1. 03 11月, 2017 3 次提交
    • D
      arm64/sve: Add prctl controls for userspace vector length management · 2d2123bc
      Dave Martin 提交于
      This patch adds two arm64-specific prctls, to permit userspace to
      control its vector length:
      
       * PR_SVE_SET_VL: set the thread's SVE vector length and vector
         length inheritance mode.
      
       * PR_SVE_GET_VL: get the same information.
      
      Although these prctls resemble instruction set features in the SVE
      architecture, they provide additional control: the vector length
      inheritance mode is Linux-specific and nothing to do with the
      architecture, and the architecture does not permit EL0 to set its
      own vector length directly.  Both can be used in portable tools
      without requiring the use of SVE instructions.
      Signed-off-by: NDave Martin <Dave.Martin@arm.com>
      Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com>
      Cc: Alex Bennée <alex.bennee@linaro.org>
      [will: Fixed up prctl constants to avoid clash with PDEATHSIG]
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      2d2123bc
    • D
      arm64/sve: Support vector length resetting for new processes · 79ab047c
      Dave Martin 提交于
      It's desirable to be able to reset the vector length to some sane
      default for new processes, since the new binary and its libraries
      may or may not be SVE-aware.
      
      This patch tracks the desired post-exec vector length (if any) in a
      new thread member sve_vl_onexec, and adds a new thread flag
      TIF_SVE_VL_INHERIT to control whether to inherit or reset the
      vector length.  Currently these are inactive.  Subsequent patches
      will provide the capability to configure them.
      Signed-off-by: NDave Martin <Dave.Martin@arm.com>
      Reviewed-by: NAlex Bennée <alex.bennee@linaro.org>
      Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      79ab047c
    • D
      arm64/sve: Core task context handling · bc0ee476
      Dave Martin 提交于
      This patch adds the core support for switching and managing the SVE
      architectural state of user tasks.
      
      Calls to the existing FPSIMD low-level save/restore functions are
      factored out as new functions task_fpsimd_{save,load}(), since SVE
      now dynamically may or may not need to be handled at these points
      depending on the kernel configuration, hardware features discovered
      at boot, and the runtime state of the task.  To make these
      decisions as fast as possible, const cpucaps are used where
      feasible, via the system_supports_sve() helper.
      
      The SVE registers are only tracked for threads that have explicitly
      used SVE, indicated by the new thread flag TIF_SVE.  Otherwise, the
      FPSIMD view of the architectural state is stored in
      thread.fpsimd_state as usual.
      
      When in use, the SVE registers are not stored directly in
      thread_struct due to their potentially large and variable size.
      Because the task_struct slab allocator must be configured very
      early during kernel boot, it is also tricky to configure it
      correctly to match the maximum vector length provided by the
      hardware, since this depends on examining secondary CPUs as well as
      the primary.  Instead, a pointer sve_state in thread_struct points
      to a dynamically allocated buffer containing the SVE register data,
      and code is added to allocate and free this buffer at appropriate
      times.
      
      TIF_SVE is set when taking an SVE access trap from userspace, if
      suitable hardware support has been detected.  This enables SVE for
      the thread: a subsequent return to userspace will disable the trap
      accordingly.  If such a trap is taken without sufficient system-
      wide hardware support, SIGILL is sent to the thread instead as if
      an undefined instruction had been executed: this may happen if
      userspace tries to use SVE in a system where not all CPUs support
      it for example.
      
      The kernel will clear TIF_SVE and disable SVE for the thread
      whenever an explicit syscall is made by userspace.  For backwards
      compatibility reasons and conformance with the spirit of the base
      AArch64 procedure call standard, the subset of the SVE register
      state that aliases the FPSIMD registers is still preserved across a
      syscall even if this happens.  The remainder of the SVE register
      state logically becomes zero at syscall entry, though the actual
      zeroing work is currently deferred until the thread next tries to
      use SVE, causing another trap to the kernel.  This implementation
      is suboptimal: in the future, the fastpath case may be optimised
      to zero the registers in-place and leave SVE enabled for the task,
      where beneficial.
      
      TIF_SVE is also cleared in the following slowpath cases, which are
      taken as reasonable hints that the task may no longer use SVE:
       * exec
       * fork and clone
      
      Code is added to sync data between thread.fpsimd_state and
      thread.sve_state whenever enabling/disabling SVE, in a manner
      consistent with the SVE architectural programmer's model.
      Signed-off-by: NDave Martin <Dave.Martin@arm.com>
      Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com>
      Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
      Cc: Alex Bennée <alex.bennee@linaro.org>
      [will: added #include to fix allnoconfig build]
      [will: use enable_daif in do_sve_acc]
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      bc0ee476
  2. 02 10月, 2017 1 次提交
  3. 16 8月, 2017 1 次提交
    • A
      arm64: kernel: remove {THREAD,IRQ_STACK}_START_SP · 34be98f4
      Ard Biesheuvel 提交于
      For historical reasons, we leave the top 16 bytes of our task and IRQ
      stacks unused, a practice used to ensure that the SP can always be
      masked to find the base of the current stack (historically, where
      thread_info could be found).
      
      However, this is not necessary, as:
      
      * When an exception is taken from a task stack, we decrement the SP by
        S_FRAME_SIZE and stash the exception registers before we compare the
        SP against the task stack. In such cases, the SP must be at least
        S_FRAME_SIZE below the limit, and can be safely masked to determine
        whether the task stack is in use.
      
      * When transitioning to an IRQ stack, we'll place a dummy frame onto the
        IRQ stack before enabling asynchronous exceptions, or executing code
        we expect to trigger faults. Thus, if an exception is taken from the
        IRQ stack, the SP must be at least 16 bytes below the limit.
      
      * We no longer mask the SP to find the thread_info, which is now found
        via sp_el0. Note that historically, the offset was critical to ensure
        that cpu_switch_to() found the correct stack for new threads that
        hadn't yet executed ret_from_fork().
      
      Given that, this initial offset serves no purpose, and can be removed.
      This brings us in-line with other architectures (e.g. x86) which do not
      rely on this masking.
      Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      [Mark: rebase, kill THREAD_START_SP, commit msg additions]
      Signed-off-by: NMark Rutland <mark.rutland@arm.com>
      Reviewed-by: NWill Deacon <will.deacon@arm.com>
      Tested-by: NLaura Abbott <labbott@redhat.com>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: James Morse <james.morse@arm.com>
      34be98f4
  4. 07 8月, 2017 2 次提交
    • D
      arm64: Abstract syscallno manipulation · 17c28958
      Dave Martin 提交于
      The -1 "no syscall" value is written in various ways, shared with
      the user ABI in some places, and generally obscure.
      
      This patch attempts to make things a little more consistent and
      readable by replacing all these uses with a single #define.  A
      couple of symbolic helpers are provided to clarify the intent
      further.
      
      Because the in-syscall check in do_signal() is changed from >= 0 to
      != NO_SYSCALL by this patch, different behaviour may be observable
      if syscallno is set to values less than -1 by a tracer.  However,
      this is not different from the behaviour that is already observable
      if a tracer sets syscallno to a value >= __NR_(compat_)syscalls.
      
      It appears that this can cause spurious syscall restarting, but
      that is not a new behaviour either, and does not appear harmful.
      Signed-off-by: NDave Martin <Dave.Martin@arm.com>
      Acked-by: NWill Deacon <will.deacon@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      17c28958
    • D
      arm64: syscallno is secretly an int, make it official · 35d0e6fb
      Dave Martin 提交于
      The upper 32 bits of the syscallno field in thread_struct are
      handled inconsistently, being sometimes zero extended and sometimes
      sign-extended.  In fact, only the lower 32 bits seem to have any
      real significance for the behaviour of the code: it's been OK to
      handle the upper bits inconsistently because they don't matter.
      
      Currently, the only place I can find where those bits are
      significant is in calling trace_sys_enter(), which may be
      unintentional: for example, if a compat tracer attempts to cancel a
      syscall by passing -1 to (COMPAT_)PTRACE_SET_SYSCALL at the
      syscall-enter-stop, it will be traced as syscall 4294967295
      rather than -1 as might be expected (and as occurs for a native
      tracer doing the same thing).  Elsewhere, reads of syscallno cast
      it to an int or truncate it.
      
      There's also a conspicuous amount of code and casting to bodge
      around the fact that although semantically an int, syscallno is
      stored as a u64.
      
      Let's not pretend any more.
      
      In order to preserve the stp x instruction that stores the syscall
      number in entry.S, this patch special-cases the layout of struct
      pt_regs for big endian so that the newly 32-bit syscallno field
      maps onto the low bits of the stored value.  This is not beautiful,
      but benchmarking of the getpid syscall on Juno suggests indicates a
      minor slowdown if the stp is split into an stp x and stp w.
      Signed-off-by: NDave Martin <Dave.Martin@arm.com>
      Acked-by: NWill Deacon <will.deacon@arm.com>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      35d0e6fb
  5. 22 6月, 2017 1 次提交
    • D
      arm64: ptrace: Flush user-RW TLS reg to thread_struct before reading · 936eb65c
      Dave Martin 提交于
      When reading current's user-writable TLS register (which occurs
      when dumping core for native tasks), it is possible that userspace
      has modified it since the time the task was last scheduled out.
      The new TLS register value is not guaranteed to have been written
      immediately back to thread_struct in this case.
      
      As a result, a coredump can capture stale data for this register.
      Reading the register for a stopped task via ptrace is unaffected.
      
      For native tasks, this patch explicitly flushes the TPIDR_EL0
      register back to thread_struct before dumping when operating on
      current, thus ensuring that coredump contents are up to date.  For
      compat tasks, the TLS register is not user-writable and so cannot
      be out of sync, so no flush is required in compat_tls_get().
      Signed-off-by: NDave Martin <Dave.Martin@arm.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      936eb65c
  6. 23 3月, 2017 1 次提交
  7. 10 1月, 2017 1 次提交
    • J
      arm64: Remove useless UAO IPI and describe how this gets enabled · c8b06e3f
      James Morse 提交于
      Since its introduction, the UAO enable call was broken, and useless.
      commit 2a6dcb2b ("arm64: cpufeature: Schedule enable() calls instead
      of calling them via IPI"), fixed the framework so that these calls
      are scheduled, so that they can modify PSTATE.
      
      Now it is just useless. Remove it. UAO is enabled by the code patching
      which causes get_user() and friends to use the 'ldtr' family of
      instructions. This relies on the PSTATE.UAO bit being set to match
      addr_limit, which we do in uao_thread_switch() called via __switch_to().
      
      All that is needed to enable UAO is patch the code, and call schedule().
      __apply_alternatives_multi_stop() calls stop_machine() when it modifies
      the kernel text to enable the alternatives, (including the UAO code in
      uao_thread_switch()). Once stop_machine() has finished __switch_to() is
      called to reschedule the original task, this causes PSTATE.UAO to be set
      appropriately. An explicit enable() call is not needed.
      Reported-by: NVladimir Murzin <vladimir.murzin@arm.com>
      Signed-off-by: NJames Morse <james.morse@arm.com>
      c8b06e3f
  8. 17 11月, 2016 1 次提交
  9. 16 11月, 2016 2 次提交
    • C
      locking/core, arch: Remove cpu_relax_lowlatency() · 5bd0b85b
      Christian Borntraeger 提交于
      As there are no users left, we can remove cpu_relax_lowlatency()
      implementations from every architecture.
      Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Nicholas Piggin <npiggin@gmail.com>
      Cc: Noam Camus <noamc@ezchip.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Russell King <linux@armlinux.org.uk>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: linuxppc-dev@lists.ozlabs.org
      Cc: virtualization@lists.linux-foundation.org
      Cc: xen-devel@lists.xenproject.org
      Cc: <linux-arch@vger.kernel.org>
      Link: http://lkml.kernel.org/r/1477386195-32736-6-git-send-email-borntraeger@de.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      5bd0b85b
    • C
      locking/core: Introduce cpu_relax_yield() · 79ab11cd
      Christian Borntraeger 提交于
      For spinning loops people do often use barrier() or cpu_relax().
      For most architectures cpu_relax and barrier are the same, but on
      some architectures cpu_relax can add some latency.
      For example on power,sparc64 and arc, cpu_relax can shift the CPU
      towards other hardware threads in an SMT environment.
      On s390 cpu_relax does even more, it uses an hypercall to the
      hypervisor to give up the timeslice.
      In contrast to the SMT yielding this can result in larger latencies.
      In some places this latency is unwanted, so another variant
      "cpu_relax_lowlatency" was introduced. Before this is used in more
      and more places, lets revert the logic and provide a cpu_relax_yield
      that can be called in places where yielding is more important than
      latency. By default this is the same as cpu_relax on all architectures.
      Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Nicholas Piggin <npiggin@gmail.com>
      Cc: Noam Camus <noamc@ezchip.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Russell King <linux@armlinux.org.uk>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: linuxppc-dev@lists.ozlabs.org
      Cc: virtualization@lists.linux-foundation.org
      Cc: xen-devel@lists.xenproject.org
      Link: http://lkml.kernel.org/r/1477386195-32736-2-git-send-email-borntraeger@de.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      79ab11cd
  10. 20 10月, 2016 1 次提交
    • J
      arm64: cpufeature: Schedule enable() calls instead of calling them via IPI · 2a6dcb2b
      James Morse 提交于
      The enable() call for a cpufeature/errata is called using on_each_cpu().
      This issues a cross-call IPI to get the work done. Implicitly, this
      stashes the running PSTATE in SPSR when the CPU receives the IPI, and
      restores it when we return. This means an enable() call can never modify
      PSTATE.
      
      To allow PAN to do this, change the on_each_cpu() call to use
      stop_machine(). This schedules the work on each CPU which allows
      us to modify PSTATE.
      
      This involves changing the protype of all the enable() functions.
      
      enable_cpu_capabilities() is called during boot and enables the feature
      on all online CPUs. This path now uses stop_machine(). CPU features for
      hotplug'd CPUs are enabled by verify_local_cpu_features() which only
      acts on the local CPU, and can already modify the running PSTATE as it
      is called from secondary_start_kernel().
      Reported-by: NTony Thompson <anthony.thompson@arm.com>
      Reported-by: NVladimir Murzin <vladimir.murzin@arm.com>
      Signed-off-by: NJames Morse <james.morse@arm.com>
      Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      2a6dcb2b
  11. 01 9月, 2016 1 次提交
  12. 01 7月, 2016 1 次提交
    • A
      arm64: trap userspace "dc cvau" cache operation on errata-affected core · 7dd01aef
      Andre Przywara 提交于
      The ARM errata 819472, 826319, 827319 and 824069 for affected
      Cortex-A53 cores demand to promote "dc cvau" instructions to
      "dc civac". Since we allow userspace to also emit those instructions,
      we should make sure that "dc cvau" gets promoted there too.
      So lets grasp the nettle here and actually trap every userland cache
      maintenance instruction once we detect at least one affected core in
      the system.
      We then emulate the instruction by executing it on behalf of userland,
      promoting "dc cvau" to "dc civac" on the way and injecting access
      fault back into userspace.
      Signed-off-by: NAndre Przywara <andre.przywara@arm.com>
      [catalin.marinas@arm.com: s/set_segfault/arm64_notify_segfault/]
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      7dd01aef
  13. 19 2月, 2016 1 次提交
    • J
      arm64: kernel: Add support for User Access Override · 57f4959b
      James Morse 提交于
      'User Access Override' is a new ARMv8.2 feature which allows the
      unprivileged load and store instructions to be overridden to behave in
      the normal way.
      
      This patch converts {get,put}_user() and friends to use ldtr*/sttr*
      instructions - so that they can only access EL0 memory, then enables
      UAO when fs==KERNEL_DS so that these functions can access kernel memory.
      
      This allows user space's read/write permissions to be checked against the
      page tables, instead of testing addr<USER_DS, then using the kernel's
      read/write permissions.
      Signed-off-by: NJames Morse <james.morse@arm.com>
      [catalin.marinas@arm.com: move uao_thread_switch() above dsb()]
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      57f4959b
  14. 16 2月, 2016 2 次提交
  15. 21 10月, 2015 1 次提交
    • S
      arm64: Delay cpu feature capability checks · dbb4e152
      Suzuki K. Poulose 提交于
      At the moment we run through the arm64_features capability list for
      each CPU and set the capability if one of the CPU supports it. This
      could be problematic in a heterogeneous system with differing capabilities.
      Delay the CPU feature checks until all the enabled CPUs are up(i.e,
      smp_cpus_done(), so that we can make better decisions based on the
      overall system capability. Once we decide and advertise the capabilities
      the alternatives can be applied. From this state, we cannot roll back
      a feature to disabled based on the values from a new hotplugged CPU,
      due to the runtime patching and other reasons. So, for all new CPUs,
      we need to make sure that they have the established system capabilities.
      Failing which, we bring the CPU down, preventing it from turning online.
      Once the capabilities are decided, any new CPU booting up goes through
      verification to ensure that it has all the enabled capabilities and also
      invokes the respective enable() method on the CPU.
      
      The CPU errata checks are not delayed and is still executed per-CPU
      to detect the respective capabilities. If we ever come across a non-errata
      capability that needs to be checked on each-CPU, we could introduce them via
      a new capability table(or introduce a flag), which can be processed per CPU.
      
      The next patch will make the feature checks use the system wide
      safe value of a feature register.
      
      NOTE: The enable() methods associated with the capability is scheduled
      on all the CPUs (which is the only use case at the moment). If we need
      a different type of 'enable()' which only needs to be run once on any CPU,
      we should be able to handle that when needed.
      Signed-off-by: NSuzuki K. Poulose <suzuki.poulose@arm.com>
      Tested-by: NDave Martin <Dave.Martin@arm.com>
      [catalin.marinas@arm.com: static variable and coding style fixes]
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      dbb4e152
  16. 27 7月, 2015 1 次提交
  17. 01 6月, 2015 1 次提交
  18. 17 3月, 2015 1 次提交
  19. 28 2月, 2015 1 次提交
  20. 07 1月, 2015 2 次提交
  21. 29 8月, 2014 1 次提交
  22. 17 7月, 2014 1 次提交
    • D
      arch, locking: Ciao arch_mutex_cpu_relax() · 3a6bfbc9
      Davidlohr Bueso 提交于
      The arch_mutex_cpu_relax() function, introduced by 34b133f8, is
      hacky and ugly. It was added a few years ago to address the fact
      that common cpu_relax() calls include yielding on s390, and thus
      impact the optimistic spinning functionality of mutexes. Nowadays
      we use this function well beyond mutexes: rwsem, qrwlock, mcs and
      lockref. Since the macro that defines the call is in the mutex header,
      any users must include mutex.h and the naming is misleading as well.
      
      This patch (i) renames the call to cpu_relax_lowlatency  ("relax, but
      only if you can do it with very low latency") and (ii) defines it in
      each arch's asm/processor.h local header, just like for regular cpu_relax
      functions. On all archs, except s390, cpu_relax_lowlatency is simply cpu_relax,
      and thus we can take it out of mutex.h. While this can seem redundant,
      I believe it is a good choice as it allows us to move out arch specific
      logic from generic locking primitives and enables future(?) archs to
      transparently define it, similarly to System Z.
      Signed-off-by: NDavidlohr Bueso <davidlohr@hp.com>
      Signed-off-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Anton Blanchard <anton@samba.org>
      Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Bharat Bhushan <r65777@freescale.com>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Chen Liqin <liqin.linux@gmail.com>
      Cc: Chris Metcalf <cmetcalf@tilera.com>
      Cc: Christian Borntraeger <borntraeger@de.ibm.com>
      Cc: Chris Zankel <chris@zankel.net>
      Cc: David Howells <dhowells@redhat.com>
      Cc: David S. Miller <davem@davemloft.net>
      Cc: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
      Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
      Cc: Fenghua Yu <fenghua.yu@intel.com>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
      Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
      Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Helge Deller <deller@gmx.de>
      Cc: Hirokazu Takata <takata@linux-m32r.org>
      Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
      Cc: James E.J. Bottomley <jejb@parisc-linux.org>
      Cc: James Hogan <james.hogan@imgtec.com>
      Cc: Jason Wang <jasowang@redhat.com>
      Cc: Jesper Nilsson <jesper.nilsson@axis.com>
      Cc: Joe Perches <joe@perches.com>
      Cc: Jonas Bonn <jonas@southpole.se>
      Cc: Joseph Myers <joseph@codesourcery.com>
      Cc: Kees Cook <keescook@chromium.org>
      Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
      Cc: Lennox Wu <lennox.wu@gmail.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mark Salter <msalter@redhat.com>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Matt Turner <mattst88@gmail.com>
      Cc: Max Filippov <jcmvbkbc@gmail.com>
      Cc: Michael Neuling <mikey@neuling.org>
      Cc: Michal Simek <monstr@monstr.eu>
      Cc: Mikael Starvik <starvik@axis.com>
      Cc: Nicolas Pitre <nico@linaro.org>
      Cc: Paolo Bonzini <pbonzini@redhat.com>
      Cc: Paul Burton <paul.burton@imgtec.com>
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Qais Yousef <qais.yousef@imgtec.com>
      Cc: Qiaowei Ren <qiaowei.ren@intel.com>
      Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Richard Henderson <rth@twiddle.net>
      Cc: Richard Kuo <rkuo@codeaurora.org>
      Cc: Russell King <linux@arm.linux.org.uk>
      Cc: Steven Miao <realmz6@gmail.com>
      Cc: Steven Rostedt <srostedt@redhat.com>
      Cc: Stratos Karafotis <stratosk@semaphore.gr>
      Cc: Tim Chen <tim.c.chen@linux.intel.com>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Vasily Kulikov <segoon@openwall.com>
      Cc: Vineet Gupta <vgupta@synopsys.com>
      Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com>
      Cc: Waiman Long <Waiman.Long@hp.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Wolfram Sang <wsa@the-dreams.de>
      Cc: adi-buildroot-devel@lists.sourceforge.net
      Cc: linux390@de.ibm.com
      Cc: linux-alpha@vger.kernel.org
      Cc: linux-am33-list@redhat.com
      Cc: linux-arm-kernel@lists.infradead.org
      Cc: linux-c6x-dev@linux-c6x.org
      Cc: linux-cris-kernel@axis.com
      Cc: linux-hexagon@vger.kernel.org
      Cc: linux-ia64@vger.kernel.org
      Cc: linux@lists.openrisc.net
      Cc: linux-m32r-ja@ml.linux-m32r.org
      Cc: linux-m32r@ml.linux-m32r.org
      Cc: linux-m68k@lists.linux-m68k.org
      Cc: linux-metag@vger.kernel.org
      Cc: linux-mips@linux-mips.org
      Cc: linux-parisc@vger.kernel.org
      Cc: linuxppc-dev@lists.ozlabs.org
      Cc: linux-s390@vger.kernel.org
      Cc: linux-sh@vger.kernel.org
      Cc: linux-xtensa@linux-xtensa.org
      Cc: sparclinux@vger.kernel.org
      Link: http://lkml.kernel.org/r/1404079773.2619.4.camel@buesod1.americas.hpqcorp.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      3a6bfbc9
  23. 10 7月, 2014 1 次提交
  24. 09 5月, 2014 1 次提交
  25. 25 10月, 2013 1 次提交
  26. 09 11月, 2012 1 次提交
  27. 19 10月, 2012 1 次提交
    • C
      arm64: No need to set the x0-x2 registers in start_thread() · 16dd46bb
      Catalin Marinas 提交于
      For historical reasons, ARM used to set r0-r2 in start_thread() to the
      first values on the user stack when starting a new user application. The
      same logic has been inherited in AArch64. The x0 register is overridden
      by the sys_execve() return value so it's always zero on success. The x1
      and x2 registers are ignored by AArch64 and EABI AArch32 applications,
      so we can safely remove the register setting for both native and compat
      user space.
      
      This also fixes a potential fault with the kernel accessing user space
      stack directly.
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      Reported-by: NAl Viro <viro@zeniv.linux.org.uk>
      16dd46bb
  28. 17 10月, 2012 1 次提交
  29. 17 9月, 2012 1 次提交