- 27 4月, 2017 1 次提交
-
-
由 Bart Van Assche 提交于
A later patch in this series will modify blk_mq_debugfs_register() such that it uses q->kobj.parent to determine the name of a request queue. Hence make sure that that pointer is initialized before blk_mq_debugfs_register() is called. To avoid lock inversion, protect sysfs / debugfs registration with the queue sysfs_lock instead of the global mutex all_q_mutex. Signed-off-by: NBart Van Assche <bart.vanassche@sandisk.com> Reviewed-by: NHannes Reinecke <hare@suse.com> Reviewed-by: NOmar Sandoval <osandov@fb.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 24 4月, 2017 1 次提交
-
-
由 Mike Snitzer 提交于
When registering an integrity profile: if the template's interval_exp is not 0 use it, otherwise use the ilog2() of logical block size of the provided gendisk. This fixes a long-standing DM linear target bug where it cannot pass integrity data to the underlying device if its logical block size conflicts with the underlying device's logical block size. Cc: stable@vger.kernel.org Reported-by: NMikulas Patocka <mpatocka@redhat.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com> Acked-by: NMartin K. Petersen <martin.petersen@oracle.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 22 4月, 2017 2 次提交
-
-
由 Ilya Dryomov 提交于
Commit 25520d55 ("block: Inline blk_integrity in struct gendisk") introduced blk_integrity_revalidate(), which seems to assume ownership of the stable pages flag and unilaterally clears it if no blk_integrity profile is registered: if (bi->profile) disk->queue->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; else disk->queue->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES; It's called from revalidate_disk() and rescan_partitions(), making it impossible to enable stable pages for drivers that support partitions and don't use blk_integrity: while the call in revalidate_disk() can be trivially worked around (see zram, which doesn't support partitions and hence gets away with zram_revalidate_disk()), rescan_partitions() can be triggered from userspace at any time. This breaks rbd, where the ceph messenger is responsible for generating/verifying CRCs. Since blk_integrity_{un,}register() "must" be used for (un)registering the integrity profile with the block layer, move BDI_CAP_STABLE_WRITES setting there. This way drivers that call blk_integrity_register() and use integrity infrastructure won't interfere with drivers that don't but still want stable pages. Fixes: 25520d55 ("block: Inline blk_integrity in struct gendisk") Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Mike Snitzer <snitzer@redhat.com> Cc: stable@vger.kernel.org # 4.4+, needs backporting Tested-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NIlya Dryomov <idryomov@gmail.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Bart Van Assche 提交于
Avoid that the following kernel bug gets triggered: BUG: sleeping function called from invalid context at ./include/linux/buffer_head.h:349 in_atomic(): 1, irqs_disabled(): 0, pid: 8019, name: find CPU: 10 PID: 8019 Comm: find Tainted: G W I 4.11.0-rc4-dbg+ #2 Call Trace: dump_stack+0x68/0x93 ___might_sleep+0x16e/0x230 __might_sleep+0x4a/0x80 __ext4_get_inode_loc+0x1e0/0x4e0 ext4_iget+0x70/0xbc0 ext4_iget_normal+0x2f/0x40 ext4_lookup+0xb6/0x1f0 lookup_slow+0x104/0x1e0 walk_component+0x19a/0x330 path_lookupat+0x4b/0x100 filename_lookup+0x9a/0x110 user_path_at_empty+0x36/0x40 vfs_statx+0x67/0xc0 SYSC_newfstatat+0x20/0x40 SyS_newfstatat+0xe/0x10 entry_SYSCALL_64_fastpath+0x18/0xad This happens since the big if/else in blk_mq_make_request() doesn't have final else section that also drops the ctx. Add that. Fixes: b00c53e8 ("blk-mq: fix schedule-while-atomic with scheduler attached") Signed-off-by: NBart Van Assche <bart.vanassche@sandisk.com> Cc: Omar Sandoval <osandov@fb.com> Added a bit more to the commit log. Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 21 4月, 2017 12 次提交
-
-
由 Jens Axboe 提交于
No point in providing and exporting this helper. There's just one (real) user of it, just use rq_data_dir(). Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Bart Van Assche 提交于
commit c13660a0 ("blk-mq-sched: change ->dispatch_requests() to ->dispatch_request()") removed the last user of this function. Hence also remove the function itself. Signed-off-by: NBart Van Assche <bart.vanassche@sandisk.com> Cc: Omar Sandoval <osandov@fb.com> Cc: Hannes Reinecke <hare@suse.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Jens Axboe 提交于
If the caller passes in wait=true, it has to be able to block for a driver tag. We just had a bug where flush insertion would block on tag allocation, while we had preempt disabled. Ensure that we catch cases like that earlier next time. Reviewed-by: NBart Van Assche <Bart.VanAssche@sandisk.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Stephen Bates 提交于
Fixes an issue where the size of the poll_stat array in request_queue does not match the size expected by the new size based bucketing for IO completion polling. Fixes: 720b8ccc ("blk-mq: Add a polling specific stats function") Signed-off-by: NStephen Bates <sbates@raithlin.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Jens Axboe 提交于
We must have dropped the ctx before we call blk_mq_sched_insert_request() with can_block=true, otherwise we risk that a flush request can block on insertion if we are currently out of tags. [ 47.667190] BUG: scheduling while atomic: jbd2/sda2-8/2089/0x00000002 [ 47.674493] Modules linked in: x86_pkg_temp_thermal btrfs xor zlib_deflate raid6_pq sr_mod cdre [ 47.690572] Preemption disabled at: [ 47.690584] [<ffffffff81326c7c>] blk_mq_sched_get_request+0x6c/0x280 [ 47.701764] CPU: 1 PID: 2089 Comm: jbd2/sda2-8 Not tainted 4.11.0-rc7+ #271 [ 47.709630] Hardware name: Dell Inc. PowerEdge T630/0NT78X, BIOS 2.3.4 11/09/2016 [ 47.718081] Call Trace: [ 47.720903] dump_stack+0x4f/0x73 [ 47.724694] ? blk_mq_sched_get_request+0x6c/0x280 [ 47.730137] __schedule_bug+0x6c/0xc0 [ 47.734314] __schedule+0x559/0x780 [ 47.738302] schedule+0x3b/0x90 [ 47.741899] io_schedule+0x11/0x40 [ 47.745788] blk_mq_get_tag+0x167/0x2a0 [ 47.750162] ? remove_wait_queue+0x70/0x70 [ 47.754901] blk_mq_get_driver_tag+0x92/0xf0 [ 47.759758] blk_mq_sched_insert_request+0x134/0x170 [ 47.765398] ? blk_account_io_start+0xd0/0x270 [ 47.770679] blk_mq_make_request+0x1b2/0x850 [ 47.775766] generic_make_request+0xf7/0x2d0 [ 47.780860] submit_bio+0x5f/0x120 [ 47.784979] ? submit_bio+0x5f/0x120 [ 47.789631] submit_bh_wbc.isra.46+0x10d/0x130 [ 47.794902] submit_bh+0xb/0x10 [ 47.798719] journal_submit_commit_record+0x190/0x210 [ 47.804686] ? _raw_spin_unlock+0x13/0x30 [ 47.809480] jbd2_journal_commit_transaction+0x180a/0x1d00 [ 47.815925] kjournald2+0xb6/0x250 [ 47.820022] ? kjournald2+0xb6/0x250 [ 47.824328] ? remove_wait_queue+0x70/0x70 [ 47.829223] kthread+0x10e/0x140 [ 47.833147] ? commit_timeout+0x10/0x10 [ 47.837742] ? kthread_create_on_node+0x40/0x40 [ 47.843122] ret_from_fork+0x29/0x40 Fixes: a4d907b6 ("blk-mq: streamline blk_mq_make_request") Reviewed-by: NOmar Sandoval <osandov@fb.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Stephen Bates 提交于
Rather than bucketing IO statisics based on direction only we also bucket based on the IO size. This leads to improved polling performance. Update the bucket callback function and use it in the polling latency estimation. Signed-off-by: NStephen Bates <sbates@raithlin.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Stephen Bates 提交于
In order to allow for filtering of IO based on some other properties of the request than direction we allow the bucket function to return an int. If the bucket callback returns a negative do no count it in the stats accumulation. Signed-off-by: NStephen Bates <sbates@raithlin.com> Fixed up Kyber scheduler stat callback. Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBart Van Assche <Bart.VanAssche@sandisk.com> Acked-by: NRoger Pau Monné <roger.pau@citrix.com> Reviewed-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Christoph Hellwig 提交于
Merge blk_mq_ipi_complete_request and blk_mq_stat_add into their only caller. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Christoph Hellwig 提交于
Now that all drivers that call blk_mq_complete_requests have a ->complete callback we can remove the direct call to blk_mq_end_request, as well as the error argument to blk_mq_complete_request. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJohannes Thumshirn <jthumshirn@suse.de> Reviewed-by: NBart Van Assche <Bart.VanAssche@sandisk.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Christoph Hellwig 提交于
This passes on the scsi_cmnd result field to users of passthrough requests. Currently we abuse req->errors for this purpose, but that field will go away in its current form. Note that the old IDE code abuses the errors field in very creative ways and stores all kinds of different values in it. I didn't dare to touch this magic, so the abuses are brought forward 1:1. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMartin K. Petersen <martin.petersen@oracle.com> Reviewed-by: NBart Van Assche <Bart.VanAssche@sandisk.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Christoph Hellwig 提交于
The function only returns -EIO if rq->errors is non-zero, which is not very useful and lets a large number of callers ignore the return value. Just let the callers figure out their error themselves. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJohannes Thumshirn <jthumshirn@suse.de> Reviewed-by: NBart Van Assche <Bart.VanAssche@sandisk.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 20 4月, 2017 9 次提交
-
-
由 Jens Axboe 提交于
We trigger this warning: block/blk-throttle.c: In function ‘blk_throtl_bio’: block/blk-throttle.c:2042:6: warning: variable ‘ret’ set but not used [-Wunused-but-set-variable] int ret; ^~~ since we only assign 'ret' if BLK_DEV_THROTTLING_LOW is off, we never check it. Reported-by: NBart Van Assche <bart.vanassche@sandisk.com> Reviewed-by: NBart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Jens Axboe 提交于
If we don't have CGROUPS enabled, the compile ends in the following misery: In file included from ../block/bfq-iosched.c:105:0: ../block/bfq-iosched.h:819:22: error: array type has incomplete element type extern struct cftype bfq_blkcg_legacy_files[]; ^ ../block/bfq-iosched.h:820:22: error: array type has incomplete element type extern struct cftype bfq_blkg_files[]; ^ Move the declarations under the right ifdef. Reported-by: NRandy Dunlap <rdunlap@infradead.org> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Colin Ian King 提交于
The call to bfq_check_ioprio_change will dereference bic, however, the null check for bic is after this call. Move the the null check on bic to before the call to avoid any potential null pointer dereference issues. Detected by CoverityScan, CID#1430138 ("Dereference before null check") Signed-off-by: NColin Ian King <colin.king@canonical.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Bart Van Assche 提交于
Since ioprio_best() translates IOPRIO_CLASS_NONE into IOPRIO_CLASS_BE and since lower numerical priority values represent a higher priority a simple numerical comparison is sufficient. Signed-off-by: NBart Van Assche <bart.vanassche@sandisk.com> Reviewed-by: NAdam Manzanares <adam.manzanares@wdc.com> Tested-by: NAdam Manzanares <adam.manzanares@wdc.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: Matias Bjørling <m@bjorling.me> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Bart Van Assche 提交于
Since only a single caller remains, inline blk_rq_set_prio(). Initialize req->ioprio even if no I/O priority has been set in the bio nor in the I/O context. Signed-off-by: NBart Van Assche <bart.vanassche@sandisk.com> Reviewed-by: NAdam Manzanares <adam.manzanares@wdc.com> Tested-by: NAdam Manzanares <adam.manzanares@wdc.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: Matias Bjørling <m@bjorling.me> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Bart Van Assche 提交于
Export this function such that it becomes available to block drivers. Signed-off-by: NBart Van Assche <bart.vanassche@sandisk.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: Matias Bjørling <m@bjorling.me> Cc: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Christoph Hellwig 提交于
blk_insert_flush should be using __blk_end_request to start with. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Christoph Hellwig 提交于
This function is not used anywhere in the kernel. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJohannes Thumshirn <jthumshirn@suse.de> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Christoph Hellwig 提交于
Both functions are entirely unused. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJohannes Thumshirn <jthumshirn@suse.de> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 19 4月, 2017 15 次提交
-
-
由 Jan Kara 提交于
When CFQ is used as an elevator, it disables writeback throttling because they don't play well together. Later when a different elevator is chosen for the device, writeback throttling doesn't get enabled again as it should. Make sure CFQ enables writeback throttling (if it should be enabled by default) when we switch from it to another IO scheduler. Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Paolo Valente 提交于
The BFQ I/O scheduler features an optimal fair-queuing (proportional-share) scheduling algorithm, enriched with several mechanisms to boost throughput and reduce latency for interactive and real-time applications. This makes BFQ a large and complex piece of code. This commit addresses this issue by splitting BFQ into three main, independent components, and by moving each component into a separate source file: 1. Main algorithm: handles the interaction with the kernel, and decides which requests to dispatch; it uses the following two further components to achieve its goals. 2. Scheduling engine (Hierarchical B-WF2Q+ scheduling algorithm): computes the schedule, using weights and budgets provided by the above component. 3. cgroups support: handles group operations (creation, destruction, move, ...). Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Paolo Valente 提交于
When a bfq queue is set in service and when it is merged, a reference to the I/O context associated with the queue is taken. This reference is then released when the queue is deselected from service or split. More precisely, the release of the reference is postponed to when the scheduler lock is released, to avoid nesting between the scheduler and the I/O-context lock. In fact, such nesting would lead to deadlocks, because of other code paths that take the same locks in the opposite order. This postponing of I/O-context releases does complicate code. This commit addresses these issue by modifying involved operations in such a way to not need to get the above I/O-context references any more. Then it also removes any get and release of these references. Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Arianna Avanzini 提交于
Many popular I/O-intensive services or applications spawn or reactivate many parallel threads/processes during short time intervals. Examples are systemd during boot or git grep. These services or applications benefit mostly from a high throughput: the quicker the I/O generated by their processes is cumulatively served, the sooner the target job of these services or applications gets completed. As a consequence, it is almost always counterproductive to weight-raise any of the queues associated to the processes of these services or applications: in most cases it would just lower the throughput, mainly because weight-raising also implies device idling. To address this issue, an I/O scheduler needs, first, to detect which queues are associated with these services or applications. In this respect, we have that, from the I/O-scheduler standpoint, these services or applications cause bursts of activations, i.e., activations of different queues occurring shortly after each other. However, a shorter burst of activations may be caused also by the start of an application that does not consist in a lot of parallel I/O-bound threads (see the comments on the function bfq_handle_burst for details). In view of these facts, this commit introduces: 1) an heuristic to detect (only) bursts of queue activations caused by services or applications consisting in many parallel I/O-bound threads; 2) the prevention of device idling and weight-raising for the queues belonging to these bursts. Signed-off-by: NArianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Paolo Valente 提交于
This patch is basically the counterpart, for NCQ-capable rotational devices, of the previous patch. Exactly as the previous patch does on flash-based devices and for any workload, this patch disables device idling on rotational devices, but only for random I/O. In fact, only with these queues disabling idling boosts the throughput on NCQ-capable rotational devices. To not break service guarantees, idling is disabled for NCQ-enabled rotational devices only when the same symmetry conditions considered in the previous patches hold. Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NArianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Paolo Valente 提交于
This patch boosts the throughput on NCQ-capable flash-based devices, while still preserving latency guarantees for interactive and soft real-time applications. The throughput is boosted by just not idling the device when the in-service queue remains empty, even if the queue is sync and has a non-null idle window. This helps to keep the drive's internal queue full, which is necessary to achieve maximum performance. This solution to boost the throughput is a port of commits a68bbddb and f7d7b7a7 for CFQ. As already highlighted in a previous patch, allowing the device to prefetch and internally reorder requests trivially causes loss of control on the request service order, and hence on service guarantees. Fortunately, as discussed in detail in the comments on the function bfq_bfqq_may_idle(), if every process has to receive the same fraction of the throughput, then the service order enforced by the internal scheduler of a flash-based device is relatively close to that enforced by BFQ. In particular, it is close enough to let service guarantees be substantially preserved. Things change in an asymmetric scenario, i.e., if not every process has to receive the same fraction of the throughput. In this case, to guarantee the desired throughput distribution, the device must be prevented from prefetching requests. This is exactly what this patch does in asymmetric scenarios. Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NArianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Arianna Avanzini 提交于
A seeky queue (i..e, a queue containing random requests) is assigned a very small device-idling slice, for throughput issues. Unfortunately, given the process associated with a seeky queue, this behavior causes the following problem: if the process, say P, performs sync I/O and has a higher weight than some other processes doing I/O and associated with non-seeky queues, then BFQ may fail to guarantee to P its reserved share of the throughput. The reason is that idling is key for providing service guarantees to processes doing sync I/O [1]. This commit addresses this issue by allowing the device-idling slice to be reduced for a seeky queue only if the scenario happens to be symmetric, i.e., if all the queues are to receive the same share of the throughput. [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O Scheduler", Proceedings of the First Workshop on Mobile System Technologies (MST-2015), May 2015. http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdfSigned-off-by: NArianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: NRiccardo Pizzetti <riccardo.pizzetti@gmail.com> Signed-off-by: NSamuele Zecchini <samuele.zecchini92@gmail.com> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Arianna Avanzini 提交于
A set of processes may happen to perform interleaved reads, i.e., read requests whose union would give rise to a sequential read pattern. There are two typical cases: first, processes reading fixed-size chunks of data at a fixed distance from each other; second, processes reading variable-size chunks at variable distances. The latter case occurs for example with QEMU, which splits the I/O generated by a guest into multiple chunks, and lets these chunks be served by a pool of I/O threads, iteratively assigning the next chunk of I/O to the first available thread. CFQ denotes as 'cooperating' a set of processes that are doing interleaved I/O, and when it detects cooperating processes, it merges their queues to obtain a sequential I/O pattern from the union of their I/O requests, and hence boost the throughput. Unfortunately, in the following frequent case, the mechanism implemented in CFQ for detecting cooperating processes and merging their queues is not responsive enough to handle also the fluctuating I/O pattern of the second type of processes. Suppose that one process of the second type issues a request close to the next request to serve of another process of the same type. At that time the two processes would be considered as cooperating. But, if the request issued by the first process is to be merged with some other already-queued request, then, from the moment at which this request arrives, to the moment when CFQ controls whether the two processes are cooperating, the two processes are likely to be already doing I/O in distant zones of the disk surface or device memory. CFQ uses however preemption to get a sequential read pattern out of the read requests performed by the second type of processes too. As a consequence, CFQ uses two different mechanisms to achieve the same goal: boosting the throughput with interleaved I/O. This patch introduces Early Queue Merge (EQM), a unified mechanism to get a sequential read pattern with both types of processes. The main idea is to immediately check whether a newly-arrived request lets some pair of processes become cooperating, both in the case of actual request insertion and, to be responsive with the second type of processes, in the case of request merge. Both types of processes are then handled by just merging their queues. Signed-off-by: NArianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: NMauro Andreolini <mauro.andreolini@unimore.it> Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Paolo Valente 提交于
This patch introduces an heuristic that reduces latency when the I/O-request pool is saturated. This goal is achieved by disabling device idling, for non-weight-raised queues, when there are weight- raised queues with pending or in-flight requests. In fact, as explained in more detail in the comment on the function bfq_bfqq_may_idle(), this reduces the rate at which processes associated with non-weight-raised queues grab requests from the pool, thereby increasing the probability that processes associated with weight-raised queues get a request immediately (or at least soon) when they need one. Along the same line, if there are weight-raised queues, then this patch halves the service rate of async (write) requests for non-weight-raised queues. Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NArianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Paolo Valente 提交于
I/O schedulers typically allow NCQ-capable drives to prefetch I/O requests, as NCQ boosts the throughput exactly by prefetching and internally reordering requests. Unfortunately, as discussed in detail and shown experimentally in [1], this may cause fairness and latency guarantees to be violated. The main problem is that the internal scheduler of an NCQ-capable drive may postpone the service of some unlucky (prefetched) requests as long as it deems serving other requests more appropriate to boost the throughput. This patch addresses this issue by not disabling device idling for weight-raised queues, even if the device supports NCQ. This allows BFQ to start serving a new queue, and therefore allows the drive to prefetch new requests, only after the idling timeout expires. At that time, all the outstanding requests of the expired queue have been most certainly served. [1] P. Valente and M. Andreolini, "Improving Application Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of the 5th Annual International Systems and Storage Conference (SYSTOR '12), June 2012. Slightly extended version: http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite- results.pdf Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NArianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Paolo Valente 提交于
To guarantee a low latency also to the I/O requests issued by soft real-time applications, this patch introduces a further heuristic, which weight-raises (in the sense explained in the previous patch) also the queues associated to applications deemed as soft real-time. To be deemed as soft real-time, an application must meet two requirements. First, the application must not require an average bandwidth higher than the approximate bandwidth required to playback or record a compressed high-definition video. Second, the request pattern of the application must be isochronous, i.e., after issuing a request or a batch of requests, the application must stop issuing new requests until all its pending requests have been completed. After that, the application may issue a new batch, and so on. As for the second requirement, it is critical to require also that, after all the pending requests of the application have been completed, an adequate minimum amount of time elapses before the application starts issuing new requests. This prevents also greedy (i.e., I/O-bound) applications from being incorrectly deemed, occasionally, as soft real-time. In fact, if *any amount of time* is fine, then even a greedy application may, paradoxically, meet both the above requirements, if: (1) the application performs random I/O and/or the device is slow, and (2) the CPU load is high. The reason is the following. First, if condition (1) is true, then, during the service of the application, the throughput may be low enough to let the application meet the bandwidth requirement. Second, if condition (2) is true as well, then the application may occasionally behave in an apparently isochronous way, because it may simply stop issuing requests while the CPUs are busy serving other processes. To address this issue, the heuristic leverages the simple fact that greedy applications issue *all* their requests as quickly as they can, whereas soft real-time applications spend some time processing data after each batch of requests is completed. In particular, the heuristic works as follows. First, according to the above isochrony requirement, the heuristic checks whether an application may be soft real-time, thereby giving to the application the opportunity to be deemed as such, only when both the following two conditions happen to hold: 1) the queue associated with the application has expired and is empty, 2) there is no outstanding request of the application. Suppose that both conditions hold at time, say, t_c and that the application issues its next request at time, say, t_i. At time t_c the heuristic computes the next time instant, called soft_rt_next_start in the code, such that, only if t_i >= soft_rt_next_start, then both the next conditions will hold when the application issues its next request: 1) the application will meet the above bandwidth requirement, 2) a given minimum time interval, say Delta, will have elapsed from time t_c (so as to filter out greedy application). The current value of Delta is a little bit higher than the value that we have found, experimentally, to be adequate on a real, general-purpose machine. In particular we had to increase Delta to make the filter quite precise also in slower, embedded systems, and in KVM/QEMU virtual machines (details in the comments on the code). If the application actually issues its next request after time soft_rt_next_start, then its associated queue will be weight-raised for a relatively short time interval. If, during this time interval, the application proves again to meet the bandwidth and isochrony requirements, then the end of the weight-raising period for the queue is moved forward, and so on. Note that an application whose associated queue never happens to be empty when it expires will never have the opportunity to be deemed as soft real-time. Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NArianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Paolo Valente 提交于
This patch introduces a simple heuristic to load applications quickly, and to perform the I/O requested by interactive applications just as quickly. To this purpose, both a newly-created queue and a queue associated with an interactive application (we explain in a moment how BFQ decides whether the associated application is interactive), receive the following two special treatments: 1) The weight of the queue is raised. 2) The queue unconditionally enjoys device idling when it empties; in fact, if the requests of a queue are sync, then performing device idling for the queue is a necessary condition to guarantee that the queue receives a fraction of the throughput proportional to its weight (see [1] for details). For brevity, we call just weight-raising the combination of these two preferential treatments. For a newly-created queue, weight-raising starts immediately and lasts for a time interval that: 1) depends on the device speed and type (rotational or non-rotational), and 2) is equal to the time needed to load (start up) a large-size application on that device, with cold caches and with no additional workload. Finally, as for guaranteeing a fast execution to interactive, I/O-related tasks (such as opening a file), consider that any interactive application blocks and waits for user input both after starting up and after executing some task. After a while, the user may trigger new operations, after which the application stops again, and so on. Accordingly, the low-latency heuristic weight-raises again a queue in case it becomes backlogged after being idle for a sufficiently long (configurable) time. The weight-raising then lasts for the same time as for a just-created queue. According to our experiments, the combination of this low-latency heuristic and of the improvements described in the previous patch allows BFQ to guarantee a high application responsiveness. [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O Scheduler", Proceedings of the First Workshop on Mobile System Technologies (MST-2015), May 2015. http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdfSigned-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NArianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Paolo Valente 提交于
This patch deals with two sources of unfairness, which can also cause high latencies and throughput loss. The first source is related to write requests. Write requests tend to starve read requests, basically because, on one side, writes are slower than reads, whereas, on the other side, storage devices confuse schedulers by deceptively signaling the completion of write requests immediately after receiving them. This patch addresses this issue by just throttling writes. In particular, after a write request is dispatched for a queue, the budget of the queue is decremented by the number of sectors to write, multiplied by an (over)charge coefficient. The value of the coefficient is the result of our tuning with different devices. The second source of unfairness has to do with slowness detection: when the in-service queue is expired, BFQ also controls whether the queue has been "too slow", i.e., has consumed its last-assigned budget at such a low rate that it would have been impossible to consume all of this budget within the maximum time slice T_max (Subsec. 3.5 in [1]). In this case, the queue is always (over)charged the whole budget, to reduce its utilization of the device. Both this overcharge and the slowness-detection criterion may cause unfairness. First, always charging a full budget to a slow queue is too coarse. It is much more accurate, and this patch lets BFQ do so, to charge an amount of service 'equivalent' to the amount of time during which the queue has been in service. As explained in more detail in the comments on the code, this enables BFQ to provide time fairness among slow queues. Secondly, because of ZBR, a queue may be deemed as slow when its associated process is performing I/O on the slowest zones of a disk. However, unless the process is truly too slow, not reducing the disk utilization of the queue is more profitable in terms of disk throughput than the opposite. A similar problem is caused by logical block mapping on non-rotational devices. For this reason, this patch lets a queue be charged time, and not budget, only if the queue has consumed less than 2/3 of its assigned budget. As an additional, important benefit, this tolerance allows BFQ to preserve enough elasticity to still perform bandwidth, and not time, distribution with little unlucky or quasi-sequential processes. Finally, for the same reasons as above, this patch makes slowness detection itself much less harsh: a queue is deemed slow only if it has consumed its budget at less than half of the peak rate. [1] P. Valente and M. Andreolini, "Improving Application Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of the 5th Annual International Systems and Storage Conference (SYSTOR '12), June 2012. Slightly extended version: http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite- results.pdf Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NArianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Paolo Valente 提交于
Unless the maximum budget B_max that BFQ can assign to a queue is set explicitly by the user, BFQ automatically updates B_max. In particular, BFQ dynamically sets B_max to the number of sectors that can be read, at the current estimated peak rate, during the maximum time, T_max, allowed before a budget timeout occurs. In formulas, if we denote as R_est the estimated peak rate, then B_max = T_max ∗ R_est. Hence, the higher R_est is with respect to the actual device peak rate, the higher the probability that processes incur budget timeouts unjustly is. Besides, a too high value of B_max unnecessarily increases the deviation from an ideal, smooth service. Unfortunately, it is not trivial to estimate the peak rate correctly: because of the presence of sw and hw queues between the scheduler and the device components that finally serve I/O requests, it is hard to say exactly when a given dispatched request is served inside the device, and for how long. As a consequence, it is hard to know precisely at what rate a given set of requests is actually served by the device. On the opposite end, the dispatch time of any request is trivially available, and, from this piece of information, the "dispatch rate" of requests can be immediately computed. So, the idea in the next function is to use what is known, namely request dispatch times (plus, when useful, request completion times), to estimate what is unknown, namely in-device request service rate. The main issue is that, because of the above facts, the rate at which a certain set of requests is dispatched over a certain time interval can vary greatly with respect to the rate at which the same requests are then served. But, since the size of any intermediate queue is limited, and the service scheme is lossless (no request is silently dropped), the following obvious convergence property holds: the number of requests dispatched MUST become closer and closer to the number of requests completed as the observation interval grows. This is the key property used in this new version of the peak-rate estimator. Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NArianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Paolo Valente 提交于
The feedback-loop algorithm used by BFQ to compute queue (process) budgets is basically a set of three update rules, one for each of the main reasons why a queue may be expired. If many processes suddenly switch from sporadic I/O to greedy and sequential I/O, then these rules are quite slow to assign large budgets to these processes, and hence to achieve a high throughput. On the opposite side, BFQ assigns the maximum possible budget B_max to a just-created queue. This allows a high throughput to be achieved immediately if the associated process is I/O-bound and performs sequential I/O from the beginning. But it also increases the worst-case latency experienced by the first requests issued by the process, because the larger the budget of a queue waiting for service is, the later the queue will be served by B-WF2Q+ (Subsec 3.3 in [1]). This is detrimental for an interactive or soft real-time application. To tackle these throughput and latency problems, on one hand this patch changes the initial budget value to B_max/2. On the other hand, it re-tunes the three rules, adopting a more aggressive, multiplicative increase/linear decrease scheme. This scheme trades latency for throughput more than before, and tends to assign large budgets quickly to processes that are or become I/O-bound. For two of the expiration reasons, the new version of the rules also contains some more little improvements, briefly described below. *No more backlog.* In this case, the budget was larger than the number of sectors actually read/written by the process before it stopped doing I/O. Hence, to reduce latency for the possible future I/O requests of the process, the old rule simply set the next budget to the number of sectors actually consumed by the process. However, if there are still outstanding requests, then the process may have not yet issued its next request just because it is still waiting for the completion of some of the still outstanding ones. If this sub-case holds true, then the new rule, instead of decreasing the budget, doubles it, proactively, in the hope that: 1) a larger budget will fit the actual needs of the process, and 2) the process is sequential and hence a higher throughput will be achieved by serving the process longer after granting it access to the device. *Budget timeout*. The original rule set the new budget to the maximum value B_max, to maximize throughput and let all processes experiencing budget timeouts receive the same share of the device time. In our experiments we verified that this sudden jump to B_max did not provide sensible benefits; rather it increased the latency of processes performing sporadic and short I/O. The new rule only doubles the budget. [1] P. Valente and M. Andreolini, "Improving Application Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of the 5th Annual International Systems and Storage Conference (SYSTOR '12), June 2012. Slightly extended version: http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite- results.pdf Signed-off-by: NPaolo Valente <paolo.valente@linaro.org> Signed-off-by: NArianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-