1. 03 3月, 2016 5 次提交
    • C
      time: Add history to cross timestamp interface supporting slower devices · 2c756feb
      Christopher S. Hall 提交于
      Another representative use case of time sync and the correlated
      clocksource (in addition to PTP noted above) is PTP synchronized
      audio.
      
      In a streaming application, as an example, samples will be sent and/or
      received by multiple devices with a presentation time that is in terms
      of the PTP master clock. Synchronizing the audio output on these
      devices requires correlating the audio clock with the PTP master
      clock. The more precise this correlation is, the better the audio
      quality (i.e. out of sync audio sounds bad).
      
      From an application standpoint, to correlate the PTP master clock with
      the audio device clock, the system clock is used as a intermediate
      timebase. The transforms such an application would perform are:
      
          System Clock <-> Audio clock
          System Clock <-> Network Device Clock [<-> PTP Master Clock]
      
      Modern Intel platforms can perform a more accurate cross timestamp in
      hardware (ART,audio device clock).  The audio driver requires
      ART->system time transforms -- the same as required for the network
      driver. These platforms offload audio processing (including
      cross-timestamps) to a DSP which to ensure uninterrupted audio
      processing, communicates and response to the host only once every
      millsecond. As a result is takes up to a millisecond for the DSP to
      receive a request, the request is processed by the DSP, the audio
      output hardware is polled for completion, the result is copied into
      shared memory, and the host is notified. All of these operation occur
      on a millisecond cadence.  This transaction requires about 2 ms, but
      under heavier workloads it may take up to 4 ms.
      
      Adding a history allows these slow devices the option of providing an
      ART value outside of the current interval. In this case, the callback
      provided is an accessor function for the previously obtained counter
      value. If get_system_device_crosststamp() receives a counter value
      previous to cycle_last, it consults the history provided as an
      argument in history_ref and interpolates the realtime and monotonic
      raw system time using the provided counter value. If there are any
      clock discontinuities, e.g. from calling settimeofday(), the monotonic
      raw time is interpolated in the usual way, but the realtime clock time
      is adjusted by scaling the monotonic raw adjustment.
      
      When an accessor function is used a history argument *must* be
      provided. The history is initialized using ktime_get_snapshot() and
      must be called before the counter values are read.
      
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: kevin.b.stanton@intel.com
      Cc: kevin.j.clarke@intel.com
      Cc: hpa@zytor.com
      Cc: jeffrey.t.kirsher@intel.com
      Cc: netdev@vger.kernel.org
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NChristopher S. Hall <christopher.s.hall@intel.com>
      [jstultz: Fixed up cycles_t/cycle_t type confusion]
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      2c756feb
    • C
      time: Add driver cross timestamp interface for higher precision time synchronization · 8006c245
      Christopher S. Hall 提交于
      ACKNOWLEDGMENT: cross timestamp code was developed by Thomas Gleixner
      <tglx@linutronix.de>. It has changed considerably and any mistakes are
      mine.
      
      The precision with which events on multiple networked systems can be
      synchronized using, as an example, PTP (IEEE 1588, 802.1AS) is limited
      by the precision of the cross timestamps between the system clock and
      the device (timestamp) clock. Precision here is the degree of
      simultaneity when capturing the cross timestamp.
      
      Currently the PTP cross timestamp is captured in software using the
      PTP device driver ioctl PTP_SYS_OFFSET. Reads of the device clock are
      interleaved with reads of the realtime clock. At best, the precision
      of this cross timestamp is on the order of several microseconds due to
      software latencies. Sub-microsecond precision is required for
      industrial control and some media applications. To achieve this level
      of precision hardware supported cross timestamping is needed.
      
      The function get_device_system_crosstimestamp() allows device drivers
      to return a cross timestamp with system time properly scaled to
      nanoseconds.  The realtime value is needed to discipline that clock
      using PTP and the monotonic raw value is used for applications that
      don't require a "real" time, but need an unadjusted clock time.  The
      get_device_system_crosstimestamp() code calls back into the driver to
      ensure that the system counter is within the current timekeeping
      update interval.
      
      Modern Intel hardware provides an Always Running Timer (ART) which is
      exactly related to TSC through a known frequency ratio. The ART is
      routed to devices on the system and is used to precisely and
      simultaneously capture the device clock with the ART.
      
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: kevin.b.stanton@intel.com
      Cc: kevin.j.clarke@intel.com
      Cc: hpa@zytor.com
      Cc: jeffrey.t.kirsher@intel.com
      Cc: netdev@vger.kernel.org
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NChristopher S. Hall <christopher.s.hall@intel.com>
      [jstultz: Reworked to remove extra structures and simplify calling]
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      8006c245
    • C
      time: Remove duplicated code in ktime_get_raw_and_real() · ba26621e
      Christopher S. Hall 提交于
      The code in ktime_get_snapshot() is a superset of the code in
      ktime_get_raw_and_real() code. Further, ktime_get_raw_and_real() is
      called only by the PPS code, pps_get_ts(). Consolidate the
      pps_get_ts() code into a single function calling ktime_get_snapshot()
      and eliminate ktime_get_raw_and_real(). A side effect of this is that
      the raw and real results of pps_get_ts() correspond to exactly the
      same clock cycle. Previously these values represented separate reads
      of the system clock.
      
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: kevin.b.stanton@intel.com
      Cc: kevin.j.clarke@intel.com
      Cc: hpa@zytor.com
      Cc: jeffrey.t.kirsher@intel.com
      Cc: netdev@vger.kernel.org
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NChristopher S. Hall <christopher.s.hall@intel.com>
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      ba26621e
    • C
      time: Add timekeeping snapshot code capturing system time and counter · 9da0f49c
      Christopher S. Hall 提交于
      In the current timekeeping code there isn't any interface to
      atomically capture the current relationship between the system counter
      and system time. ktime_get_snapshot() returns this triple (counter,
      monotonic raw, realtime) in the system_time_snapshot struct.
      
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: kevin.b.stanton@intel.com
      Cc: kevin.j.clarke@intel.com
      Cc: hpa@zytor.com
      Cc: jeffrey.t.kirsher@intel.com
      Cc: netdev@vger.kernel.org
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NChristopher S. Hall <christopher.s.hall@intel.com>
      [jstultz: Moved structure definitions around to clean things up,
       fixed cycles_t/cycle_t confusion.]
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      9da0f49c
    • C
      time: Add cycles to nanoseconds translation · 6bd58f09
      Christopher S. Hall 提交于
      The timekeeping code does not currently provide a way to translate
      externally provided clocksource cycles to system time. The cycle count
      is always provided by the result clocksource read() method internal to
      the timekeeping code. The added function timekeeping_cycles_to_ns()
      calculated a nanosecond value from a cycle count that can be added to
      tk_read_base.base value yielding the current system time. This allows
      clocksource cycle values external to the timekeeping code to provide a
      cycle count that can be transformed to system time.
      
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Richard Cochran <richardcochran@gmail.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: kevin.b.stanton@intel.com
      Cc: kevin.j.clarke@intel.com
      Cc: hpa@zytor.com
      Cc: jeffrey.t.kirsher@intel.com
      Cc: netdev@vger.kernel.org
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NChristopher S. Hall <christopher.s.hall@intel.com>
      Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
      6bd58f09
  2. 27 2月, 2016 1 次提交
  3. 27 1月, 2016 3 次提交
  4. 23 1月, 2016 1 次提交
    • A
      wrappers for ->i_mutex access · 5955102c
      Al Viro 提交于
      parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
      inode_foo(inode) being mutex_foo(&inode->i_mutex).
      
      Please, use those for access to ->i_mutex; over the coming cycle
      ->i_mutex will become rwsem, with ->lookup() done with it held
      only shared.
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      5955102c
  5. 21 1月, 2016 14 次提交
  6. 20 1月, 2016 1 次提交
    • W
      pipe: limit the per-user amount of pages allocated in pipes · 759c0114
      Willy Tarreau 提交于
      On no-so-small systems, it is possible for a single process to cause an
      OOM condition by filling large pipes with data that are never read. A
      typical process filling 4000 pipes with 1 MB of data will use 4 GB of
      memory. On small systems it may be tricky to set the pipe max size to
      prevent this from happening.
      
      This patch makes it possible to enforce a per-user soft limit above
      which new pipes will be limited to a single page, effectively limiting
      them to 4 kB each, as well as a hard limit above which no new pipes may
      be created for this user. This has the effect of protecting the system
      against memory abuse without hurting other users, and still allowing
      pipes to work correctly though with less data at once.
      
      The limit are controlled by two new sysctls : pipe-user-pages-soft, and
      pipe-user-pages-hard. Both may be disabled by setting them to zero. The
      default soft limit allows the default number of FDs per process (1024)
      to create pipes of the default size (64kB), thus reaching a limit of 64MB
      before starting to create only smaller pipes. With 256 processes limited
      to 1024 FDs each, this results in 1024*64kB + (256*1024 - 1024) * 4kB =
      1084 MB of memory allocated for a user. The hard limit is disabled by
      default to avoid breaking existing applications that make intensive use
      of pipes (eg: for splicing).
      
      Reported-by: socketpair@gmail.com
      Reported-by: NTetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Mitigates: CVE-2013-4312 (Linux 2.0+)
      Suggested-by: NLinus Torvalds <torvalds@linux-foundation.org>
      Signed-off-by: NWilly Tarreau <w@1wt.eu>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      759c0114
  7. 19 1月, 2016 1 次提交
  8. 17 1月, 2016 4 次提交
  9. 16 1月, 2016 10 次提交