1. 21 11月, 2019 2 次提交
  2. 23 7月, 2018 1 次提交
  3. 13 6月, 2018 1 次提交
    • K
      treewide: kzalloc() -> kcalloc() · 6396bb22
      Kees Cook 提交于
      The kzalloc() function has a 2-factor argument form, kcalloc(). This
      patch replaces cases of:
      
              kzalloc(a * b, gfp)
      
      with:
              kcalloc(a * b, gfp)
      
      as well as handling cases of:
      
              kzalloc(a * b * c, gfp)
      
      with:
      
              kzalloc(array3_size(a, b, c), gfp)
      
      as it's slightly less ugly than:
      
              kzalloc_array(array_size(a, b), c, gfp)
      
      This does, however, attempt to ignore constant size factors like:
      
              kzalloc(4 * 1024, gfp)
      
      though any constants defined via macros get caught up in the conversion.
      
      Any factors with a sizeof() of "unsigned char", "char", and "u8" were
      dropped, since they're redundant.
      
      The Coccinelle script used for this was:
      
      // Fix redundant parens around sizeof().
      @@
      type TYPE;
      expression THING, E;
      @@
      
      (
        kzalloc(
      -	(sizeof(TYPE)) * E
      +	sizeof(TYPE) * E
        , ...)
      |
        kzalloc(
      -	(sizeof(THING)) * E
      +	sizeof(THING) * E
        , ...)
      )
      
      // Drop single-byte sizes and redundant parens.
      @@
      expression COUNT;
      typedef u8;
      typedef __u8;
      @@
      
      (
        kzalloc(
      -	sizeof(u8) * (COUNT)
      +	COUNT
        , ...)
      |
        kzalloc(
      -	sizeof(__u8) * (COUNT)
      +	COUNT
        , ...)
      |
        kzalloc(
      -	sizeof(char) * (COUNT)
      +	COUNT
        , ...)
      |
        kzalloc(
      -	sizeof(unsigned char) * (COUNT)
      +	COUNT
        , ...)
      |
        kzalloc(
      -	sizeof(u8) * COUNT
      +	COUNT
        , ...)
      |
        kzalloc(
      -	sizeof(__u8) * COUNT
      +	COUNT
        , ...)
      |
        kzalloc(
      -	sizeof(char) * COUNT
      +	COUNT
        , ...)
      |
        kzalloc(
      -	sizeof(unsigned char) * COUNT
      +	COUNT
        , ...)
      )
      
      // 2-factor product with sizeof(type/expression) and identifier or constant.
      @@
      type TYPE;
      expression THING;
      identifier COUNT_ID;
      constant COUNT_CONST;
      @@
      
      (
      - kzalloc
      + kcalloc
        (
      -	sizeof(TYPE) * (COUNT_ID)
      +	COUNT_ID, sizeof(TYPE)
        , ...)
      |
      - kzalloc
      + kcalloc
        (
      -	sizeof(TYPE) * COUNT_ID
      +	COUNT_ID, sizeof(TYPE)
        , ...)
      |
      - kzalloc
      + kcalloc
        (
      -	sizeof(TYPE) * (COUNT_CONST)
      +	COUNT_CONST, sizeof(TYPE)
        , ...)
      |
      - kzalloc
      + kcalloc
        (
      -	sizeof(TYPE) * COUNT_CONST
      +	COUNT_CONST, sizeof(TYPE)
        , ...)
      |
      - kzalloc
      + kcalloc
        (
      -	sizeof(THING) * (COUNT_ID)
      +	COUNT_ID, sizeof(THING)
        , ...)
      |
      - kzalloc
      + kcalloc
        (
      -	sizeof(THING) * COUNT_ID
      +	COUNT_ID, sizeof(THING)
        , ...)
      |
      - kzalloc
      + kcalloc
        (
      -	sizeof(THING) * (COUNT_CONST)
      +	COUNT_CONST, sizeof(THING)
        , ...)
      |
      - kzalloc
      + kcalloc
        (
      -	sizeof(THING) * COUNT_CONST
      +	COUNT_CONST, sizeof(THING)
        , ...)
      )
      
      // 2-factor product, only identifiers.
      @@
      identifier SIZE, COUNT;
      @@
      
      - kzalloc
      + kcalloc
        (
      -	SIZE * COUNT
      +	COUNT, SIZE
        , ...)
      
      // 3-factor product with 1 sizeof(type) or sizeof(expression), with
      // redundant parens removed.
      @@
      expression THING;
      identifier STRIDE, COUNT;
      type TYPE;
      @@
      
      (
        kzalloc(
      -	sizeof(TYPE) * (COUNT) * (STRIDE)
      +	array3_size(COUNT, STRIDE, sizeof(TYPE))
        , ...)
      |
        kzalloc(
      -	sizeof(TYPE) * (COUNT) * STRIDE
      +	array3_size(COUNT, STRIDE, sizeof(TYPE))
        , ...)
      |
        kzalloc(
      -	sizeof(TYPE) * COUNT * (STRIDE)
      +	array3_size(COUNT, STRIDE, sizeof(TYPE))
        , ...)
      |
        kzalloc(
      -	sizeof(TYPE) * COUNT * STRIDE
      +	array3_size(COUNT, STRIDE, sizeof(TYPE))
        , ...)
      |
        kzalloc(
      -	sizeof(THING) * (COUNT) * (STRIDE)
      +	array3_size(COUNT, STRIDE, sizeof(THING))
        , ...)
      |
        kzalloc(
      -	sizeof(THING) * (COUNT) * STRIDE
      +	array3_size(COUNT, STRIDE, sizeof(THING))
        , ...)
      |
        kzalloc(
      -	sizeof(THING) * COUNT * (STRIDE)
      +	array3_size(COUNT, STRIDE, sizeof(THING))
        , ...)
      |
        kzalloc(
      -	sizeof(THING) * COUNT * STRIDE
      +	array3_size(COUNT, STRIDE, sizeof(THING))
        , ...)
      )
      
      // 3-factor product with 2 sizeof(variable), with redundant parens removed.
      @@
      expression THING1, THING2;
      identifier COUNT;
      type TYPE1, TYPE2;
      @@
      
      (
        kzalloc(
      -	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
      +	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
        , ...)
      |
        kzalloc(
      -	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
      +	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
        , ...)
      |
        kzalloc(
      -	sizeof(THING1) * sizeof(THING2) * COUNT
      +	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
        , ...)
      |
        kzalloc(
      -	sizeof(THING1) * sizeof(THING2) * (COUNT)
      +	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
        , ...)
      |
        kzalloc(
      -	sizeof(TYPE1) * sizeof(THING2) * COUNT
      +	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
        , ...)
      |
        kzalloc(
      -	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
      +	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
        , ...)
      )
      
      // 3-factor product, only identifiers, with redundant parens removed.
      @@
      identifier STRIDE, SIZE, COUNT;
      @@
      
      (
        kzalloc(
      -	(COUNT) * STRIDE * SIZE
      +	array3_size(COUNT, STRIDE, SIZE)
        , ...)
      |
        kzalloc(
      -	COUNT * (STRIDE) * SIZE
      +	array3_size(COUNT, STRIDE, SIZE)
        , ...)
      |
        kzalloc(
      -	COUNT * STRIDE * (SIZE)
      +	array3_size(COUNT, STRIDE, SIZE)
        , ...)
      |
        kzalloc(
      -	(COUNT) * (STRIDE) * SIZE
      +	array3_size(COUNT, STRIDE, SIZE)
        , ...)
      |
        kzalloc(
      -	COUNT * (STRIDE) * (SIZE)
      +	array3_size(COUNT, STRIDE, SIZE)
        , ...)
      |
        kzalloc(
      -	(COUNT) * STRIDE * (SIZE)
      +	array3_size(COUNT, STRIDE, SIZE)
        , ...)
      |
        kzalloc(
      -	(COUNT) * (STRIDE) * (SIZE)
      +	array3_size(COUNT, STRIDE, SIZE)
        , ...)
      |
        kzalloc(
      -	COUNT * STRIDE * SIZE
      +	array3_size(COUNT, STRIDE, SIZE)
        , ...)
      )
      
      // Any remaining multi-factor products, first at least 3-factor products,
      // when they're not all constants...
      @@
      expression E1, E2, E3;
      constant C1, C2, C3;
      @@
      
      (
        kzalloc(C1 * C2 * C3, ...)
      |
        kzalloc(
      -	(E1) * E2 * E3
      +	array3_size(E1, E2, E3)
        , ...)
      |
        kzalloc(
      -	(E1) * (E2) * E3
      +	array3_size(E1, E2, E3)
        , ...)
      |
        kzalloc(
      -	(E1) * (E2) * (E3)
      +	array3_size(E1, E2, E3)
        , ...)
      |
        kzalloc(
      -	E1 * E2 * E3
      +	array3_size(E1, E2, E3)
        , ...)
      )
      
      // And then all remaining 2 factors products when they're not all constants,
      // keeping sizeof() as the second factor argument.
      @@
      expression THING, E1, E2;
      type TYPE;
      constant C1, C2, C3;
      @@
      
      (
        kzalloc(sizeof(THING) * C2, ...)
      |
        kzalloc(sizeof(TYPE) * C2, ...)
      |
        kzalloc(C1 * C2 * C3, ...)
      |
        kzalloc(C1 * C2, ...)
      |
      - kzalloc
      + kcalloc
        (
      -	sizeof(TYPE) * (E2)
      +	E2, sizeof(TYPE)
        , ...)
      |
      - kzalloc
      + kcalloc
        (
      -	sizeof(TYPE) * E2
      +	E2, sizeof(TYPE)
        , ...)
      |
      - kzalloc
      + kcalloc
        (
      -	sizeof(THING) * (E2)
      +	E2, sizeof(THING)
        , ...)
      |
      - kzalloc
      + kcalloc
        (
      -	sizeof(THING) * E2
      +	E2, sizeof(THING)
        , ...)
      |
      - kzalloc
      + kcalloc
        (
      -	(E1) * E2
      +	E1, E2
        , ...)
      |
      - kzalloc
      + kcalloc
        (
      -	(E1) * (E2)
      +	E1, E2
        , ...)
      |
      - kzalloc
      + kcalloc
        (
      -	E1 * E2
      +	E1, E2
        , ...)
      )
      Signed-off-by: NKees Cook <keescook@chromium.org>
      6396bb22
  4. 24 11月, 2017 2 次提交
    • G
      s390: kernel: Remove redundant license text · 53634237
      Greg Kroah-Hartman 提交于
      Now that the SPDX tag is in all arch/s390/kernel/ files, that identifies
      the license in a specific and legally-defined manner.  So the extra GPL
      text wording can be removed as it is no longer needed at all.
      
      This is done on a quest to remove the 700+ different ways that files in
      the kernel describe the GPL license text.  And there's unneeded stuff
      like the address (sometimes incorrect) for the FSF which is never
      needed.
      
      No copyright headers or other non-license-description text was removed.
      
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
      Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Namhyung Kim <namhyung@kernel.org>
      Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      53634237
    • G
      s390: kernel: add SPDX identifiers to the remaining files · a17ae4c3
      Greg Kroah-Hartman 提交于
      It's good to have SPDX identifiers in all files to make it easier to
      audit the kernel tree for correct licenses.
      
      Update the arch/s390/kernel/ files with the correct SPDX license
      identifier based on the license text in the file itself.  The SPDX
      identifier is a legally binding shorthand, which can be used instead of
      the full boiler plate text.
      
      This work is based on a script and data from Thomas Gleixner, Philippe
      Ombredanne, and Kate Stewart.
      
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
      Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Namhyung Kim <namhyung@kernel.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Kate Stewart <kstewart@linuxfoundation.org>
      Cc: Philippe Ombredanne <pombredanne@nexb.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      a17ae4c3
  5. 14 11月, 2017 1 次提交
    • M
      s390: remove all code using the access register mode · 0aaba41b
      Martin Schwidefsky 提交于
      The vdso code for the getcpu() and the clock_gettime() call use the access
      register mode to access the per-CPU vdso data page with the current code.
      
      An alternative to the complicated AR mode is to use the secondary space
      mode. This makes the vdso faster and quite a bit simpler. The downside is
      that the uaccess code has to be changed quite a bit.
      
      Which instructions are used depends on the machine and what kind of uaccess
      operation is requested. The instruction dictates which ASCE value needs
      to be loaded into %cr1 and %cr7.
      
      The different cases:
      
      * User copy with MVCOS for z10 and newer machines
        The MVCOS instruction can copy between the primary space (aka user) and
        the home space (aka kernel) directly. For set_fs(KERNEL_DS) the kernel
        ASCE is loaded into %cr1. For set_fs(USER_DS) the user space is already
        loaded in %cr1.
      
      * User copy with MVCP/MVCS for older machines
        To be able to execute the MVCP/MVCS instructions the kernel needs to
        switch to primary mode. The control register %cr1 has to be set to the
        kernel ASCE and %cr7 to either the kernel ASCE or the user ASCE dependent
        on set_fs(KERNEL_DS) vs set_fs(USER_DS).
      
      * Data access in the user address space for strnlen / futex
        To use "normal" instruction with data from the user address space the
        secondary space mode is used. The kernel needs to switch to primary mode,
        %cr1 has to contain the kernel ASCE and %cr7 either the user ASCE or the
        kernel ASCE, dependent on set_fs.
      
      To load a new value into %cr1 or %cr7 is an expensive operation, the kernel
      tries to be lazy about it. E.g. for multiple user copies in a row with
      MVCP/MVCS the replacement of the vdso ASCE in %cr7 with the user ASCE is
      done only once. On return to user space a CPU bit is checked that loads the
      vdso ASCE again.
      
      To enable and disable the data access via the secondary space two new
      functions are added, enable_sacf_uaccess and disable_sacf_uaccess. The fact
      that a context is in secondary space uaccess mode is stored in the
      mm_segment_t value for the task. The code of an interrupt may use set_fs
      as long as it returns to the previous state it got with get_fs with another
      call to set_fs. The code in finish_arch_post_lock_switch simply has to do a
      set_fs with the current mm_segment_t value for the task.
      
      For CPUs with MVCOS:
      
      CPU running in                        | %cr1 ASCE | %cr7 ASCE |
      --------------------------------------|-----------|-----------|
      user space                            |  user     |  vdso     |
      kernel, USER_DS, normal-mode          |  user     |  vdso     |
      kernel, USER_DS, normal-mode, lazy    |  user     |  user     |
      kernel, USER_DS, sacf-mode            |  kernel   |  user     |
      kernel, KERNEL_DS, normal-mode        |  kernel   |  vdso     |
      kernel, KERNEL_DS, normal-mode, lazy  |  kernel   |  kernel   |
      kernel, KERNEL_DS, sacf-mode          |  kernel   |  kernel   |
      
      For CPUs without MVCOS:
      
      CPU running in                        | %cr1 ASCE | %cr7 ASCE |
      --------------------------------------|-----------|-----------|
      user space                            |  user     |  vdso     |
      kernel, USER_DS, normal-mode          |  user     |  vdso     |
      kernel, USER_DS, normal-mode lazy     |  kernel   |  user     |
      kernel, USER_DS, sacf-mode            |  kernel   |  user     |
      kernel, KERNEL_DS, normal-mode        |  kernel   |  vdso     |
      kernel, KERNEL_DS, normal-mode, lazy  |  kernel   |  kernel   |
      kernel, KERNEL_DS, sacf-mode          |  kernel   |  kernel   |
      
      The lines with "lazy" refer to the state after a copy via the secondary
      space with a delayed reload of %cr1 and %cr7.
      
      There are three hardware address spaces that can cause a DAT exception,
      primary, secondary and home space. The exception can be related to
      four different fault types: user space fault, vdso fault, kernel fault,
      and the gmap faults.
      
      Dependent on the set_fs state and normal vs. sacf mode there are a number
      of fault combinations:
      
      1) user address space fault via the primary ASCE
      2) gmap address space fault via the primary ASCE
      3) kernel address space fault via the primary ASCE for machines with
         MVCOS and set_fs(KERNEL_DS)
      4) vdso address space faults via the secondary ASCE with an invalid
         address while running in secondary space in problem state
      5) user address space fault via the secondary ASCE for user-copy
         based on the secondary space mode, e.g. futex_ops or strnlen_user
      6) kernel address space fault via the secondary ASCE for user-copy
         with secondary space mode with set_fs(KERNEL_DS)
      7) kernel address space fault via the primary ASCE for user-copy
         with secondary space mode with set_fs(USER_DS) on machines without
         MVCOS.
      8) kernel address space fault via the home space ASCE
      
      Replace user_space_fault() with a new function get_fault_type() that
      can distinguish all four different fault types.
      
      With these changes the futex atomic ops from the kernel and the
      strnlen_user will get a little bit slower, as well as the old style
      uaccess with MVCP/MVCS. All user accesses based on MVCOS will be as
      fast as before. On the positive side, the user space vdso code is a
      lot faster and Linux ceases to use the complicated AR mode.
      Reviewed-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      0aaba41b
  6. 18 10月, 2017 1 次提交
  7. 09 10月, 2017 1 次提交
  8. 25 7月, 2017 1 次提交
    • M
      s390/mm: tag normal pages vs pages used in page tables · c9b5ad54
      Martin Schwidefsky 提交于
      The ESSA instruction has a new option that allows to tag pages that
      are not used as a page table. Without the tag the hypervisor has to
      assume that any guest page could be used in a page table inside the
      guest. This forces the hypervisor to flush all guest TLB entries
      whenever a host page table entry is invalidated. With the tag
      the host can skip the TLB flush if the page is tagged as normal page.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      c9b5ad54
  9. 12 6月, 2017 1 次提交
  10. 17 2月, 2017 1 次提交
    • P
      s390: kernel: Audit and remove any unnecessary uses of module.h · 3994a52b
      Paul Gortmaker 提交于
      Historically a lot of these existed because we did not have
      a distinction between what was modular code and what was providing
      support to modules via EXPORT_SYMBOL and friends.  That changed
      when we forked out support for the latter into the export.h file.
      
      This means we should be able to reduce the usage of module.h
      in code that is obj-y Makefile or bool Kconfig.  The advantage
      in doing so is that module.h itself sources about 15 other headers;
      adding significantly to what we feed cpp, and it can obscure what
      headers we are effectively using.
      
      Since module.h was the source for init.h (for __init) and for
      export.h (for EXPORT_SYMBOL) we consider each change instance
      for the presence of either and replace as needed.  Build testing
      revealed some implicit header usage that was fixed up accordingly.
      Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
      Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      3994a52b
  11. 24 5月, 2016 1 次提交
  12. 11 1月, 2016 3 次提交
  13. 14 10月, 2015 1 次提交
  14. 25 3月, 2015 1 次提交
    • H
      s390: remove 31 bit support · 5a79859a
      Heiko Carstens 提交于
      Remove the 31 bit support in order to reduce maintenance cost and
      effectively remove dead code. Since a couple of years there is no
      distribution left that comes with a 31 bit kernel.
      
      The 31 bit kernel also has been broken since more than a year before
      anybody noticed. In addition I added a removal warning to the kernel
      shown at ipl for 5 minutes: a960062e ("s390: add 31 bit warning
      message") which let everybody know about the plan to remove 31 bit
      code. We didn't get any response.
      
      Given that the last 31 bit only machine was introduced in 1999 let's
      remove the code.
      Anybody with 31 bit user space code can still use the compat mode.
      Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      5a79859a
  15. 09 8月, 2014 1 次提交
    • A
      arm64,ia64,ppc,s390,sh,tile,um,x86,mm: remove default gate area · a6c19dfe
      Andy Lutomirski 提交于
      The core mm code will provide a default gate area based on
      FIXADDR_USER_START and FIXADDR_USER_END if
      !defined(__HAVE_ARCH_GATE_AREA) && defined(AT_SYSINFO_EHDR).
      
      This default is only useful for ia64.  arm64, ppc, s390, sh, tile, 64-bit
      UML, and x86_32 have their own code just to disable it.  arm, 32-bit UML,
      and x86_64 have gate areas, but they have their own implementations.
      
      This gets rid of the default and moves the code into ia64.
      
      This should save some code on architectures without a gate area: it's now
      possible to inline the gate_area functions in the default case.
      Signed-off-by: NAndy Lutomirski <luto@amacapital.net>
      Acked-by: NNathan Lynch <nathan_lynch@mentor.com>
      Acked-by: NH. Peter Anvin <hpa@linux.intel.com>
      Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [in principle]
      Acked-by: Richard Weinberger <richard@nod.at> [for um]
      Acked-by: Will Deacon <will.deacon@arm.com> [for arm64]
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Fenghua Yu <fenghua.yu@intel.com>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Chris Metcalf <cmetcalf@tilera.com>
      Cc: Jeff Dike <jdike@addtoit.com>
      Cc: Richard Weinberger <richard@nod.at>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Nathan Lynch <Nathan_Lynch@mentor.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a6c19dfe
  16. 02 12月, 2013 1 次提交
  17. 24 10月, 2013 1 次提交
  18. 22 8月, 2013 2 次提交
  19. 26 9月, 2012 1 次提交
  20. 30 7月, 2012 1 次提交
  21. 29 3月, 2012 1 次提交
  22. 24 3月, 2012 1 次提交
    • J
      coredump: remove VM_ALWAYSDUMP flag · 909af768
      Jason Baron 提交于
      The motivation for this patchset was that I was looking at a way for a
      qemu-kvm process, to exclude the guest memory from its core dump, which
      can be quite large.  There are already a number of filter flags in
      /proc/<pid>/coredump_filter, however, these allow one to specify 'types'
      of kernel memory, not specific address ranges (which is needed in this
      case).
      
      Since there are no more vma flags available, the first patch eliminates
      the need for the 'VM_ALWAYSDUMP' flag.  The flag is used internally by
      the kernel to mark vdso and vsyscall pages.  However, it is simple
      enough to check if a vma covers a vdso or vsyscall page without the need
      for this flag.
      
      The second patch then replaces the 'VM_ALWAYSDUMP' flag with a new
      'VM_NODUMP' flag, which can be set by userspace using new madvise flags:
      'MADV_DONTDUMP', and unset via 'MADV_DODUMP'.  The core dump filters
      continue to work the same as before unless 'MADV_DONTDUMP' is set on the
      region.
      
      The qemu code which implements this features is at:
      
        http://people.redhat.com/~jbaron/qemu-dump/qemu-dump.patch
      
      In my testing the qemu core dump shrunk from 383MB -> 13MB with this
      patch.
      
      I also believe that the 'MADV_DONTDUMP' flag might be useful for
      security sensitive apps, which might want to select which areas are
      dumped.
      
      This patch:
      
      The VM_ALWAYSDUMP flag is currently used by the coredump code to
      indicate that a vma is part of a vsyscall or vdso section.  However, we
      can determine if a vma is in one these sections by checking it against
      the gate_vma and checking for a non-NULL return value from
      arch_vma_name().  Thus, freeing a valuable vma bit.
      Signed-off-by: NJason Baron <jbaron@redhat.com>
      Acked-by: NRoland McGrath <roland@hack.frob.com>
      Cc: Chris Metcalf <cmetcalf@tilera.com>
      Cc: Avi Kivity <avi@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      909af768
  23. 11 3月, 2012 1 次提交
    • M
      [S390] rework smp code · 8b646bd7
      Martin Schwidefsky 提交于
      Define struct pcpu and merge some of the NR_CPUS arrays into it, including
      __cpu_logical_map, current_set and smp_cpu_state. Split smp related
      functions to those operating on physical cpus and the functions operating
      on a logical cpu number. Make the functions for physical cpus use a
      pointer to a struct pcpu. This hides the knowledge about cpu addresses in
      smp.c, entry[64].S and swsusp_asm64.S, thus remove the sigp.h header.
      
      The PSW restart mechanism is used to start secondary cpus, calling a
      function on an online cpu, calling a function on the ipl cpu, and for
      the nmi signal. Replace the different assembler functions with a
      single function restart_int_handler. The new entry point calls a function
      whose pointer is stored in the lowcore of the target cpu and it can wait
      for the source cpu to stop. This covers all existing use cases.
      
      Overall the code is now simpler and there are ~380 lines less code.
      Reviewed-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      8b646bd7
  24. 24 3月, 2011 3 次提交
  25. 12 1月, 2011 1 次提交
    • H
      [S390] vdso: dont map at mmap_base · e7828bbd
      Heiko Carstens 提交于
      The vdso object is currently always mapped with mm->mmap_base used as
      requested address. In case of flexible mmap layout this means it gets
      mapped above mmap_base and therefore potentially stealing a bit of
      address space that is reserved for the stack.
      In case of flexible mmap layout the object should be mapped below
      mmap base. For legacy mmap layout above.
      To fix this just don't request any specific address and let the mmap
      code figure out an address that fits.
      Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      e7828bbd
  26. 25 10月, 2010 1 次提交
  27. 17 5月, 2010 1 次提交
  28. 27 2月, 2010 1 次提交
  29. 07 12月, 2009 1 次提交
    • M
      [S390] Improve address space mode selection. · b11b5334
      Martin Schwidefsky 提交于
      Introduce user_mode to replace the two variables switch_amode and
      s390_noexec. There are three valid combinations of the old values:
        1) switch_amode == 0 && s390_noexec == 0
        2) switch_amode == 1 && s390_noexec == 0
        3) switch_amode == 1 && s390_noexec == 1
      They get replaced by
        1) user_mode == HOME_SPACE_MODE
        2) user_mode == PRIMARY_SPACE_MODE
        3) user_mode == SECONDARY_SPACE_MODE
      The new kernel parameter user_mode=[primary,secondary,home] lets
      you choose the address space mode the user space processes should
      use. In addition the CONFIG_S390_SWITCH_AMODE config option
      is removed.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      b11b5334
  30. 06 10月, 2009 1 次提交
  31. 21 9月, 2009 1 次提交
    • T
      Use macros for .data.page_aligned section. · abe1ee3a
      Tim Abbott 提交于
      This patch changes the remaining direct references to
      .data.page_aligned in C and assembly code to use the macros in
      include/linux/linkage.h.
      Signed-off-by: NTim Abbott <tabbott@ksplice.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Signed-off-by: NSam Ravnborg <sam@ravnborg.org>
      abe1ee3a
  32. 12 6月, 2009 2 次提交