- 24 2月, 2016 17 次提交
-
-
由 Ard Biesheuvel 提交于
Since arm64 does not use a decompressor that supplies an execution environment where it is feasible to some extent to provide a source of randomness, the arm64 KASLR kernel depends on the bootloader to supply some random bits in the /chosen/kaslr-seed DT property upon kernel entry. On UEFI systems, we can use the EFI_RNG_PROTOCOL, if supplied, to obtain some random bits. At the same time, use it to randomize the offset of the kernel Image in physical memory. Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Before we can move the command line processing before the allocation of the kernel, which is required for detecting the 'nokaslr' option which controls that allocation, move the converted command line higher up in memory, to prevent it from interfering with the kernel itself. Since x86 needs the address to fit in 32 bits, use UINT_MAX as the upper bound there. Otherwise, use ULONG_MAX (i.e., no limit) Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
This implements efi_random_alloc(), which allocates a chunk of memory of a certain size at a certain alignment, and uses the random_seed argument it receives to randomize the address of the allocation. This is implemented by iterating over the UEFI memory map, counting the number of suitable slots (aligned offsets) within each region, and picking a random number between 0 and 'number of slots - 1' to select the slot, This should guarantee that each possible offset is chosen equally likely. Suggested-by: NKees Cook <keescook@chromium.org> Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NKees Cook <keescook@chromium.org> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
This exposes the firmware's implementation of EFI_RNG_PROTOCOL via a new function efi_get_random_bytes(). Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
When KASLR is enabled (CONFIG_RANDOMIZE_BASE=y), and entropy has been provided by the bootloader, randomize the placement of RAM inside the linear region if sufficient space is available. For instance, on a 4KB granule/3 levels kernel, the linear region is 256 GB in size, and we can choose any 1 GB aligned offset that is far enough from the top of the address space to fit the distance between the start of the lowest memblock and the top of the highest memblock. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
This implements CONFIG_RELOCATABLE, which links the final vmlinux image with a dynamic relocation section, allowing the early boot code to perform a relocation to a different virtual address at runtime. This is a prerequisite for KASLR (CONFIG_RANDOMIZE_BASE). Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Instead of using absolute addresses for both the exception location and the fixup, use offsets relative to the exception table entry values. Not only does this cut the size of the exception table in half, it is also a prerequisite for KASLR, since absolute exception table entries are subject to dynamic relocation, which is incompatible with the sorting of the exception table that occurs at build time. This patch also introduces the _ASM_EXTABLE preprocessor macro (which exists on x86 as well) and its _asm_extable assembly counterpart, as shorthands to emit exception table entries. Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
This adds support to the generic search_extable() and sort_extable() implementations for dealing with exception table entries whose fields contain relative offsets rather than absolute addresses. Acked-by: NHelge Deller <deller@gmx.de> Acked-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Acked-by: NH. Peter Anvin <hpa@linux.intel.com> Acked-by: NTony Luck <tony.luck@intel.com> Acked-by: NWill Deacon <will.deacon@arm.com> Acked-by: NRichard Henderson <rth@twiddle.net> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Add support to scripts/sortextable for handling relocatable (PIE) executables, whose ELF type is ET_DYN, not ET_EXEC. Other than adding support for the new type, no changes are needed. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
This reshuffles some code in asm/elf.h and puts a #ifndef __ASSEMBLY__ around its C definitions so that the CPP defines can be used in asm source files as well. Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Before implementing KASLR for arm64 by building a self-relocating PIE executable, we have to ensure that values we use before the relocation routine is executed are not subject to dynamic relocation themselves. This applies not only to virtual addresses, but also to values that are supplied by the linker at build time and relocated using R_AARCH64_ABS64 relocations. So instead, use assemble time constants, or force the use of static relocations by folding the constants into the instructions. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Unfortunately, the current way of using the linker to emit build time constants into the Image header will no longer work once we switch to the use of PIE executables. The reason is that such constants are emitted into the binary using R_AARCH64_ABS64 relocations, which are resolved at runtime, not at build time, and the places targeted by those relocations will contain zeroes before that. So refactor the endian swapping linker script constant generation code so that it emits the upper and lower 32-bit words separately. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
This adds support for emitting PLTs at module load time for relative branches that are out of range. This is a prerequisite for KASLR, which may place the kernel and the modules anywhere in the vmalloc area, making it more likely that branch target offsets exceed the maximum range of +/- 128 MB. In this version, I removed the distinction between relocations against .init executable sections and ordinary executable sections. The reason is that it is hardly worth the trouble, given that .init.text usually does not contain that many far branches, and this version now only reserves PLT entry space for jump and call relocations against undefined symbols (since symbols defined in the same module can be assumed to be within +/- 128 MB) For example, the mac80211.ko module (which is fairly sizable at ~400 KB) built with -mcmodel=large gives the following relocation counts: relocs branches unique !local .text 3925 3347 518 219 .init.text 11 8 7 1 .exit.text 4 4 4 1 .text.unlikely 81 67 36 17 ('unique' means branches to unique type/symbol/addend combos, of which !local is the subset referring to undefined symbols) IOW, we are only emitting a single PLT entry for the .init sections, and we are better off just adding it to the core PLT section instead. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Instead of reversing the header dependency between asm/bug.h and asm/debug-monitors.h, split off the brk instruction immediate value defines into a new header asm/brk-imm.h, and include it from both. This solves the circular dependency issue that prevents BUG() from being used in some header files, and keeps the definitions together. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Since PAGE_OFFSET is chosen such that it cuts the kernel VA space right in half, and since the size of the kernel VA space itself is always a power of 2, we can treat PAGE_OFFSET as a bitmask and replace the additions/subtractions with 'or' and 'and-not' operations. For the comparison against PAGE_OFFSET, a mov/cmp/branch sequence ends up getting replaced with a single tbz instruction. For the additions and subtractions, we save a mov instruction since the mask is folded into the instruction's immediate field. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Checking whether memstart_addr has been assigned every time it is referenced adds a branch instruction that may hurt performance if the reference in question occurs on a hot path. So only perform the check if CONFIG_DEBUG_VM=y. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> [catalin.marinas@arm.com: replaced #ifdef with VM_BUG_ON] Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 19 2月, 2016 16 次提交
-
-
由 Catalin Marinas 提交于
The former gives better error reporting on unhandled permission faults (introduced by the UAO patches). Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
This relaxes the kernel Image placement requirements, so that it may be placed at any 2 MB aligned offset in physical memory. This is accomplished by ignoring PHYS_OFFSET when installing memblocks, and accounting for the apparent virtual offset of the kernel Image. As a result, virtual address references below PAGE_OFFSET are correctly mapped onto physical references into the kernel Image regardless of where it sits in memory. Special care needs to be taken for dealing with memory limits passed via mem=, since the generic implementation clips memory top down, which may clip the kernel image itself if it is loaded high up in memory. To deal with this case, we simply add back the memory covering the kernel image, which may result in more memory to be retained than was passed as a mem= parameter. Since mem= should not be considered a production feature, a panic notifier handler is installed that dumps the memory limit at panic time if one was set. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Before deferring the assignment of memstart_addr in a subsequent patch, to the moment where all memory has been discovered and possibly clipped based on the size of the linear region and the presence of a mem= command line parameter, we need to ensure that memstart_addr is not used to perform __va translations before it is assigned. One such use is in the generic early DT discovery of the initrd location, which is recorded as a virtual address in the globals initrd_start and initrd_end. So wire up the generic support to declare the initrd addresses, and implement it without __va() translations, and perform the translation after memstart_addr has been assigned. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
This moves the module area to right before the vmalloc area, and moves the kernel image to the base of the vmalloc area. This is an intermediate step towards implementing KASLR, which allows the kernel image to be located anywhere in the vmalloc area. Since other subsystems such as hibernate may still need to refer to the kernel text or data segments via their linears addresses, both are mapped in the linear region as well. The linear alias of the text region is mapped read-only/non-executable to prevent inadvertent modification or execution. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
KVM on arm64 uses a fixed offset between the linear mapping at EL1 and the HYP mapping at EL2. Before we can move the kernel virtual mapping out of the linear mapping, we have to make sure that references to kernel symbols that are accessed via the HYP mapping are translated to their linear equivalent. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Since the early fixmap page tables are populated using pages that are part of the static footprint of the kernel, they are covered by the initial kernel mapping, and we can refer to them without using __va/__pa translations, which are tied to the linear mapping. Since the fixmap page tables are disjoint from the kernel mapping up to the top level pgd entry, we can refer to bm_pte[] directly, and there is no need to walk the page tables and perform __pa()/__va() translations at each step. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
The page table accessors pte_offset(), pud_offset() and pmd_offset() rely on __va translations, so they can only be used after the linear mapping has been installed. For the early fixmap and kasan init routines, whose page tables are allocated statically in the kernel image, these functions will return bogus values. So implement pte_offset_kimg(), pmd_offset_kimg() and pud_offset_kimg(), which can be used instead before any page tables have been allocated dynamically. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
This introduces the preprocessor symbol KIMAGE_VADDR which will serve as the symbolic virtual base of the kernel region, i.e., the kernel's virtual offset will be KIMAGE_VADDR + TEXT_OFFSET. For now, we define it as being equal to PAGE_OFFSET, but in the future, it will be moved below it once we move the kernel virtual mapping out of the linear mapping. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
This wires up the existing generic huge-vmap feature, which allows ioremap() to use PMD or PUD sized block mappings. It also adds support to the unmap path for dealing with block mappings, which will allow us to unmap the __init region using unmap_kernel_range() in a subsequent patch. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Currently, using BUG_ON() in header files is cumbersome, due to the fact that asm/bug.h transitively includes a lot of other header files, resulting in the actual BUG_ON() invocation appearing before its definition in the preprocessor input. So let's reverse the #include dependency between asm/bug.h and asm/debug-monitors.h, by moving the definition of BUG_BRK_IMM from the latter to the former. Also fix up one user of asm/debug-monitors.h which relied on a transitive include. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Since architectures may not yet have their linear mapping up and running when the initrd address is discovered from the DT, factor out the assignment of initrd_start and initrd_end, so that an architecture can override it and use the translation it needs. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NRob Herring <robh@kernel.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
By default, early_init_dt_add_memory_arch() ignores memory below the base of the kernel image since it won't be addressable via the linear mapping. However, this is not appropriate anymore once we decouple the kernel text mapping from the linear mapping, so archs may want to drop the low limit entirely. So allow the minimum to be overridden by setting MIN_MEMBLOCK_ADDR. Acked-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NRob Herring <robh@kernel.org> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Catalin Marinas 提交于
This function was introduced by previous commits implementing UAO. However, it can be replaced with task_thread_info() in uao_thread_switch() or get_fs() in do_page_fault() (the latter being called only on the current context, so no need for using the saved pt_regs). Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 James Morse 提交于
If a CPU supports both Privileged Access Never (PAN) and User Access Override (UAO), we don't need to disable/re-enable PAN round all copy_to_user() like calls. UAO alternatives cause these calls to use the 'unprivileged' load/store instructions, which are overridden to be the privileged kind when fs==KERNEL_DS. This patch changes the copy_to_user() calls to have their PAN toggling depend on a new composite 'feature' ARM64_ALT_PAN_NOT_UAO. If both features are detected, PAN will be enabled, but the copy_to_user() alternatives will not be applied. This means PAN will be enabled all the time for these functions. If only PAN is detected, the toggling will be enabled as normal. This will save the time taken to disable/re-enable PAN, and allow us to catch copy_to_user() accesses that occur with fs==KERNEL_DS. Futex and swp-emulation code continue to hang their PAN toggling code on ARM64_HAS_PAN. Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 James Morse 提交于
CPU feature code uses the desc field as a test to find the end of the list, this means every entry must have a description. This generates noise for entries in the list that aren't really features, but combinations of them. e.g. > CPU features: detected feature: Privileged Access Never > CPU features: detected feature: PAN and not UAO These combination features are needed for corner cases with alternatives, where cpu features interact. Change all walkers of the arm64_features[] and arm64_hwcaps[] lists to test 'matches' not 'desc', and only print 'desc' if it is non-NULL. Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by : Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 James Morse 提交于
'User Access Override' is a new ARMv8.2 feature which allows the unprivileged load and store instructions to be overridden to behave in the normal way. This patch converts {get,put}_user() and friends to use ldtr*/sttr* instructions - so that they can only access EL0 memory, then enables UAO when fs==KERNEL_DS so that these functions can access kernel memory. This allows user space's read/write permissions to be checked against the page tables, instead of testing addr<USER_DS, then using the kernel's read/write permissions. Signed-off-by: NJames Morse <james.morse@arm.com> [catalin.marinas@arm.com: move uao_thread_switch() above dsb()] Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 18 2月, 2016 2 次提交
-
-
由 James Morse 提交于
ARMv8.2 adds a new feature register id_aa64mmfr2. This patch adds the cpu feature boiler plate used by the actual features in later patches. Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 James Morse 提交于
Older assemblers may not have support for newer feature registers. To get round this, sysreg.h provides a 'mrs_s' macro that takes a register encoding and generates the raw instruction. Change read_cpuid() to use mrs_s in all cases so that new registers don't have to be a special case. Including sysreg.h means we need to move the include and definition of read_cpuid() after the #ifndef __ASSEMBLY__ to avoid syntax errors in vmlinux.lds. Signed-off-by: NJames Morse <james.morse@arm.com> Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 17 2月, 2016 3 次提交
-
-
由 Ard Biesheuvel 提交于
The __reg_num_xNN symbols that are used to implement the msr_s and mrs_s macros are recorded in the ELF metadata of each object file. This does not affect the size of the final binary, but it does clutter the output of tools like readelf, i.e., $ readelf -a vmlinux |grep -c __reg_num_x 50976 So let's use symbols with the .L prefix, these are strictly local, and don't end up in the object files. $ readelf -a vmlinux |grep -c __reg_num_x 0 Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 David Brown 提交于
Although the arm64 vDSO is cleanly separated by code/data with the code being read-only in userspace mappings, the code page is still writable from the kernel. There have been exploits (such as http://itszn.com/blog/?p=21) that take advantage of this on x86 to go from a bad kernel write to full root. Prevent this specific exploit on arm64 by putting the vDSO code page in read-only memory as well. Before the change: [ 3.138366] vdso: 2 pages (1 code @ ffffffc000a71000, 1 data @ ffffffc000a70000) ---[ Kernel Mapping ]--- 0xffffffc000000000-0xffffffc000082000 520K RW NX SHD AF UXN MEM/NORMAL 0xffffffc000082000-0xffffffc000200000 1528K ro x SHD AF UXN MEM/NORMAL 0xffffffc000200000-0xffffffc000800000 6M ro x SHD AF BLK UXN MEM/NORMAL 0xffffffc000800000-0xffffffc0009b6000 1752K ro x SHD AF UXN MEM/NORMAL 0xffffffc0009b6000-0xffffffc000c00000 2344K RW NX SHD AF UXN MEM/NORMAL 0xffffffc000c00000-0xffffffc008000000 116M RW NX SHD AF BLK UXN MEM/NORMAL 0xffffffc00c000000-0xffffffc07f000000 1840M RW NX SHD AF BLK UXN MEM/NORMAL 0xffffffc800000000-0xffffffc840000000 1G RW NX SHD AF BLK UXN MEM/NORMAL 0xffffffc840000000-0xffffffc87ae00000 942M RW NX SHD AF BLK UXN MEM/NORMAL 0xffffffc87ae00000-0xffffffc87ae70000 448K RW NX SHD AF UXN MEM/NORMAL 0xffffffc87af80000-0xffffffc87af8a000 40K RW NX SHD AF UXN MEM/NORMAL 0xffffffc87af8b000-0xffffffc87b000000 468K RW NX SHD AF UXN MEM/NORMAL 0xffffffc87b000000-0xffffffc87fe00000 78M RW NX SHD AF BLK UXN MEM/NORMAL 0xffffffc87fe00000-0xffffffc87ff50000 1344K RW NX SHD AF UXN MEM/NORMAL 0xffffffc87ff90000-0xffffffc87ffa0000 64K RW NX SHD AF UXN MEM/NORMAL 0xffffffc87fff0000-0xffffffc880000000 64K RW NX SHD AF UXN MEM/NORMAL After: [ 3.138368] vdso: 2 pages (1 code @ ffffffc0006de000, 1 data @ ffffffc000a74000) ---[ Kernel Mapping ]--- 0xffffffc000000000-0xffffffc000082000 520K RW NX SHD AF UXN MEM/NORMAL 0xffffffc000082000-0xffffffc000200000 1528K ro x SHD AF UXN MEM/NORMAL 0xffffffc000200000-0xffffffc000800000 6M ro x SHD AF BLK UXN MEM/NORMAL 0xffffffc000800000-0xffffffc0009b8000 1760K ro x SHD AF UXN MEM/NORMAL 0xffffffc0009b8000-0xffffffc000c00000 2336K RW NX SHD AF UXN MEM/NORMAL 0xffffffc000c00000-0xffffffc008000000 116M RW NX SHD AF BLK UXN MEM/NORMAL 0xffffffc00c000000-0xffffffc07f000000 1840M RW NX SHD AF BLK UXN MEM/NORMAL 0xffffffc800000000-0xffffffc840000000 1G RW NX SHD AF BLK UXN MEM/NORMAL 0xffffffc840000000-0xffffffc87ae00000 942M RW NX SHD AF BLK UXN MEM/NORMAL 0xffffffc87ae00000-0xffffffc87ae70000 448K RW NX SHD AF UXN MEM/NORMAL 0xffffffc87af80000-0xffffffc87af8a000 40K RW NX SHD AF UXN MEM/NORMAL 0xffffffc87af8b000-0xffffffc87b000000 468K RW NX SHD AF UXN MEM/NORMAL 0xffffffc87b000000-0xffffffc87fe00000 78M RW NX SHD AF BLK UXN MEM/NORMAL 0xffffffc87fe00000-0xffffffc87ff50000 1344K RW NX SHD AF UXN MEM/NORMAL 0xffffffc87ff90000-0xffffffc87ffa0000 64K RW NX SHD AF UXN MEM/NORMAL 0xffffffc87fff0000-0xffffffc880000000 64K RW NX SHD AF UXN MEM/NORMAL Inspired by https://lkml.org/lkml/2016/1/19/494 based on work by the PaX Team, Brad Spengler, and Kees Cook. Signed-off-by: NDavid Brown <david.brown@linaro.org> Acked-by: NWill Deacon <will.deacon@arm.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> [catalin.marinas@arm.com: removed superfluous __PAGE_ALIGNED_DATA] Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Yang Shi 提交于
To enable UBSAN on arm64, ARCH_HAS_UBSAN_SANITIZE_ALL need to be selected. Basic kernel bootup test is passed on arm64 with CONFIG_UBSAN_SANITIZE_ALL enabled. Signed-off-by: NYang Shi <yang.shi@linaro.org> Acked-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Tested-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 16 2月, 2016 2 次提交
-
-
由 Yang Shi 提交于
BUG: sleeping function called from invalid context at kernel/locking/rtmutex.c:917 in_atomic(): 1, irqs_disabled(): 128, pid: 383, name: sh Preemption disabled at:[<ffff800000124c18>] kgdb_cpu_enter+0x158/0x6b8 CPU: 3 PID: 383 Comm: sh Tainted: G W 4.1.13-rt13 #2 Hardware name: Freescale Layerscape 2085a RDB Board (DT) Call trace: [<ffff8000000885e8>] dump_backtrace+0x0/0x128 [<ffff800000088734>] show_stack+0x24/0x30 [<ffff80000079a7c4>] dump_stack+0x80/0xa0 [<ffff8000000bd324>] ___might_sleep+0x18c/0x1a0 [<ffff8000007a20ac>] __rt_spin_lock+0x2c/0x40 [<ffff8000007a2268>] rt_read_lock+0x40/0x58 [<ffff800000085328>] single_step_handler+0x38/0xd8 [<ffff800000082368>] do_debug_exception+0x58/0xb8 Exception stack(0xffff80834a1e7c80 to 0xffff80834a1e7da0) 7c80: ffffff9c ffffffff 92c23ba0 0000ffff 4a1e7e40 ffff8083 001bfcc4 ffff8000 7ca0: f2000400 00000000 00000000 00000000 4a1e7d80 ffff8083 0049501c ffff8000 7cc0: 00005402 00000000 00aaa210 ffff8000 4a1e7ea0 ffff8083 000833f4 ffff8000 7ce0: ffffff9c ffffffff 92c23ba0 0000ffff 4a1e7ea0 ffff8083 001bfcc0 ffff8000 7d00: 4a0fc400 ffff8083 00005402 00000000 4a1e7d40 ffff8083 00490324 ffff8000 7d20: ffffff9c 00000000 92c23ba0 0000ffff 000a0000 00000000 00000000 00000000 7d40: 00000008 00000000 00080000 00000000 92c23b8b 0000ffff 92c23b8e 0000ffff 7d60: 00000038 00000000 00001cb2 00000000 00000005 00000000 92d7b498 0000ffff 7d80: 01010101 01010101 92be9000 0000ffff 00000000 00000000 00000030 00000000 [<ffff8000000833f4>] el1_dbg+0x18/0x6c This issue is similar with 62c6c61a("arm64: replace read_lock to rcu lock in call_break_hook"), but comes to single_step_handler. This also solves kgdbts boot test silent hang issue on 4.4 -rt kernel. Signed-off-by: NYang Shi <yang.shi@linaro.org> Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Laura Abbott 提交于
With CONFIG_DEBUG_PAGEALLOC, pages do not have the valid bit set when free in the buddy allocator. Add an indiciation to the page table dumping code that the valid bit is not set, 'F' for fault, to make this easier to understand. Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NLaura Abbott <labbott@fedoraproject.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-