- 24 7月, 2009 1 次提交
-
-
由 Catalin Marinas 提交于
This patch implements the ARM/Thumb-2 unified kernel start-up and exception handling code. Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 01 9月, 2008 1 次提交
-
-
由 Mikael Pettersson 提交于
Linux/ARM currently doesn't support robust or PI futexes. The problem is that the kernel wants to perform certain ops (cmpxchg, set, add, or, andn, xor) atomically on user-space addresses, and ARM's futex.h doesn't support that. This patch adds that support, but only for uniprocessor machines. For UP it's enough to disable preemption to ensure mutual exclusion with other software agents (futexes don't need to care about other hardware agents, fortunately). This patch is based on one posted by Khem Raj on 2007-08-01 <http://marc.info/?l=linux-arm-kernel&m=118599407413016&w=2>. (That patch is included in the -RT kernel patches.) My changes since that version include: * corrected implementation of FUTEX_OP_ANDN (must complement oparg) * added missing memory clobber to futex_atomic_cmpxchg_inatomic() * removed spinlock because it's unnecessary for UP and insufficient for SMP, instead the code is restricted to UP and relies on the fact that pagefault_disable() also disables preemption * coding style cleanups Tested on ARMv5 XScales with the glibc-2.6 nptl test suite. Tested-by: NBruce Ashfield <bruce.ashfield@windriver.com> Signed-off-by: NMikael Pettersson <mikpe@it.uu.se> Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 03 8月, 2008 1 次提交
-
-
由 Russell King 提交于
Move platform independent header files to arch/arm/include/asm, leaving those in asm/arch* and asm/plat* alone. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 09 1月, 2006 1 次提交
-
-
由 Jeff Dike 提交于
Most of the architectures have the same asm/futex.h. This consolidates them into asm-generic, with the arches including it from their own asm/futex.h. In the case of UML, this reverts the old broken futex.h and goes back to using the same one as almost everyone else. Signed-off-by: NJeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 19 9月, 2005 1 次提交
-
-
由 Russell King 提交于
The recently added futex.h contains an unused variable, which gcc naturally warns about. Remove this unused variable. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 08 9月, 2005 1 次提交
-
-
由 Jakub Jelinek 提交于
ATM pthread_cond_signal is unnecessarily slow, because it wakes one waiter (which at least on UP usually means an immediate context switch to one of the waiter threads). This waiter wakes up and after a few instructions it attempts to acquire the cv internal lock, but that lock is still held by the thread calling pthread_cond_signal. So it goes to sleep and eventually the signalling thread is scheduled in, unlocks the internal lock and wakes the waiter again. Now, before 2003-09-21 NPTL was using FUTEX_REQUEUE in pthread_cond_signal to avoid this performance issue, but it was removed when locks were redesigned to the 3 state scheme (unlocked, locked uncontended, locked contended). Following scenario shows why simply using FUTEX_REQUEUE in pthread_cond_signal together with using lll_mutex_unlock_force in place of lll_mutex_unlock is not enough and probably why it has been disabled at that time: The number is value in cv->__data.__lock. thr1 thr2 thr3 0 pthread_cond_wait 1 lll_mutex_lock (cv->__data.__lock) 0 lll_mutex_unlock (cv->__data.__lock) 0 lll_futex_wait (&cv->__data.__futex, futexval) 0 pthread_cond_signal 1 lll_mutex_lock (cv->__data.__lock) 1 pthread_cond_signal 2 lll_mutex_lock (cv->__data.__lock) 2 lll_futex_wait (&cv->__data.__lock, 2) 2 lll_futex_requeue (&cv->__data.__futex, 0, 1, &cv->__data.__lock) # FUTEX_REQUEUE, not FUTEX_CMP_REQUEUE 2 lll_mutex_unlock_force (cv->__data.__lock) 0 cv->__data.__lock = 0 0 lll_futex_wake (&cv->__data.__lock, 1) 1 lll_mutex_lock (cv->__data.__lock) 0 lll_mutex_unlock (cv->__data.__lock) # Here, lll_mutex_unlock doesn't know there are threads waiting # on the internal cv's lock Now, I believe it is possible to use FUTEX_REQUEUE in pthread_cond_signal, but it will cost us not one, but 2 extra syscalls and, what's worse, one of these extra syscalls will be done for every single waiting loop in pthread_cond_*wait. We would need to use lll_mutex_unlock_force in pthread_cond_signal after requeue and lll_mutex_cond_lock in pthread_cond_*wait after lll_futex_wait. Another alternative is to do the unlocking pthread_cond_signal needs to do (the lock can't be unlocked before lll_futex_wake, as that is racy) in the kernel. I have implemented both variants, futex-requeue-glibc.patch is the first one and futex-wake_op{,-glibc}.patch is the unlocking inside of the kernel. The kernel interface allows userland to specify how exactly an unlocking operation should look like (some atomic arithmetic operation with optional constant argument and comparison of the previous futex value with another constant). It has been implemented just for ppc*, x86_64 and i?86, for other architectures I'm including just a stub header which can be used as a starting point by maintainers to write support for their arches and ATM will just return -ENOSYS for FUTEX_WAKE_OP. The requeue patch has been (lightly) tested just on x86_64, the wake_op patch on ppc64 kernel running 32-bit and 64-bit NPTL and x86_64 kernel running 32-bit and 64-bit NPTL. With the following benchmark on UP x86-64 I get: for i in nptl-orig nptl-requeue nptl-wake_op; do echo time elf/ld.so --library-path .:$i /tmp/bench; \ for j in 1 2; do echo ( time elf/ld.so --library-path .:$i /tmp/bench ) 2>&1; done; done time elf/ld.so --library-path .:nptl-orig /tmp/bench real 0m0.655s user 0m0.253s sys 0m0.403s real 0m0.657s user 0m0.269s sys 0m0.388s time elf/ld.so --library-path .:nptl-requeue /tmp/bench real 0m0.496s user 0m0.225s sys 0m0.271s real 0m0.531s user 0m0.242s sys 0m0.288s time elf/ld.so --library-path .:nptl-wake_op /tmp/bench real 0m0.380s user 0m0.176s sys 0m0.204s real 0m0.382s user 0m0.175s sys 0m0.207s The benchmark is at: http://sourceware.org/ml/libc-alpha/2005-03/txt00001.txt Older futex-requeue-glibc.patch version is at: http://sourceware.org/ml/libc-alpha/2005-03/txt00002.txt Older futex-wake_op-glibc.patch version is at: http://sourceware.org/ml/libc-alpha/2005-03/txt00003.txt Will post a new version (just x86-64 fixes so that the patch applies against pthread_cond_signal.S) to libc-hacker ml soon. Attached is the kernel FUTEX_WAKE_OP patch as well as a simple-minded testcase that will not test the atomicity of the operation, but at least check if the threads that should have been woken up are woken up and whether the arithmetic operation in the kernel gave the expected results. Acked-by: NIngo Molnar <mingo@redhat.com> Cc: Ulrich Drepper <drepper@redhat.com> Cc: Jamie Lokier <jamie@shareable.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: NYoichi Yuasa <yuasa@hh.iij4u.or.jp> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-