. Syncing disks. # ls -l /dev/ram0* brw-rw---- 1 root disk 1, 0 2008-04-03 13:40 /dev/ram0 brw-rw---- 1 root disk 1, 1 2008-04-03 13:40 /dev/ram0p1 # mkfs /dev/ram0p1 mke2fs 1.40-WIP (14-Nov-2006) Filesystem label= OS type: Linux Block size=1024 (log=0) Fragment size=1024 (log=0) 4016 inodes, 16032 blocks 801 blocks (5.00%) reserved for the super user First data block=1 Maximum filesystem blocks=16515072 2 block groups 8192 blocks per group, 8192 fragments per group 2008 inodes per group Superblock backups stored on blocks: 8193 Writing inode tables: done Writing superblocks and filesystem accounting information: done This filesystem will be automatically checked every 26 mounts or 180 days, whichever comes first. Use tune2fs -c or -i to override. # mount /dev/ram0p1 /mnt df /mnt Filesystem 1K-blocks Used Available Use% Mounted on /dev/ram0p1 15521 138 14582 1% /mnt # ls -l /mnt total 12 drwx------ 2 root root 12288 2008-04-03 13:41 lost+found # umount /mnt # rmmod brd Signed-off-by: NLaurent Vivier <Laurent.Vivier@bull.net> Acked-by: NNick Piggin <nickpiggin@yahoo.com.au> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Jens Axboe <jens.axboe@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 4月, 2008 1 次提交
-
-
由 Jared Hulbert 提交于
Alter the block device ->direct_access() API to work with the new get_xip_mem() API (that requires both kaddr and pfn are returned). Some architectures will not do the right thing in their virt_to_page() for use by XIP (to translate from the kernel virtual address returned by direct_access(), to a user mappable pfn in XIP's page fault handler. However, we can't switch it to just return the pfn and not the kaddr, because we have no good way to get a kva from a pfn, and XIP requires the kva for its read(2) and write(2) handlers. So we have to return both. Signed-off-by: NJared Hulbert <jaredeh@gmail.com> Signed-off-by: NNick Piggin <npiggin@suse.de> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux-mm@kvack.org Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 4月, 2008 1 次提交
-
-
由 Petr Tesarik 提交于
While looking at the implementation of the Ram backed block device driver, I stumbled across a write-only local variable, which makes little sense, so I assume it should actually work like this: Signed-off-by: NPetr Tesarik <ptesarik@suse.cz> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 2月, 2008 2 次提交
-
-
由 Nick Piggin 提交于
Support direct_access XIP method with brd. Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nick Piggin 提交于
This is a rewrite of the ramdisk block device driver. The old one is really difficult because it effectively implements a block device which serves data out of its own buffer cache. It relies on the dirty bit being set, to pin its backing store in cache, however there are non trivial paths which can clear the dirty bit (eg. try_to_free_buffers()), which had recently lead to data corruption. And in general it is completely wrong for a block device driver to do this. The new one is more like a regular block device driver. It has no idea about vm/vfs stuff. It's backing store is similar to the buffer cache (a simple radix-tree of pages), but it doesn't know anything about page cache (the pages in the radix tree are not pagecache pages). There is one slight downside -- direct block device access and filesystem metadata access goes through an extra copy and gets stored in RAM twice. However, this downside is only slight, because the real buffercache of the device is now reclaimable (because we're not playing crazy games with it), so under memory intensive situations, footprint should effectively be the same -- maybe even a slight advantage to the new driver because it can also reclaim buffer heads. The fact that it now goes through all the regular vm/fs paths makes it much more useful for testing, too. text data bss dec hex filename 2837 849 384 4070 fe6 drivers/block/rd.o 3528 371 12 3911 f47 drivers/block/brd.o Text is larger, but data and bss are smaller, making total size smaller. A few other nice things about it: - Similar structure and layout to the new loop device handlinag. - Dynamic ramdisk creation. - Runtime flexible buffer head size (because it is no longer part of the ramdisk code). - Boot / load time flexible ramdisk size, which could easily be extended to a per-ramdisk runtime changeable size (eg. with an ioctl). - Can use highmem for the backing store. [akpm@linux-foundation.org: fix build] [byron.bbradley@gmail.com: make rd_size non-static] Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NByron Bradley <byron.bbradley@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-