- 31 7月, 2014 1 次提交
-
-
由 Michal Hocko 提交于
Paul Furtado has reported the following GPF: general protection fault: 0000 [#1] SMP Modules linked in: ipv6 dm_mod xen_netfront coretemp hwmon x86_pkg_temp_thermal crc32_pclmul crc32c_intel ghash_clmulni_intel aesni_intel ablk_helper cryptd lrw gf128mul glue_helper aes_x86_64 microcode pcspkr ext4 jbd2 mbcache raid0 xen_blkfront CPU: 3 PID: 3062 Comm: java Not tainted 3.16.0-rc5 #1 task: ffff8801cfe8f170 ti: ffff8801d2ec4000 task.ti: ffff8801d2ec4000 RIP: e030:mem_cgroup_oom_synchronize+0x140/0x240 RSP: e02b:ffff8801d2ec7d48 EFLAGS: 00010283 RAX: 0000000000000001 RBX: ffff88009d633800 RCX: 000000000000000e RDX: fffffffffffffffe RSI: ffff88009d630200 RDI: ffff88009d630200 RBP: ffff8801d2ec7da8 R08: 0000000000000012 R09: 00000000fffffffe R10: 0000000000000000 R11: 0000000000000000 R12: ffff88009d633800 R13: ffff8801d2ec7d48 R14: dead000000100100 R15: ffff88009d633a30 FS: 00007f1748bb4700(0000) GS:ffff8801def80000(0000) knlGS:0000000000000000 CS: e033 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007f4110300308 CR3: 00000000c05f7000 CR4: 0000000000002660 Call Trace: pagefault_out_of_memory+0x18/0x90 mm_fault_error+0xa9/0x1a0 __do_page_fault+0x478/0x4c0 do_page_fault+0x2c/0x40 page_fault+0x28/0x30 Code: 44 00 00 48 89 df e8 40 ca ff ff 48 85 c0 49 89 c4 74 35 4c 8b b0 30 02 00 00 4c 8d b8 30 02 00 00 4d 39 fe 74 1b 0f 1f 44 00 00 <49> 8b 7e 10 be 01 00 00 00 e8 42 d2 04 00 4d 8b 36 4d 39 fe 75 RIP mem_cgroup_oom_synchronize+0x140/0x240 Commit fb2a6fc5 ("mm: memcg: rework and document OOM waiting and wakeup") has moved mem_cgroup_oom_notify outside of memcg_oom_lock assuming it is protected by the hierarchical OOM-lock. Although this is true for the notification part the protection doesn't cover unregistration of event which can happen in parallel now so mem_cgroup_oom_notify can see already unlinked and/or freed mem_cgroup_eventfd_list. Fix this by using memcg_oom_lock also in mem_cgroup_oom_notify. Addresses https://bugzilla.kernel.org/show_bug.cgi?id=80881 Fixes: fb2a6fc5 (mm: memcg: rework and document OOM waiting and wakeup) Signed-off-by: NMichal Hocko <mhocko@suse.cz> Reported-by: NPaul Furtado <paulfurtado91@gmail.com> Tested-by: NPaul Furtado <paulfurtado91@gmail.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> [3.12+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 6月, 2014 3 次提交
-
-
由 Johannes Weiner 提交于
Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Jianyu Zhan <nasa4836@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jianyu Zhan 提交于
Memcg zoneinfo lookup sites have either the page, the zone, or the node id and zone index, but sites that only have the zone have to look up the node id and zone index themselves, whereas sites that already have those two integers use a function for a simple pointer chase. Provide mem_cgroup_zone_zoneinfo() that takes a zone pointer and let sites that already have node id and zone index - all for each node, for each zone iterators - use &memcg->nodeinfo[nid]->zoneinfo[zid]. Rename page_cgroup_zoneinfo() to mem_cgroup_page_zoneinfo() to match. Signed-off-by: NJianyu Zhan <nasa4836@gmail.com> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Memory reclaim always uses swappiness of the reclaim target memcg (origin of the memory pressure) or vm_swappiness for global memory reclaim. This behavior was consistent (except for difference between global and hard limit reclaim) because swappiness was enforced to be consistent within each memcg hierarchy. After "mm: memcontrol: remove hierarchy restrictions for swappiness and oom_control" each memcg can have its own swappiness independent of hierarchical parents, though, so the consistency guarantee is gone. This can lead to an unexpected behavior. Say that a group is explicitly configured to not swapout by memory.swappiness=0 but its memory gets swapped out anyway when the memory pressure comes from its parent with a It is also unexpected that the knob is meaningless without setting the hard limit which would trigger the reclaim and enforce the swappiness. There are setups where the hard limit is configured higher in the hierarchy by an administrator and children groups are under control of somebody else who is interested in the swapout behavior but not necessarily about the memory limit. From a semantic point of view swappiness is an attribute defining anon vs. file proportional scanning of LRU which is memcg specific (unlike charges which are propagated up the hierarchy) so it should be applied to the particular memcg's LRU regardless where the memory pressure comes from. This patch removes vmscan_swappiness() and stores the swappiness into the scan_control structure. mem_cgroup_swappiness is then used to provide the correct value before shrink_lruvec is called. The global vm_swappiness is used for the root memcg. [hughd@google.com: oopses immediately when booted with cgroup_disable=memory] Signed-off-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 6月, 2014 16 次提交
-
-
由 Hugh Dickins 提交于
mem_cgroup_force_empty_list() can iterate a large number of pages on an lru and mem_cgroup_move_parent() doesn't return an errno unless certain criteria, none of which indicate that the iteration may be taking too long, is met. We have encountered the following stack trace many times indicating "need_resched set for > 51000020 ns (51 ticks) without schedule", for example: scheduler_tick() <timer irq> mem_cgroup_move_account+0x4d/0x1d5 mem_cgroup_move_parent+0x8d/0x109 mem_cgroup_reparent_charges+0x149/0x2ba mem_cgroup_css_offline+0xeb/0x11b cgroup_offline_fn+0x68/0x16b process_one_work+0x129/0x350 If this iteration is taking too long, we still need to do cond_resched() even when an individual page is not busy. [rientjes@google.com: changelog] Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NDavid Rientjes <rientjes@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Current names are rather inconsistent. Let's try to improve them. Brief change log: ** old name ** ** new name ** kmem_cache_create_memcg memcg_create_kmem_cache memcg_kmem_create_cache memcg_regsiter_cache memcg_kmem_destroy_cache memcg_unregister_cache kmem_cache_destroy_memcg_children memcg_cleanup_cache_params mem_cgroup_destroy_all_caches memcg_unregister_all_caches create_work memcg_register_cache_work memcg_create_cache_work_func memcg_register_cache_func memcg_create_cache_enqueue memcg_schedule_register_cache Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
It isn't worth complicating the code by allocating it on the first access, because it only takes 256 bytes. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Instead of calling back to memcontrol.c from kmem_cache_create_memcg in order to just create the name of a per memcg cache, let's allocate it in place. We only need to pass the memcg name to kmem_cache_create_memcg for that - everything else can be done in slab_common.c. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Qiang Huang 提交于
Signed-off-by: NQiang Huang <h.huangqiang@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Qiang Huang 提交于
It is only used in __mem_cgroup_begin_update_page_stat(), the name is confusing and 2 routines for one thing also confuse people, so fold this function seems more clear. [akpm@linux-foundation.org: fix typo, per Michal] Signed-off-by: NQiang Huang <h.huangqiang@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Fabian Frederick 提交于
static values are automatically initialized to NULL Signed-off-by: NFabian Frederick <fabf@skynet.be> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Christoph Lameter 提交于
Replace places where __get_cpu_var() is used for an address calculation with this_cpu_ptr(). Signed-off-by: NChristoph Lameter <cl@linux.com> Cc: Tejun Heo <tj@kernel.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
At present, we have the following mutexes protecting data related to per memcg kmem caches: - slab_mutex. This one is held during the whole kmem cache creation and destruction paths. We also take it when updating per root cache memcg_caches arrays (see memcg_update_all_caches). As a result, taking it guarantees there will be no changes to any kmem cache (including per memcg). Why do we need something else then? The point is it is private to slab implementation and has some internal dependencies with other mutexes (get_online_cpus). So we just don't want to rely upon it and prefer to introduce additional mutexes instead. - activate_kmem_mutex. Initially it was added to synchronize initializing kmem limit (memcg_activate_kmem). However, since we can grow per root cache memcg_caches arrays only on kmem limit initialization (see memcg_update_all_caches), we also employ it to protect against memcg_caches arrays relocation (e.g. see __kmem_cache_destroy_memcg_children). - We have a convention not to take slab_mutex in memcontrol.c, but we want to walk over per memcg memcg_slab_caches lists there (e.g. for destroying all memcg caches on offline). So we have per memcg slab_caches_mutex's protecting those lists. The mutexes are taken in the following order: activate_kmem_mutex -> slab_mutex -> memcg::slab_caches_mutex Such a syncrhonization scheme has a number of flaws, for instance: - We can't call kmem_cache_{destroy,shrink} while walking over a memcg::memcg_slab_caches list due to locking order. As a result, in mem_cgroup_destroy_all_caches we schedule the memcg_cache_params::destroy work shrinking and destroying the cache. - We don't have a mutex to synchronize per memcg caches destruction between memcg offline (mem_cgroup_destroy_all_caches) and root cache destruction (__kmem_cache_destroy_memcg_children). Currently we just don't bother about it. This patch simplifies it by substituting per memcg slab_caches_mutex's with the global memcg_slab_mutex. It will be held whenever a new per memcg cache is created or destroyed, so it protects per root cache memcg_caches arrays and per memcg memcg_slab_caches lists. The locking order is following: activate_kmem_mutex -> memcg_slab_mutex -> slab_mutex This allows us to call kmem_cache_{create,shrink,destroy} under the memcg_slab_mutex. As a result, we don't need memcg_cache_params::destroy work any more - we can simply destroy caches while iterating over a per memcg slab caches list. Also using the global mutex simplifies synchronization between concurrent per memcg caches creation/destruction, e.g. mem_cgroup_destroy_all_caches vs __kmem_cache_destroy_memcg_children. The downside of this is that we substitute per-memcg slab_caches_mutex's with a hummer-like global mutex, but since we already take either the slab_mutex or the cgroup_mutex along with a memcg::slab_caches_mutex, it shouldn't hurt concurrency a lot. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Currently we have two pairs of kmemcg-related functions that are called on slab alloc/free. The first is memcg_{bind,release}_pages that count the total number of pages allocated on a kmem cache. The second is memcg_{un}charge_slab that {un}charge slab pages to kmemcg resource counter. Let's just merge them to keep the code clean. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
This patchset is a part of preparations for kmemcg re-parenting. It targets at simplifying kmemcg work-flows and synchronization. First, it removes async per memcg cache destruction (see patches 1, 2). Now caches are only destroyed on memcg offline. That means the caches that are not empty on memcg offline will be leaked. However, they are already leaked, because memcg_cache_params::nr_pages normally never drops to 0 so the destruction work is never scheduled except kmem_cache_shrink is called explicitly. In the future I'm planning reaping such dead caches on vmpressure or periodically. Second, it substitutes per memcg slab_caches_mutex's with the global memcg_slab_mutex, which should be taken during the whole per memcg cache creation/destruction path before the slab_mutex (see patch 3). This greatly simplifies synchronization among various per memcg cache creation/destruction paths. I'm still not quite sure about the end picture, in particular I don't know whether we should reap dead memcgs' kmem caches periodically or try to merge them with their parents (see https://lkml.org/lkml/2014/4/20/38 for more details), but whichever way we choose, this set looks like a reasonable change to me, because it greatly simplifies kmemcg work-flows and eases further development. This patch (of 3): After a memcg is offlined, we mark its kmem caches that cannot be deleted right now due to pending objects as dead by setting the memcg_cache_params::dead flag, so that memcg_release_pages will schedule cache destruction (memcg_cache_params::destroy) as soon as the last slab of the cache is freed (memcg_cache_params::nr_pages drops to zero). I guess the idea was to destroy the caches as soon as possible, i.e. immediately after freeing the last object. However, it just doesn't work that way, because kmem caches always preserve some pages for the sake of performance, so that nr_pages never gets to zero unless the cache is shrunk explicitly using kmem_cache_shrink. Of course, we could account the total number of objects on the cache or check if all the slabs allocated for the cache are empty on kmem_cache_free and schedule destruction if so, but that would be too costly. Thus we have a piece of code that works only when we explicitly call kmem_cache_shrink, but complicates the whole picture a lot. Moreover, it's racy in fact. For instance, kmem_cache_shrink may free the last slab and thus schedule cache destruction before it finishes checking that the cache is empty, which can lead to use-after-free. So I propose to remove this async cache destruction from memcg_release_pages, and check if the cache is empty explicitly after calling kmem_cache_shrink instead. This will simplify things a lot w/o introducing any functional changes. And regarding dead memcg caches (i.e. those that are left hanging around after memcg offline for they have objects), I suppose we should reap them either periodically or on vmpressure as Glauber suggested initially. I'm going to implement this later. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Eric has reported that he can see task(s) stuck in memcg OOM handler regularly. The only way out is to echo 0 > $GROUP/memory.oom_control His usecase is: - Setup a hierarchy with memory and the freezer (disable kernel oom and have a process watch for oom). - In that memory cgroup add a process with one thread per cpu. - In one thread slowly allocate once per second I think it is 16M of ram and mlock and dirty it (just to force the pages into ram and stay there). - When oom is achieved loop: * attempt to freeze all of the tasks. * if frozen send every task SIGKILL, unfreeze, remove the directory in cgroupfs. Eric has then pinpointed the issue to be memcg specific. All tasks are sitting on the memcg_oom_waitq when memcg oom is disabled. Those that have received fatal signal will bypass the charge and should continue on their way out. The tricky part is that the exit path might trigger a page fault (e.g. exit_robust_list), thus the memcg charge, while its memcg is still under OOM because nobody has released any charges yet. Unlike with the in-kernel OOM handler the exiting task doesn't get TIF_MEMDIE set so it doesn't shortcut further charges of the killed task and falls to the memcg OOM again without any way out of it as there are no fatal signals pending anymore. This patch fixes the issue by checking PF_EXITING early in mem_cgroup_try_charge and bypass the charge same as if it had fatal signal pending or TIF_MEMDIE set. Normally exiting tasks (aka not killed) will bypass the charge now but this should be OK as the task is leaving and will release memory and increasing the memory pressure just to release it in a moment seems dubious wasting of cycles. Besides that charges after exit_signals should be rare. I am bringing this patch again (rebased on the current mmotm tree). I hope we can move forward finally. If there is still an opposition then I would really appreciate a concurrent approach so that we can discuss alternatives. http://comments.gmane.org/gmane.linux.kernel.stable/77650 is a reference to the followup discussion when the patch has been dropped from the mmotm last time. Reported-by: NEric W. Biederman <ebiederm@xmission.com> Signed-off-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
It is only used in slab and should not be used anywhere else so there is no need in exporting it. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Per-memcg swappiness and oom killing can currently not be tweaked on a memcg that is part of a hierarchy, but not the root of that hierarchy. Users have complained that they can't configure this when they turned on hierarchy mode. In fact, with hierarchy mode becoming the default, this restriction disables the tunables entirely. But there is no good reason for this restriction. The settings for swappiness and OOM killing are taken from whatever memcg whose limit triggered reclaim and OOM invocation, regardless of its position in the hierarchy tree. Allow setting swappiness on any group. The knob on the root memcg already reads the global VM swappiness, make it writable as well. Allow disabling the OOM killer on any non-root memcg. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Currently to allocate a page that should be charged to kmemcg (e.g. threadinfo), we pass __GFP_KMEMCG flag to the page allocator. The page allocated is then to be freed by free_memcg_kmem_pages. Apart from looking asymmetrical, this also requires intrusion to the general allocation path. So let's introduce separate functions that will alloc/free pages charged to kmemcg. The new functions are called alloc_kmem_pages and free_kmem_pages. They should be used when the caller actually would like to use kmalloc, but has to fall back to the page allocator for the allocation is large. They only differ from alloc_pages and free_pages in that besides allocating or freeing pages they also charge them to the kmem resource counter of the current memory cgroup. [sfr@canb.auug.org.au: export kmalloc_order() to modules] Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NGreg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
We have only a few places where we actually want to charge kmem so instead of intruding into the general page allocation path with __GFP_KMEMCG it's better to explictly charge kmem there. All kmem charges will be easier to follow that way. This is a step towards removing __GFP_KMEMCG. It removes __GFP_KMEMCG from memcg caches' allocflags. Instead it makes slab allocation path call memcg_charge_kmem directly getting memcg to charge from the cache's memcg params. This also eliminates any possibility of misaccounting an allocation going from one memcg's cache to another memcg, because now we always charge slabs against the memcg the cache belongs to. That's why this patch removes the big comment to memcg_kmem_get_cache. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NGreg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 5月, 2014 1 次提交
-
-
由 Michal Hocko 提交于
Commit 284f39af ("mm: memcg: push !mm handling out to page cache charge function") explicitly checks for page cache charges without any mm context (from kernel thread context[1]). This seemed to be the only possible case where memory could be charged without mm context so commit 03583f1a ("memcg: remove unnecessary !mm check from try_get_mem_cgroup_from_mm()") removed the mm check from get_mem_cgroup_from_mm(). This however caused another NULL ptr dereference during early boot when loopback kernel thread splices to tmpfs as reported by Stephan Kulow: BUG: unable to handle kernel NULL pointer dereference at 0000000000000360 IP: get_mem_cgroup_from_mm.isra.42+0x2b/0x60 Oops: 0000 [#1] SMP Modules linked in: btrfs dm_multipath dm_mod scsi_dh multipath raid10 raid456 async_raid6_recov async_memcpy async_pq raid6_pq async_xor xor async_tx raid1 raid0 md_mod parport_pc parport nls_utf8 isofs usb_storage iscsi_ibft iscsi_boot_sysfs arc4 ecb fan thermal nfs lockd fscache nls_iso8859_1 nls_cp437 sg st hid_generic usbhid af_packet sunrpc sr_mod cdrom ata_generic uhci_hcd virtio_net virtio_blk ehci_hcd usbcore ata_piix floppy processor button usb_common virtio_pci virtio_ring virtio edd squashfs loop ppa] CPU: 0 PID: 97 Comm: loop1 Not tainted 3.15.0-rc5-5-default #1 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Call Trace: __mem_cgroup_try_charge_swapin+0x40/0xe0 mem_cgroup_charge_file+0x8b/0xd0 shmem_getpage_gfp+0x66b/0x7b0 shmem_file_splice_read+0x18f/0x430 splice_direct_to_actor+0xa2/0x1c0 do_lo_receive+0x5a/0x60 [loop] loop_thread+0x298/0x720 [loop] kthread+0xc6/0xe0 ret_from_fork+0x7c/0xb0 Also Branimir Maksimovic reported the following oops which is tiggered for the swapcache charge path from the accounting code for kernel threads: CPU: 1 PID: 160 Comm: kworker/u8:5 Tainted: P OE 3.15.0-rc5-core2-custom #159 Hardware name: System manufacturer System Product Name/MAXIMUSV GENE, BIOS 1903 08/19/2013 task: ffff880404e349b0 ti: ffff88040486a000 task.ti: ffff88040486a000 RIP: get_mem_cgroup_from_mm.isra.42+0x2b/0x60 Call Trace: __mem_cgroup_try_charge_swapin+0x45/0xf0 mem_cgroup_charge_file+0x9c/0xe0 shmem_getpage_gfp+0x62c/0x770 shmem_write_begin+0x38/0x40 generic_perform_write+0xc5/0x1c0 __generic_file_aio_write+0x1d1/0x3f0 generic_file_aio_write+0x4f/0xc0 do_sync_write+0x5a/0x90 do_acct_process+0x4b1/0x550 acct_process+0x6d/0xa0 do_exit+0x827/0xa70 kthread+0xc3/0xf0 This patch fixes the issue by reintroducing mm check into get_mem_cgroup_from_mm. We could do the same trick in __mem_cgroup_try_charge_swapin as we do for the regular page cache path but it is not worth troubles. The check is not that expensive and it is better to have get_mem_cgroup_from_mm more robust. [1] - http://marc.info/?l=linux-mm&m=139463617808941&w=2 Fixes: 03583f1a ("memcg: remove unnecessary !mm check from try_get_mem_cgroup_from_mm()") Reported-and-tested-by: NStephan Kulow <coolo@suse.com> Reported-by: NBranimir Maksimovic <branimir.maksimovic@gmail.com> Signed-off-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 5月, 2014 3 次提交
-
-
由 Tejun Heo 提交于
Currently, memcg_has_children() and mem_cgroup_hierarchy_write() directly test cgroup->children for list emptiness. It's semantically correct in traditional hierarchies as it actually wants to test for any children dead or alive; however, cgroup->children is not a published field and scheduled to go away. This patch moves out .use_hierarchy test out of memcg_has_children() and updates it to use css_next_child() to test whether there exists any children. With .use_hierarchy test moved out, it can also be used by mem_cgroup_hierarchy_write(). A side note: As .use_hierarchy is going away, it doesn't really matter but I'm not sure about how it's used in __memcg_activate_kmem(). The condition tested by memcg_has_children() is mushy when seen from userland as its result is affected by dead csses which aren't visible from userland. I think the rule would be a lot clearer if we have a dedicated "freshly minted" flag which gets cleared when the first task is migrated into it or the first child is created and then gate activation with that. v2: Added comment noting that testing use_hierarchy is the responsibility of the callers of memcg_has_children() as suggested by Michal Hocko. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NLi Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org>
-
由 Michal Hocko 提交于
Tejun has correctly pointed out that tasks/children test in mem_cgroup_force_empty is not correct because there is no other locking which preserves this state throughout the rest of the function so both new tasks can join the group or new children groups can be added while somebody is writing to memory.force_empty. A new task would break mem_cgroup_reparent_charges expectation that all failures as described by mem_cgroup_force_empty_list are temporal and there is no way out. The main use case for the knob as described by Documentation/cgroups/memory.txt is to: " The typical use case for this interface is before calling rmdir(). Because rmdir() moves all pages to parent, some out-of-use page caches can be moved to the parent. If you want to avoid that, force_empty will be useful. " This means that reparenting is not really required as rmdir will reparent pages implicitly from the safe context. If we remove it from mem_cgroup_force_empty then we are safe even with existing tasks because the number of reclaim attempts is bounded. Moreover the knob still does what the documentation claims (modulo reparenting which doesn't make any difference) and users might expect. Longterm we want to deprecate the whole knob and put the reparented pages to the tail of parent LRU during cgroup removal. tj: Removed unused variable @cgrp from mem_cgroup_force_empty() Signed-off-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NLi Zefan <lizefan@huawei.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
cgroup in general is moving towards using cgroup_subsys_state as the fundamental structural component and css_parent() was introduced to convert from using cgroup->parent to css->parent. It was quite some time ago and we're moving forward with making css more prominent. This patch drops the trivial wrapper css_parent() and let the users dereference css->parent. While at it, explicitly mark fields of css which are public and immutable. v2: New usage from device_cgroup.c converted. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NNeil Horman <nhorman@tuxdriver.com> Acked-by: N"David S. Miller" <davem@davemloft.net> Acked-by: NLi Zefan <lizefan@huawei.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Johannes Weiner <hannes@cmpxchg.org>
-
- 14 5月, 2014 3 次提交
-
-
由 Tejun Heo 提交于
cftype->trigger() is pointless. It's trivial to ignore the input buffer from a regular ->write() operation. Convert all ->trigger() users to ->write() and remove ->trigger(). This patch doesn't introduce any visible behavior changes. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz>
-
由 Tejun Heo 提交于
Convert all cftype->write_string() users to the new cftype->write() which maps directly to kernfs write operation and has full access to kernfs and cgroup contexts. The conversions are mostly mechanical. * @css and @cft are accessed using of_css() and of_cft() accessors respectively instead of being specified as arguments. * Should return @nbytes on success instead of 0. * @buf is not trimmed automatically. Trim if necessary. Note that blkcg and netprio don't need this as the parsers already handle whitespaces. cftype->write_string() has no user left after the conversions and removed. While at it, remove unnecessary local variable @p in cgroup_subtree_control_write() and stale comment about CGROUP_LOCAL_BUFFER_SIZE in cgroup_freezer.c. This patch doesn't introduce any visible behavior changes. v2: netprio was missing from conversion. Converted. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NAristeu Rozanski <arozansk@redhat.com> Acked-by: NVivek Goyal <vgoyal@redhat.com> Acked-by: NLi Zefan <lizefan@huawei.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: "David S. Miller" <davem@davemloft.net>
-
由 Tejun Heo 提交于
Unlike the more usual refcnting, what css_tryget() provides is the distinction between online and offline csses instead of protection against upping a refcnt which already reached zero. cgroup is planning to provide actual tryget which fails if the refcnt already reached zero. Let's rename the existing trygets so that they clearly indicate that they're onliness. I thought about keeping the existing names as-are and introducing new names for the planned actual tryget; however, given that each controller participates in the synchronization of the online state, it seems worthwhile to make it explicit that these functions are about on/offline state. Rename css_tryget() to css_tryget_online() and css_tryget_from_dir() to css_tryget_online_from_dir(). This is pure rename. v2: cgroup_freezer grew new usages of css_tryget(). Update accordingly. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NLi Zefan <lizefan@huawei.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
-
- 07 5月, 2014 1 次提交
-
-
由 Johannes Weiner 提交于
Dave Jones reports the following crash when find_get_pages_tag() runs into an exceptional entry: kernel BUG at mm/filemap.c:1347! RIP: find_get_pages_tag+0x1cb/0x220 Call Trace: find_get_pages_tag+0x36/0x220 pagevec_lookup_tag+0x21/0x30 filemap_fdatawait_range+0xbe/0x1e0 filemap_fdatawait+0x27/0x30 sync_inodes_sb+0x204/0x2a0 sync_inodes_one_sb+0x19/0x20 iterate_supers+0xb2/0x110 sys_sync+0x44/0xb0 ia32_do_call+0x13/0x13 1343 /* 1344 * This function is never used on a shmem/tmpfs 1345 * mapping, so a swap entry won't be found here. 1346 */ 1347 BUG(); After commit 0cd6144a ("mm + fs: prepare for non-page entries in page cache radix trees") this comment and BUG() are out of date because exceptional entries can now appear in all mappings - as shadows of recently evicted pages. However, as Hugh Dickins notes, "it is truly surprising for a PAGECACHE_TAG_WRITEBACK (and probably any other PAGECACHE_TAG_*) to appear on an exceptional entry. I expect it comes down to an occasional race in RCU lookup of the radix_tree: lacking absolute synchronization, we might sometimes catch an exceptional entry, with the tag which really belongs with the unexceptional entry which was there an instant before." And indeed, not only is the tree walk lockless, the tags are also read in chunks, one radix tree node at a time. There is plenty of time for page reclaim to swoop in and replace a page that was already looked up as tagged with a shadow entry. Remove the BUG() and update the comment. While reviewing all other lookup sites for whether they properly deal with shadow entries of evicted pages, update all the comments and fix memcg file charge moving to not miss shmem/tmpfs swapcache pages. Fixes: 0cd6144a ("mm + fs: prepare for non-page entries in page cache radix trees") Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NDave Jones <davej@redhat.com> Acked-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 5月, 2014 2 次提交
-
-
由 Tejun Heo 提交于
Until now, cgroup->id has been used to identify all the associated csses and css_from_id() takes cgroup ID and returns the matching css by looking up the cgroup and then dereferencing the css associated with it; however, now that the lifetimes of cgroup and css are separate, this is incorrect and breaks on the unified hierarchy when a controller is disabled and enabled back again before the previous instance is released. This patch adds css->id which is a subsystem-unique ID and converts css_from_id() to look up by the new css->id instead. memcg is the only user of css_from_id() and also converted to use css->id instead. For traditional hierarchies, this shouldn't make any functional difference. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jianyu Zhan <nasa4836@gmail.com> Acked-by: NLi Zefan <lizefan@huawei.com>
-
由 Tejun Heo 提交于
Currently, cgroup->id is allocated from 0, which is always assigned to the root cgroup; unfortunately, memcg wants to use ID 0 to indicate invalid IDs and ends up incrementing all IDs by one. It's reasonable to reserve 0 for special purposes. This patch updates cgroup core so that ID 0 is not used and the root cgroups get ID 1. The ID incrementing is removed form memcg. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: NLi Zefan <lizefan@huawei.com>
-
- 08 4月, 2014 10 次提交
-
-
由 Vladimir Davydov 提交于
Currently we destroy children caches at the very beginning of kmem_cache_destroy(). This is wrong, because the root cache will not necessarily be destroyed in the end - if it has aliases (refcount > 0), kmem_cache_destroy() will simply decrement its refcount and return. In this case, at best we will get a bunch of warnings in dmesg, like this one: kmem_cache_destroy kmalloc-32:0: Slab cache still has objects CPU: 1 PID: 7139 Comm: modprobe Tainted: G B W 3.13.0+ #117 Call Trace: dump_stack+0x49/0x5b kmem_cache_destroy+0xdf/0xf0 kmem_cache_destroy_memcg_children+0x97/0xc0 kmem_cache_destroy+0xf/0xf0 xfs_mru_cache_uninit+0x21/0x30 [xfs] exit_xfs_fs+0x2e/0xc44 [xfs] SyS_delete_module+0x198/0x1f0 system_call_fastpath+0x16/0x1b At worst - if kmem_cache_destroy() will race with an allocation from a memcg cache - the kernel will panic. This patch fixes this by moving children caches destruction after the check if the cache has aliases. Plus, it forbids destroying a root cache if it still has children caches, because each children cache keeps a reference to its parent. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Currently, memcg_unregister_cache(), which deletes the cache being destroyed from the memcg_slab_caches list, is called after __kmem_cache_shutdown() (see kmem_cache_destroy()), which starts to destroy the cache. As a result, one can access a partially destroyed cache while traversing a memcg_slab_caches list, which can have deadly consequences (for instance, cache_show() called for each cache on a memcg_slab_caches list from mem_cgroup_slabinfo_read() will dereference pointers to already freed data). To fix this, let's move memcg_unregister_cache() before the cache destruction process beginning, issuing memcg_register_cache() on failure. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Memcg-awareness turned kmem_cache_create() into a dirty interweaving of memcg-only and except-for-memcg calls. To clean this up, let's move the code responsible for memcg cache creation to a separate function. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
This patch cleans up the memcg cache creation path as follows: - Move memcg cache name creation to a separate function to be called from kmem_cache_create_memcg(). This allows us to get rid of the mutex protecting the temporary buffer used for the name formatting, because the whole cache creation path is protected by the slab_mutex. - Get rid of memcg_create_kmem_cache(). This function serves as a proxy to kmem_cache_create_memcg(). After separating the cache name creation path, it would be reduced to a function call, so let's inline it. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
mem_cgroup_newpage_charge is used only for charging anonymous memory so it is better to rename it to mem_cgroup_charge_anon. mem_cgroup_cache_charge is used for file backed memory so rename it to mem_cgroup_charge_file. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Some callsites pass a memcg directly, some callsites pass an mm that then has to be translated to a memcg. This makes for a terrible function interface. Just push the mm-to-memcg translation into the respective callsites and always pass a memcg to mem_cgroup_try_charge(). [mhocko@suse.cz: add charge mm helper] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
__mem_cgroup_try_charge duplicates get_mem_cgroup_from_mm for charges which came without a memcg. The only reason seems to be a tiny optimization when css_tryget is not called if the charge can be consumed from the stock. Nevertheless css_tryget is very cheap since it has been reworked to use per-cpu counting so this optimization doesn't give us anything these days. So let's drop the code duplication so that the code is more readable. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Instead of returning NULL from try_get_mem_cgroup_from_mm() when the mm owner is exiting, just return root_mem_cgroup. This makes sense for all callsites and gets rid of some of them having to fallback manually. [fengguang.wu@intel.com: fix warnings] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NFengguang Wu <fengguang.wu@intel.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Users pass either a mm that has been established under task lock, or use a verified current->mm, which means the task can't be exiting. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Only page cache charges can happen without an mm context, so push this special case out of the inner core and into the cache charge function. An ancient comment explains that the mm can also be NULL in case the task is currently being migrated, but that is not actually true with the current case, so just remove it. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-