1. 22 5月, 2015 10 次提交
    • S
      rocker: do not delete fdb entries in rocker_port_fdb_flush() when preparing transactions · 3098ac39
      Simon Horman 提交于
      rocker_port_fdb_flush() is called by rocker_port_stp_update() which in
      turn may be called with trans == SWITCHDEV_TRANS_PREPARE and then
      trans == SWITCHDEV_TRANS_COMMIT from switchdev_port_attr_set() via
      br_set_state().
      
      When rocker_port_fdb_flush() is called with trans == SWITCHDEV_TRANS_PREPARE
      it calls rocker_port_fdb_learn() for each entry in the FDB table which in
      turn calls rocker_flow_tbl_bridge() which will allocate memory using
      rocker_port_kzalloc(). rocker_port_fdb_learn() will then remove the entry
      from the FDB table.
      
      Then when rocker_port_fdb_learn() is called with
      trans == SWITCHDEV_TRANS_PREPARE no calls are made to rocker_port_fdb_learn()
      because there are no longer any entries present in the FDB table. Thus the
      memory previously allocated by rocker_port_fdb_learn() is leaked resulting
      in the kernel BUG() below.
      
      Furthermore, it looks like the driver ends up with an incorrect view of the
      fdb table as the FDB entries are purged from the driver's table but not the
      hardware's table.
      
      ip link add br0 type bridge
      ip link set up dev eth0
      sleep 1
      ip link set dev eth0 master br0
      [    3.704360] ------------[ cut here ]------------
      [    3.704611] kernel BUG at drivers/net/ethernet/rocker/rocker.c:4289!
      [    3.704962] invalid opcode: 0000 [#1] SMP
      [    3.705537] Modules linked in:
      [    3.705919] CPU: 0 PID: 63 Comm: ip Not tainted 4.1.0-rc3-01046-gb9fbe709 #1044
      [    3.706191] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.0-0-g4c59f5d-20150219_092859-nilsson.home.kraxel.org 04/01/2014
      [    3.706820] task: ffff880019f70150 ti: ffff88001f92c000 task.ti: ffff88001f92c000
      [    3.707138] RIP: 0010:[<ffffffff811f0080>]  [<ffffffff811f0080>] rocker_port_attr_set+0xe0/0xf0
      [    3.707990] RSP: 0018:ffff88001f92f808  EFLAGS: 00000212
      [    3.708200] RAX: ffff880019d4fa68 RBX: ffff880019d4f000 RCX: 0000000000000000
      [    3.708471] RDX: 000000000000000c RSI: ffff88001f92f890 RDI: ffff880019d4f680
      [    3.708740] RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000004
      [    3.708999] R10: ffff880000034024 R11: 0000000000000000 R12: ffff88001f92f890
      [    3.709276] R13: ffff88001f8f1c00 R14: 000000000000000b R15: 0000000000000000
      [    3.709303] FS:  00007f8ab66bd700(0000) GS:ffff88001b000000(0000) knlGS:0000000000000000
      [    3.709303] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
      [    3.709303] CR2: 0000000000654988 CR3: 000000001f8f3000 CR4: 00000000000006b0
      [    3.709303] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
      [    3.709303] DR3: 0000000000000000 DR6: 0000000000000000 DR7: 0000000000000000
      [    3.709303] Stack:
      [    3.709303]  ffff88001f8f1c00 000000000000000b ffff88001f92f890 ffff880019d4f000
      [    3.709303]  ffff88001f92f890 ffffffff813332f5 ffff88001f92f880 0000000000000000
      [    3.709303]  ffff88001f92f890 0000000000000001 ffff880019d4f000 ffffffff81333627
      [    3.709303] Call Trace:
      [    3.709303]  [<ffffffff813332f5>] ? __switchdev_port_attr_set+0x25/0x90
      [    3.709303]  [<ffffffff81333627>] ? switchdev_port_attr_set+0x27/0x120
      [    3.709303]  [<ffffffff81318e86>] ? br_set_state+0x36/0x50
      [    3.709303]  [<ffffffff8131795c>] ? br_add_if+0x37c/0x400
      [    3.709303]  [<ffffffff81238ce1>] ? do_setlink+0x7e1/0x800
      [    3.709303]  [<ffffffff8111f980>] ? radix_tree_lookup_slot+0x10/0x30
      [    3.709303]  [<ffffffff81136fba>] ? nla_parse+0xaa/0x110
      [    3.709303]  [<ffffffff81239c98>] ? rtnl_newlink+0x548/0x870
      [    3.709303]  [<ffffffff8111f900>] ? __radix_tree_lookup+0x40/0xb0
      [    3.709303]  [<ffffffff81136f3e>] ? nla_parse+0x2e/0x110
      [    3.709303]  [<ffffffff81237d7e>] ? rtnetlink_rcv_msg+0x7e/0x250
      [    3.709303]  [<ffffffff8121d1be>] ? __skb_recv_datagram+0xfe/0x4b0
      [    3.709303]  [<ffffffff81237d00>] ? rtnetlink_rcv+0x30/0x30
      [    3.709303]  [<ffffffff81247948>] ? netlink_rcv_skb+0xa8/0xd0
      [    3.709303]  [<ffffffff81237cef>] ? rtnetlink_rcv+0x1f/0x30
      [    3.709303]  [<ffffffff81247210>] ? netlink_unicast+0x150/0x200
      [    3.709303]  [<ffffffff81247704>] ? netlink_sendmsg+0x374/0x3e0
      [    3.709303]  [<ffffffff8120f8cf>] ? sock_sendmsg+0xf/0x30
      [    3.709303]  [<ffffffff8120ffc3>] ? ___sys_sendmsg+0x1f3/0x200
      [    3.709303]  [<ffffffff812100d5>] ? ___sys_recvmsg+0x105/0x140
      [    3.709303]  [<ffffffff812228d9>] ? dev_get_by_name_rcu+0x69/0x90
      [    3.709303]  [<ffffffff812228d9>] ? dev_get_by_name_rcu+0x69/0x90
      [    3.709303]  [<ffffffff81217b7d>] ? skb_dequeue+0x4d/0x60
      [    3.709303]  [<ffffffff81217bb0>] ? skb_queue_purge+0x20/0x30
      [    3.709303]  [<ffffffff810ebdcf>] ? __inode_wait_for_writeback+0x5f/0xb0
      [    3.709303]  [<ffffffff810648b0>] ? autoremove_wake_function+0x30/0x30
      [    3.709303]  [<ffffffff81210ee9>] ? __sys_sendmsg+0x39/0x70
      [    3.709303]  [<ffffffff8133e097>] ? system_call_fastpath+0x12/0x6a
      [    3.709303] Code: bb 90 06 00 00 48 c7 04 24 00 00 00 00 45 31 c9 45 31 c0 48 c7 c1 c0 b7 1e 81 89 ea e8 da da ff ff eb 95 0f 1f 84 00 00 00 00 00 <0f> 0b 66 66 66 66 66 2e 0f 1f 84 00 00 00 00 00 48 83 fe 15 75
      [    3.709303] RIP  [<ffffffff811f0080>] rocker_port_attr_set+0xe0/0xf0
      [    3.709303]  RSP <ffff88001f92f808>
      [    3.721409] ---[ end trace b7481fcb7cb032aa ]---
      Segmentation fault
      
      Fixes: c4f20321 ("rocker: support prepare-commit transaction model")
      Acked-by: NScott Feldman <sfeldma@gmail.com>
      Acked-by: NJiri Pirko <jiri@resnulli.us>
      Signed-off-by: NSimon Horman <simon.horman@netronome.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      3098ac39
    • J
      spider_net: Use DECLARE_BITMAP · e26cc7ff
      Joe Perches 提交于
      Use the generic mechanism to declare a bitmap instead of unsigned long.
      Signed-off-by: NJoe Perches <joe@perches.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e26cc7ff
    • D
      Merge branch 'ebpf-tail-call' · 3f55b7ed
      David S. Miller 提交于
      Alexei Starovoitov says:
      
      ====================
      bpf: introduce bpf_tail_call() helper
      
      introduce bpf_tail_call(ctx, &jmp_table, index) helper function
      which can be used from BPF programs like:
      int bpf_prog(struct pt_regs *ctx)
      {
        ...
        bpf_tail_call(ctx, &jmp_table, index);
        ...
      }
      that is roughly equivalent to:
      int bpf_prog(struct pt_regs *ctx)
      {
        ...
        if (jmp_table[index])
          return (*jmp_table[index])(ctx);
        ...
      }
      The important detail that it's not a normal call, but a tail call.
      The kernel stack is precious, so this helper reuses the current
      stack frame and jumps into another BPF program without adding
      extra call frame.
      It's trivially done in interpreter and a bit trickier in JITs.
      
      Use cases:
      - simplify complex programs
      - dispatch into other programs
        (for example: index in jump table can be syscall number or network protocol)
      - build dynamic chains of programs
      
      The chain of tail calls can form unpredictable dynamic loops therefore
      tail_call_cnt is used to limit the number of calls and currently is set to 32.
      
      patch 1 - support bpf_tail_call() in interpreter
      patch 2 - support in x64 JIT
      We've discussed what's neccessary to support it in arm64/s390 JITs
      and it looks fine.
      patch 3 - sample example for tracing
      patch 4 - sample example for networking
      
      More details in every patch.
      
      This set went through several iterations of reviews/fixes and older
      attempts can be seen:
      https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/log/?h=tail_call_v[123456]
      - tail_call_v1 does it without touching JITs but introduces overhead
        for all programs that don't use this helper function.
      - tail_call_v2 still has some overhead and x64 JIT does full stack
        unwind (prologue skipping optimization wasn't there)
      - tail_call_v3 reuses 'call' instruction encoding and has interpreter
        overhead for every normal call
      - tail_call_v4 fixes above architectural shortcomings and v5,v6 fix few
        more bugs
      
      This last tail_call_v6 approach seems to be the best.
      ====================
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      3f55b7ed
    • A
      samples/bpf: bpf_tail_call example for networking · 530b2c86
      Alexei Starovoitov 提交于
      Usage:
      $ sudo ./sockex3
      IP     src.port -> dst.port               bytes      packets
      127.0.0.1.42010 -> 127.0.0.1.12865         1568            8
      127.0.0.1.59526 -> 127.0.0.1.33778     11422636       173070
      127.0.0.1.33778 -> 127.0.0.1.59526  11260224828       341974
      127.0.0.1.12865 -> 127.0.0.1.42010         1832           12
      IP     src.port -> dst.port               bytes      packets
      127.0.0.1.42010 -> 127.0.0.1.12865         1568            8
      127.0.0.1.59526 -> 127.0.0.1.33778     23198092       351486
      127.0.0.1.33778 -> 127.0.0.1.59526  22972698518       698616
      127.0.0.1.12865 -> 127.0.0.1.42010         1832           12
      
      this example is similar to sockex2 in a way that it accumulates per-flow
      statistics, but it does packet parsing differently.
      sockex2 inlines full packet parser routine into single bpf program.
      This sockex3 example have 4 independent programs that parse vlan, mpls, ip, ipv6
      and one main program that starts the process.
      bpf_tail_call() mechanism allows each program to be small and be called
      on demand potentially multiple times, so that many vlan, mpls, ip in ip,
      gre encapsulations can be parsed. These and other protocol parsers can
      be added or removed at runtime. TLVs can be parsed in similar manner.
      Note, tail_call_cnt dynamic check limits the number of tail calls to 32.
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      530b2c86
    • A
      samples/bpf: bpf_tail_call example for tracing · 5bacd780
      Alexei Starovoitov 提交于
      kprobe example that demonstrates how future seccomp programs may look like.
      It attaches to seccomp_phase1() function and tail-calls other BPF programs
      depending on syscall number.
      
      Existing optimized classic BPF seccomp programs generated by Chrome look like:
      if (sd.nr < 121) {
        if (sd.nr < 57) {
          if (sd.nr < 22) {
            if (sd.nr < 7) {
              if (sd.nr < 4) {
                if (sd.nr < 1) {
                  check sys_read
                } else {
                  if (sd.nr < 3) {
                    check sys_write and sys_open
                  } else {
                    check sys_close
                  }
                }
              } else {
            } else {
          } else {
        } else {
      } else {
      }
      
      the future seccomp using native eBPF may look like:
        bpf_tail_call(&sd, &syscall_jmp_table, sd.nr);
      which is simpler, faster and leaves more room for per-syscall checks.
      
      Usage:
      $ sudo ./tracex5
      <...>-366   [001] d...     4.870033: : read(fd=1, buf=00007f6d5bebf000, size=771)
      <...>-369   [003] d...     4.870066: : mmap
      <...>-369   [003] d...     4.870077: : syscall=110 (one of get/set uid/pid/gid)
      <...>-369   [003] d...     4.870089: : syscall=107 (one of get/set uid/pid/gid)
         sh-369   [000] d...     4.891740: : read(fd=0, buf=00000000023d1000, size=512)
         sh-369   [000] d...     4.891747: : write(fd=1, buf=00000000023d3000, size=512)
         sh-369   [000] d...     4.891747: : read(fd=1, buf=00000000023d3000, size=512)
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      5bacd780
    • A
      x86: bpf_jit: implement bpf_tail_call() helper · b52f00e6
      Alexei Starovoitov 提交于
      bpf_tail_call() arguments:
      ctx - context pointer
      jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table
      index - index in the jump table
      
      In this implementation x64 JIT bypasses stack unwind and jumps into the
      callee program after prologue, so the callee program reuses the same stack.
      
      The logic can be roughly expressed in C like:
      
      u32 tail_call_cnt;
      
      void *jumptable[2] = { &&label1, &&label2 };
      
      int bpf_prog1(void *ctx)
      {
      label1:
          ...
      }
      
      int bpf_prog2(void *ctx)
      {
      label2:
          ...
      }
      
      int bpf_prog1(void *ctx)
      {
          ...
          if (tail_call_cnt++ < MAX_TAIL_CALL_CNT)
              goto *jumptable[index]; ... and pass my 'ctx' to callee ...
      
          ... fall through if no entry in jumptable ...
      }
      
      Note that 'skip current program epilogue and next program prologue' is
      an optimization. Other JITs don't have to do it the same way.
      >From safety point of view it's valid as well, since programs always
      initialize the stack before use, so any residue in the stack left by
      the current program is not going be read. The same verifier checks are
      done for the calls from the kernel into all bpf programs.
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      b52f00e6
    • A
      bpf: allow bpf programs to tail-call other bpf programs · 04fd61ab
      Alexei Starovoitov 提交于
      introduce bpf_tail_call(ctx, &jmp_table, index) helper function
      which can be used from BPF programs like:
      int bpf_prog(struct pt_regs *ctx)
      {
        ...
        bpf_tail_call(ctx, &jmp_table, index);
        ...
      }
      that is roughly equivalent to:
      int bpf_prog(struct pt_regs *ctx)
      {
        ...
        if (jmp_table[index])
          return (*jmp_table[index])(ctx);
        ...
      }
      The important detail that it's not a normal call, but a tail call.
      The kernel stack is precious, so this helper reuses the current
      stack frame and jumps into another BPF program without adding
      extra call frame.
      It's trivially done in interpreter and a bit trickier in JITs.
      In case of x64 JIT the bigger part of generated assembler prologue
      is common for all programs, so it is simply skipped while jumping.
      Other JITs can do similar prologue-skipping optimization or
      do stack unwind before jumping into the next program.
      
      bpf_tail_call() arguments:
      ctx - context pointer
      jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table
      index - index in the jump table
      
      Since all BPF programs are idenitified by file descriptor, user space
      need to populate the jmp_table with FDs of other BPF programs.
      If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere
      and program execution continues as normal.
      
      New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can
      populate this jmp_table array with FDs of other bpf programs.
      Programs can share the same jmp_table array or use multiple jmp_tables.
      
      The chain of tail calls can form unpredictable dynamic loops therefore
      tail_call_cnt is used to limit the number of calls and currently is set to 32.
      
      Use cases:
      Acked-by: NDaniel Borkmann <daniel@iogearbox.net>
      
      ==========
      - simplify complex programs by splitting them into a sequence of small programs
      
      - dispatch routine
        For tracing and future seccomp the program may be triggered on all system
        calls, but processing of syscall arguments will be different. It's more
        efficient to implement them as:
        int syscall_entry(struct seccomp_data *ctx)
        {
           bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */);
           ... default: process unknown syscall ...
        }
        int sys_write_event(struct seccomp_data *ctx) {...}
        int sys_read_event(struct seccomp_data *ctx) {...}
        syscall_jmp_table[__NR_write] = sys_write_event;
        syscall_jmp_table[__NR_read] = sys_read_event;
      
        For networking the program may call into different parsers depending on
        packet format, like:
        int packet_parser(struct __sk_buff *skb)
        {
           ... parse L2, L3 here ...
           __u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol));
           bpf_tail_call(skb, &ipproto_jmp_table, ipproto);
           ... default: process unknown protocol ...
        }
        int parse_tcp(struct __sk_buff *skb) {...}
        int parse_udp(struct __sk_buff *skb) {...}
        ipproto_jmp_table[IPPROTO_TCP] = parse_tcp;
        ipproto_jmp_table[IPPROTO_UDP] = parse_udp;
      
      - for TC use case, bpf_tail_call() allows to implement reclassify-like logic
      
      - bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table
        are atomic, so user space can build chains of BPF programs on the fly
      
      Implementation details:
      =======================
      - high performance of bpf_tail_call() is the goal.
        It could have been implemented without JIT changes as a wrapper on top of
        BPF_PROG_RUN() macro, but with two downsides:
        . all programs would have to pay performance penalty for this feature and
          tail call itself would be slower, since mandatory stack unwind, return,
          stack allocate would be done for every tailcall.
        . tailcall would be limited to programs running preempt_disabled, since
          generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would
          need to be either global per_cpu variable accessed by helper and by wrapper
          or global variable protected by locks.
      
        In this implementation x64 JIT bypasses stack unwind and jumps into the
        callee program after prologue.
      
      - bpf_prog_array_compatible() ensures that prog_type of callee and caller
        are the same and JITed/non-JITed flag is the same, since calling JITed
        program from non-JITed is invalid, since stack frames are different.
        Similarly calling kprobe type program from socket type program is invalid.
      
      - jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map'
        abstraction, its user space API and all of verifier logic.
        It's in the existing arraymap.c file, since several functions are
        shared with regular array map.
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      04fd61ab
    • D
      net: dev: reduce both ingress hook ifdefs · e7582bab
      Daniel Borkmann 提交于
      Reduce ifdef pollution slightly, no functional change. We can simply
      remove the extra alternative definition of handle_ing() and nf_ingress().
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NPablo Neira Ayuso <pablo@netfilter.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e7582bab
    • E
      tcp: add a force_schedule argument to sk_stream_alloc_skb() · eb934478
      Eric Dumazet 提交于
      In commit 8e4d980a ("tcp: fix behavior for epoll edge trigger")
      we fixed a possible hang of TCP sockets under memory pressure,
      by allowing sk_stream_alloc_skb() to use sk_forced_mem_schedule()
      if no packet is in socket write queue.
      
      It turns out there are other cases where we want to force memory
      schedule :
      
      tcp_fragment() & tso_fragment() need to split a big TSO packet into
      two smaller ones. If we block here because of TCP memory pressure,
      we can effectively block TCP socket from sending new data.
      If no further ACK is coming, this hang would be definitive, and socket
      has no chance to effectively reduce its memory usage.
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      eb934478
    • E
      neigh: Better handling of transition to NUD_PROBE state · 765c9c63
      Erik Kline 提交于
      [1] When entering NUD_PROBE state via neigh_update(), perhaps received
          from userspace, correctly (re)initialize the probes count to zero.
      
          This is useful for forcing revalidation of a neighbor (for example
          if the host is attempting to do DNA [IPv4 4436, IPv6 6059]).
      
      [2] Notify listeners when a neighbor goes into NUD_PROBE state.
      
          By sending notifications on entry to NUD_PROBE state listeners get
          more timely warnings of imminent connectivity issues.
      
          The current notifications on entry to NUD_STALE have somewhat
          limited usefulness: NUD_STALE is a perfectly normal state, as is
          NUD_DELAY, whereas notifications on entry to NUD_FAILURE come after
          a neighbor reachability problem has been confirmed (typically after
          three probes).
      Signed-off-by: NErik Kline <ek@google.com>
      Acked-By: NLorenzo Colitti <lorenzo@google.com>
      Acked-by: NHannes Frederic Sowa <hannes@stressinduktion.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      765c9c63
  2. 20 5月, 2015 9 次提交
  3. 19 5月, 2015 16 次提交
  4. 18 5月, 2015 5 次提交