- 20 1月, 2018 1 次提交
-
-
由 Daniel Borkmann 提交于
Having a pure_initcall() callback just to permanently enable BPF JITs under CONFIG_BPF_JIT_ALWAYS_ON is unnecessary and could leave a small race window in future where JIT is still disabled on boot. Since we know about the setting at compilation time anyway, just initialize it properly there. Also consolidate all the individual bpf_jit_enable variables into a single one and move them under one location. Moreover, don't allow for setting unspecified garbage values on them. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 15 1月, 2018 1 次提交
-
-
由 Eric Dumazet 提交于
Divides by zero are not nice, lets avoid them if possible. Also do_div() seems not needed when dealing with 32bit operands, but this seems a minor detail. Fixes: bd4cf0ed ("net: filter: rework/optimize internal BPF interpreter's instruction set") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: Nsyzbot <syzkaller@googlegroups.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 10 1月, 2018 1 次提交
-
-
由 Alexei Starovoitov 提交于
The BPF interpreter has been used as part of the spectre 2 attack CVE-2017-5715. A quote from goolge project zero blog: "At this point, it would normally be necessary to locate gadgets in the host kernel code that can be used to actually leak data by reading from an attacker-controlled location, shifting and masking the result appropriately and then using the result of that as offset to an attacker-controlled address for a load. But piecing gadgets together and figuring out which ones work in a speculation context seems annoying. So instead, we decided to use the eBPF interpreter, which is built into the host kernel - while there is no legitimate way to invoke it from inside a VM, the presence of the code in the host kernel's text section is sufficient to make it usable for the attack, just like with ordinary ROP gadgets." To make attacker job harder introduce BPF_JIT_ALWAYS_ON config option that removes interpreter from the kernel in favor of JIT-only mode. So far eBPF JIT is supported by: x64, arm64, arm32, sparc64, s390, powerpc64, mips64 The start of JITed program is randomized and code page is marked as read-only. In addition "constant blinding" can be turned on with net.core.bpf_jit_harden v2->v3: - move __bpf_prog_ret0 under ifdef (Daniel) v1->v2: - fix init order, test_bpf and cBPF (Daniel's feedback) - fix offloaded bpf (Jakub's feedback) - add 'return 0' dummy in case something can invoke prog->bpf_func - retarget bpf tree. For bpf-next the patch would need one extra hunk. It will be sent when the trees are merged back to net-next Considered doing: int bpf_jit_enable __read_mostly = BPF_EBPF_JIT_DEFAULT; but it seems better to land the patch as-is and in bpf-next remove bpf_jit_enable global variable from all JITs, consolidate in one place and remove this jit_init() function. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 21 12月, 2017 1 次提交
-
-
由 Daniel Borkmann 提交于
Currently a dump of an xlated prog (post verifier stage) doesn't correlate used helpers as well as maps. The prog info lists involved map ids, however there's no correlation of where in the program they are used as of today. Likewise, bpftool does not correlate helper calls with the target functions. The latter can be done w/o any kernel changes through kallsyms, and also has the advantage that this works with inlined helpers and BPF calls. Example, via interpreter: # tc filter show dev foo ingress filter protocol all pref 49152 bpf chain 0 filter protocol all pref 49152 bpf chain 0 handle 0x1 foo.o:[ingress] \ direct-action not_in_hw id 1 tag c74773051b364165 <-- prog id:1 * Output before patch (calls/maps remain unclear): # bpftool prog dump xlated id 1 <-- dump prog id:1 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = 0xffff95c47a8d4800 6: (85) call unknown#73040 7: (15) if r0 == 0x0 goto pc+18 8: (bf) r2 = r10 9: (07) r2 += -4 10: (bf) r1 = r0 11: (85) call unknown#73040 12: (15) if r0 == 0x0 goto pc+23 [...] * Output after patch: # bpftool prog dump xlated id 1 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = map[id:2] <-- map id:2 6: (85) call bpf_map_lookup_elem#73424 <-- helper call 7: (15) if r0 == 0x0 goto pc+18 8: (bf) r2 = r10 9: (07) r2 += -4 10: (bf) r1 = r0 11: (85) call bpf_map_lookup_elem#73424 12: (15) if r0 == 0x0 goto pc+23 [...] # bpftool map show id 2 <-- show/dump/etc map id:2 2: hash_of_maps flags 0x0 key 4B value 4B max_entries 3 memlock 4096B Example, JITed, same prog: # tc filter show dev foo ingress filter protocol all pref 49152 bpf chain 0 filter protocol all pref 49152 bpf chain 0 handle 0x1 foo.o:[ingress] \ direct-action not_in_hw id 3 tag c74773051b364165 jited # bpftool prog show id 3 3: sched_cls tag c74773051b364165 loaded_at Dec 19/13:48 uid 0 xlated 384B jited 257B memlock 4096B map_ids 2 # bpftool prog dump xlated id 3 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = map[id:2] <-- map id:2 6: (85) call __htab_map_lookup_elem#77408 <-+ inlined rewrite 7: (15) if r0 == 0x0 goto pc+2 | 8: (07) r0 += 56 | 9: (79) r0 = *(u64 *)(r0 +0) <-+ 10: (15) if r0 == 0x0 goto pc+24 11: (bf) r2 = r10 12: (07) r2 += -4 [...] Example, same prog, but kallsyms disabled (in that case we are also not allowed to pass any relative offsets, etc, so prog becomes pointer sanitized on dump): # sysctl kernel.kptr_restrict=2 kernel.kptr_restrict = 2 # bpftool prog dump xlated id 3 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = map[id:2] 6: (85) call bpf_unspec#0 7: (15) if r0 == 0x0 goto pc+2 [...] Example, BPF calls via interpreter: # bpftool prog dump xlated id 1 0: (85) call pc+2#__bpf_prog_run_args32 1: (b7) r0 = 1 2: (95) exit 3: (b7) r0 = 2 4: (95) exit Example, BPF calls via JIT: # sysctl net.core.bpf_jit_enable=1 net.core.bpf_jit_enable = 1 # sysctl net.core.bpf_jit_kallsyms=1 net.core.bpf_jit_kallsyms = 1 # bpftool prog dump xlated id 1 0: (85) call pc+2#bpf_prog_3b185187f1855c4c_F 1: (b7) r0 = 1 2: (95) exit 3: (b7) r0 = 2 4: (95) exit And finally, an example for tail calls that is now working as well wrt correlation: # bpftool prog dump xlated id 2 [...] 10: (b7) r2 = 8 11: (85) call bpf_trace_printk#-41312 12: (bf) r1 = r6 13: (18) r2 = map[id:1] 15: (b7) r3 = 0 16: (85) call bpf_tail_call#12 17: (b7) r1 = 42 18: (6b) *(u16 *)(r6 +46) = r1 19: (b7) r0 = 0 20: (95) exit # bpftool map show id 1 1: prog_array flags 0x0 key 4B value 4B max_entries 1 memlock 4096B Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 18 12月, 2017 3 次提交
-
-
由 Alexei Starovoitov 提交于
Typical JIT does several passes over bpf instructions to compute total size and relative offsets of jumps and calls. With multitple bpf functions calling each other all relative calls will have invalid offsets intially therefore we need to additional last pass over the program to emit calls with correct offsets. For example in case of three bpf functions: main: call foo call bpf_map_lookup exit foo: call bar exit bar: exit We will call bpf_int_jit_compile() indepedently for main(), foo() and bar() x64 JIT typically does 4-5 passes to converge. After these initial passes the image for these 3 functions will be good except call targets, since start addresses of foo() and bar() are unknown when we were JITing main() (note that call bpf_map_lookup will be resolved properly during initial passes). Once start addresses of 3 functions are known we patch call_insn->imm to point to right functions and call bpf_int_jit_compile() again which needs only one pass. Additional safety checks are done to make sure this last pass doesn't produce image that is larger or smaller than previous pass. When constant blinding is on it's applied to all functions at the first pass, since doing it once again at the last pass can change size of the JITed code. Tested on x64 and arm64 hw with JIT on/off, blinding on/off. x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter. All other JITs that support normal BPF_CALL will behave the same way since bpf-to-bpf call is equivalent to bpf-to-kernel call from JITs point of view. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Alexei Starovoitov 提交于
global bpf_jit_enable variable is tested multiple times in JITs, blinding and verifier core. The malicious root can try to toggle it while loading the programs. This race condition was accounted for and there should be no issues, but it's safer to avoid this race condition. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Alexei Starovoitov 提交于
though bpf_call is still the same call instruction and calling convention 'bpf to bpf' and 'bpf to helper' is the same the interpreter has to oparate on 'struct bpf_insn *'. To distinguish these two cases add a kernel internal opcode and mark call insns with it. This opcode is seen by interpreter only. JITs will never see it. Also add tiny bit of debug code to aid interpreter debugging. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 13 12月, 2017 2 次提交
-
-
由 Josef Bacik 提交于
Error injection is sloppy and very ad-hoc. BPF could fill this niche perfectly with it's kprobe functionality. We could make sure errors are only triggered in specific call chains that we care about with very specific situations. Accomplish this with the bpf_override_funciton helper. This will modify the probe'd callers return value to the specified value and set the PC to an override function that simply returns, bypassing the originally probed function. This gives us a nice clean way to implement systematic error injection for all of our code paths. Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Yonghong Song 提交于
Commit e87c6bc3 ("bpf: permit multiple bpf attachments for a single perf event") added support to attach multiple bpf programs to a single perf event. Although this provides flexibility, users may want to know what other bpf programs attached to the same tp interface. Besides getting visibility for the underlying bpf system, such information may also help consolidate multiple bpf programs, understand potential performance issues due to a large array, and debug (e.g., one bpf program which overwrites return code may impact subsequent program results). Commit 2541517c ("tracing, perf: Implement BPF programs attached to kprobes") utilized the existing perf ioctl interface and added the command PERF_EVENT_IOC_SET_BPF to attach a bpf program to a tracepoint. This patch adds a new ioctl command, given a perf event fd, to query the bpf program array attached to the same perf tracepoint event. The new uapi ioctl command: PERF_EVENT_IOC_QUERY_BPF The new uapi/linux/perf_event.h structure: struct perf_event_query_bpf { __u32 ids_len; __u32 prog_cnt; __u32 ids[0]; }; User space provides buffer "ids" for kernel to copy to. When returning from the kernel, the number of available programs in the array is set in "prog_cnt". The usage: struct perf_event_query_bpf *query = malloc(sizeof(*query) + sizeof(u32) * ids_len); query.ids_len = ids_len; err = ioctl(pmu_efd, PERF_EVENT_IOC_QUERY_BPF, query); if (err == 0) { /* query.prog_cnt is the number of available progs, * number of progs in ids: (ids_len == 0) ? 0 : query.prog_cnt */ } else if (errno == ENOSPC) { /* query.ids_len number of progs copied, * query.prog_cnt is the number of available progs */ } else { /* other errors */ } Signed-off-by: NYonghong Song <yhs@fb.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 01 12月, 2017 1 次提交
-
-
由 Yonghong Song 提交于
cgropu+bpf prog array has a maximum number of 64 programs. Let us apply the same limit here. Fixes: e87c6bc3 ("bpf: permit multiple bpf attachments for a single perf event") Signed-off-by: NYonghong Song <yhs@fb.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 16 11月, 2017 1 次提交
-
-
Patch series "kmemcheck: kill kmemcheck", v2. As discussed at LSF/MM, kill kmemcheck. KASan is a replacement that is able to work without the limitation of kmemcheck (single CPU, slow). KASan is already upstream. We are also not aware of any users of kmemcheck (or users who don't consider KASan as a suitable replacement). The only objection was that since KASAN wasn't supported by all GCC versions provided by distros at that time we should hold off for 2 years, and try again. Now that 2 years have passed, and all distros provide gcc that supports KASAN, kill kmemcheck again for the very same reasons. This patch (of 4): Remove kmemcheck annotations, and calls to kmemcheck from the kernel. [alexander.levin@verizon.com: correctly remove kmemcheck call from dma_map_sg_attrs] Link: http://lkml.kernel.org/r/20171012192151.26531-1-alexander.levin@verizon.com Link: http://lkml.kernel.org/r/20171007030159.22241-2-alexander.levin@verizon.comSigned-off-by: NSasha Levin <alexander.levin@verizon.com> Cc: Alexander Potapenko <glider@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Hansen <devtimhansen@gmail.com> Cc: Vegard Nossum <vegardno@ifi.uio.no> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 11月, 2017 2 次提交
-
-
由 David S. Miller 提交于
NACK'd by x86 maintainer. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Josef Bacik 提交于
Error injection is sloppy and very ad-hoc. BPF could fill this niche perfectly with it's kprobe functionality. We could make sure errors are only triggered in specific call chains that we care about with very specific situations. Accomplish this with the bpf_override_funciton helper. This will modify the probe'd callers return value to the specified value and set the PC to an override function that simply returns, bypassing the originally probed function. This gives us a nice clean way to implement systematic error injection for all of our code paths. Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NJosef Bacik <jbacik@fb.com> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 11月, 2017 1 次提交
-
-
由 Jakub Kicinski 提交于
The fact that we don't know which device the program is going to be used on is quite limiting in current eBPF infrastructure. We have to reverse or limit the changes which kernel makes to the loaded bytecode if we want it to be offloaded to a networking device. We also have to invent new APIs for debugging and troubleshooting support. Make it possible to load programs for a specific netdev. This helps us to bring the debug information closer to the core eBPF infrastructure (e.g. we will be able to reuse the verifer log in device JIT). It allows device JITs to perform translation on the original bytecode. __bpf_prog_get() when called to get a reference for an attachment point will now refuse to give it if program has a device assigned. Following patches will add a version of that function which passes the expected netdev in. @type argument in __bpf_prog_get() is renamed to attach_type to make it clearer that it's only set on attachment. All calls to ndo_bpf are protected by rtnl, only verifier callbacks are not. We need a wait queue to make sure netdev doesn't get destroyed while verifier is still running and calling its driver. Signed-off-by: NJakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: NSimon Horman <simon.horman@netronome.com> Reviewed-by: NQuentin Monnet <quentin.monnet@netronome.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 10月, 2017 1 次提交
-
-
由 Yonghong Song 提交于
This patch enables multiple bpf attachments for a kprobe/uprobe/tracepoint single trace event. Each trace_event keeps a list of attached perf events. When an event happens, all attached bpf programs will be executed based on the order of attachment. A global bpf_event_mutex lock is introduced to protect prog_array attaching and detaching. An alternative will be introduce a mutex lock in every trace_event_call structure, but it takes a lot of extra memory. So a global bpf_event_mutex lock is a good compromise. The bpf prog detachment involves allocation of memory. If the allocation fails, a dummy do-nothing program will replace to-be-detached program in-place. Signed-off-by: NYonghong Song <yhs@fb.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 10月, 2017 1 次提交
-
-
由 Steven Rostedt (VMware) 提交于
All the trace events defined in include/trace/events/bpf.h are only used when CONFIG_BPF_SYSCALL is defined. But this file gets included by include/linux/bpf_trace.h which is included by the networking code with CREATE_TRACE_POINTS defined. If a trace event is created but not used it still has data structures and functions created for its use, even though nothing is using them. To not waste space, do not define the BPF trace events in bpf.h unless CONFIG_BPF_SYSCALL is defined. Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 10月, 2017 1 次提交
-
-
由 Martin KaFai Lau 提交于
This patch makes the bpf_prog's name available in kallsyms. The new format is bpf_prog_tag[_name]. Sample kallsyms from running selftests/bpf/test_progs: [root@arch-fb-vm1 ~]# egrep ' bpf_prog_[0-9a-fA-F]{16}' /proc/kallsyms ffffffffa0048000 t bpf_prog_dabf0207d1992486_test_obj_id ffffffffa0038000 t bpf_prog_a04f5eef06a7f555__123456789ABCDE ffffffffa0050000 t bpf_prog_a04f5eef06a7f555 Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@fb.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 10月, 2017 2 次提交
-
-
由 Alexei Starovoitov 提交于
introduce BPF_PROG_QUERY command to retrieve a set of either attached programs to given cgroup or a set of effective programs that will execute for events within a cgroup Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NMartin KaFai Lau <kafai@fb.com> for cgroup bits Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
introduce BPF_F_ALLOW_MULTI flag that can be used to attach multiple bpf programs to a cgroup. The difference between three possible flags for BPF_PROG_ATTACH command: - NONE(default): No further bpf programs allowed in the subtree. - BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, the program in this cgroup yields to sub-cgroup program. - BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, that cgroup program gets run in addition to the program in this cgroup. NONE and BPF_F_ALLOW_OVERRIDE existed before. This patch doesn't change their behavior. It only clarifies the semantics in relation to new flag. Only one program is allowed to be attached to a cgroup with NONE or BPF_F_ALLOW_OVERRIDE flag. Multiple programs are allowed to be attached to a cgroup with BPF_F_ALLOW_MULTI flag. They are executed in FIFO order (those that were attached first, run first) The programs of sub-cgroup are executed first, then programs of this cgroup and then programs of parent cgroup. All eligible programs are executed regardless of return code from earlier programs. To allow efficient execution of multiple programs attached to a cgroup and to avoid penalizing cgroups without any programs attached introduce 'struct bpf_prog_array' which is RCU protected array of pointers to bpf programs. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NMartin KaFai Lau <kafai@fb.com> for cgroup bits Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 04 10月, 2017 1 次提交
-
-
由 Alexei Starovoitov 提交于
- bpf prog_array just like all other types of bpf array accepts 32-bit index. Clarify that in the comment. - fix x64 JIT of bpf_tail_call which was incorrectly loading 8 instead of 4 bytes - tighten corresponding check in the interpreter to stay consistent The JIT bug can be triggered after introduction of BPF_F_NUMA_NODE flag in commit 96eabe7a in 4.14. Before that the map_flags would stay zero and though JIT code is wrong it will check bounds correctly. Hence two fixes tags. All other JITs don't have this problem. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Fixes: 96eabe7a ("bpf: Allow selecting numa node during map creation") Fixes: b52f00e6 ("x86: bpf_jit: implement bpf_tail_call() helper") Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NMartin KaFai Lau <kafai@fb.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 8月, 2017 1 次提交
-
-
由 John Fastabend 提交于
Resolve issues with !CONFIG_BPF_SYSCALL and !STREAM_PARSER net/core/filter.c: In function ‘do_sk_redirect_map’: net/core/filter.c:1881:3: error: implicit declaration of function ‘__sock_map_lookup_elem’ [-Werror=implicit-function-declaration] sk = __sock_map_lookup_elem(ri->map, ri->ifindex); ^ net/core/filter.c:1881:6: warning: assignment makes pointer from integer without a cast [enabled by default] sk = __sock_map_lookup_elem(ri->map, ri->ifindex); Fixes: 174a79ff ("bpf: sockmap with sk redirect support") Reported-by: NEric Dumazet <eric.dumazet@gmail.com> Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 10 8月, 2017 1 次提交
-
-
由 Daniel Borkmann 提交于
Currently, eBPF only understands BPF_JGT (>), BPF_JGE (>=), BPF_JSGT (s>), BPF_JSGE (s>=) instructions, this means that particularly *JLT/*JLE counterparts involving immediates need to be rewritten from e.g. X < [IMM] by swapping arguments into [IMM] > X, meaning the immediate first is required to be loaded into a register Y := [IMM], such that then we can compare with Y > X. Note that the destination operand is always required to be a register. This has the downside of having unnecessarily increased register pressure, meaning complex program would need to spill other registers temporarily to stack in order to obtain an unused register for the [IMM]. Loading to registers will thus also affect state pruning since we need to account for that register use and potentially those registers that had to be spilled/filled again. As a consequence slightly more stack space might have been used due to spilling, and BPF programs are a bit longer due to extra code involving the register load and potentially required spill/fills. Thus, add BPF_JLT (<), BPF_JLE (<=), BPF_JSLT (s<), BPF_JSLE (s<=) counterparts to the eBPF instruction set. Modifying LLVM to remove the NegateCC() workaround in a PoC patch at [1] and allowing it to also emit the new instructions resulted in cilium's BPF programs that are injected into the fast-path to have a reduced program length in the range of 2-3% (e.g. accumulated main and tail call sections from one of the object file reduced from 4864 to 4729 insns), reduced complexity in the range of 10-30% (e.g. accumulated sections reduced in one of the cases from 116432 to 88428 insns), and reduced stack usage in the range of 1-5% (e.g. accumulated sections from one of the object files reduced from 824 to 784b). The modification for LLVM will be incorporated in a backwards compatible way. Plan is for LLVM to have i) a target specific option to offer a possibility to explicitly enable the extension by the user (as we have with -m target specific extensions today for various CPU insns), and ii) have the kernel checked for presence of the extensions and enable them transparently when the user is selecting more aggressive options such as -march=native in a bpf target context. (Other frontends generating BPF byte code, e.g. ply can probe the kernel directly for its code generation.) [1] https://github.com/borkmann/llvm/tree/bpf-insnsSigned-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 6月, 2017 1 次提交
-
-
由 Martin KaFai Lau 提交于
The index is off-by-one when fp->aux->stack_depth has already been rounded up to 32. In particular, if stack_depth is 512, the index will be 16. The fix is to round_up and then takes -1 instead of round_down. [ 22.318680] ================================================================== [ 22.319745] BUG: KASAN: global-out-of-bounds in bpf_prog_select_runtime+0x48a/0x670 [ 22.320737] Read of size 8 at addr ffffffff82aadae0 by task sockex3/1946 [ 22.321646] [ 22.321858] CPU: 1 PID: 1946 Comm: sockex3 Tainted: G W 4.12.0-rc6-01680-g2ee87db3 #22 [ 22.323061] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.3-1.el7.centos 04/01/2014 [ 22.324260] Call Trace: [ 22.324612] dump_stack+0x67/0x99 [ 22.325081] print_address_description+0x1e8/0x290 [ 22.325734] ? bpf_prog_select_runtime+0x48a/0x670 [ 22.326360] kasan_report+0x265/0x350 [ 22.326860] __asan_report_load8_noabort+0x19/0x20 [ 22.327484] bpf_prog_select_runtime+0x48a/0x670 [ 22.328109] bpf_prog_load+0x626/0xd40 [ 22.328637] ? __bpf_prog_charge+0xc0/0xc0 [ 22.329222] ? check_nnp_nosuid.isra.61+0x100/0x100 [ 22.329890] ? __might_fault+0xf6/0x1b0 [ 22.330446] ? lock_acquire+0x360/0x360 [ 22.331013] SyS_bpf+0x67c/0x24d0 [ 22.331491] ? trace_hardirqs_on+0xd/0x10 [ 22.332049] ? __getnstimeofday64+0xaf/0x1c0 [ 22.332635] ? bpf_prog_get+0x20/0x20 [ 22.333135] ? __audit_syscall_entry+0x300/0x600 [ 22.333770] ? syscall_trace_enter+0x540/0xdd0 [ 22.334339] ? exit_to_usermode_loop+0xe0/0xe0 [ 22.334950] ? do_syscall_64+0x48/0x410 [ 22.335446] ? bpf_prog_get+0x20/0x20 [ 22.335954] do_syscall_64+0x181/0x410 [ 22.336454] entry_SYSCALL64_slow_path+0x25/0x25 [ 22.337121] RIP: 0033:0x7f263fe81f19 [ 22.337618] RSP: 002b:00007ffd9a3440c8 EFLAGS: 00000202 ORIG_RAX: 0000000000000141 [ 22.338619] RAX: ffffffffffffffda RBX: 0000000000aac5fb RCX: 00007f263fe81f19 [ 22.339600] RDX: 0000000000000030 RSI: 00007ffd9a3440d0 RDI: 0000000000000005 [ 22.340470] RBP: 0000000000a9a1e0 R08: 0000000000a9a1e0 R09: 0000009d00000001 [ 22.341430] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000010000 [ 22.342411] R13: 0000000000a9a023 R14: 0000000000000001 R15: 0000000000000003 [ 22.343369] [ 22.343593] The buggy address belongs to the variable: [ 22.344241] interpreters+0x80/0x980 [ 22.344708] [ 22.344908] Memory state around the buggy address: [ 22.345556] ffffffff82aad980: 00 00 00 04 fa fa fa fa 04 fa fa fa fa fa fa fa [ 22.346449] ffffffff82aada00: 00 00 00 00 00 fa fa fa fa fa fa fa 00 00 00 00 [ 22.347361] >ffffffff82aada80: 00 00 00 00 00 00 00 00 00 00 00 00 fa fa fa fa [ 22.348301] ^ [ 22.349142] ffffffff82aadb00: 00 01 fa fa fa fa fa fa 00 00 00 00 00 00 00 00 [ 22.350058] ffffffff82aadb80: 00 00 07 fa fa fa fa fa 00 00 05 fa fa fa fa fa [ 22.350984] ================================================================== Fixes: b870aa90 ("bpf: use different interpreter depending on required stack size") Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Acked-by: NAlexei Starovoitov <ast@fb.com> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 01 6月, 2017 3 次提交
-
-
由 Alexei Starovoitov 提交于
16 __bpf_prog_run() interpreters for various stack sizes add .text but not a lot comparing to run-time stack savings text data bss dec hex filename 26350 10328 624 37302 91b6 kernel/bpf/core.o.before_split 25777 10328 624 36729 8f79 kernel/bpf/core.o.after_split 26970 10328 624 37922 9422 kernel/bpf/core.o.now Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
split __bpf_prog_run() interpreter into stack allocation and execution parts. The code section shrinks which helps interpreter performance in some cases. text data bss dec hex filename 26350 10328 624 37302 91b6 kernel/bpf/core.o.before 25777 10328 624 36729 8f79 kernel/bpf/core.o.after Very short programs got slower (due to extra function call): Before: test_bpf: #89 ALU64_ADD_K: 1 + 2 = 3 jited:0 7 PASS test_bpf: #90 ALU64_ADD_K: 3 + 0 = 3 jited:0 8 PASS test_bpf: #91 ALU64_ADD_K: 1 + 2147483646 = 2147483647 jited:0 7 PASS test_bpf: #92 ALU64_ADD_K: 4294967294 + 2 = 4294967296 jited:0 11 PASS test_bpf: #93 ALU64_ADD_K: 2147483646 + -2147483647 = -1 jited:0 7 PASS After: test_bpf: #89 ALU64_ADD_K: 1 + 2 = 3 jited:0 11 PASS test_bpf: #90 ALU64_ADD_K: 3 + 0 = 3 jited:0 11 PASS test_bpf: #91 ALU64_ADD_K: 1 + 2147483646 = 2147483647 jited:0 11 PASS test_bpf: #92 ALU64_ADD_K: 4294967294 + 2 = 4294967296 jited:0 14 PASS test_bpf: #93 ALU64_ADD_K: 2147483646 + -2147483647 = -1 jited:0 10 PASS Longer programs got faster: Before: test_bpf: #266 BPF_MAXINSNS: Ctx heavy transformations jited:0 20286 20513 PASS test_bpf: #267 BPF_MAXINSNS: Call heavy transformations jited:0 31853 31768 PASS test_bpf: #268 BPF_MAXINSNS: Jump heavy test jited:0 9815 PASS test_bpf: #269 BPF_MAXINSNS: Very long jump backwards jited:0 6 PASS test_bpf: #270 BPF_MAXINSNS: Edge hopping nuthouse jited:0 13959 PASS test_bpf: #271 BPF_MAXINSNS: Jump, gap, jump, ... jited:0 210 PASS test_bpf: #272 BPF_MAXINSNS: ld_abs+get_processor_id jited:0 21724 PASS test_bpf: #273 BPF_MAXINSNS: ld_abs+vlan_push/pop jited:0 19118 PASS After: test_bpf: #266 BPF_MAXINSNS: Ctx heavy transformations jited:0 19008 18827 PASS test_bpf: #267 BPF_MAXINSNS: Call heavy transformations jited:0 29238 28450 PASS test_bpf: #268 BPF_MAXINSNS: Jump heavy test jited:0 9485 PASS test_bpf: #269 BPF_MAXINSNS: Very long jump backwards jited:0 12 PASS test_bpf: #270 BPF_MAXINSNS: Edge hopping nuthouse jited:0 13257 PASS test_bpf: #271 BPF_MAXINSNS: Jump, gap, jump, ... jited:0 213 PASS test_bpf: #272 BPF_MAXINSNS: ld_abs+get_processor_id jited:0 19389 PASS test_bpf: #273 BPF_MAXINSNS: ld_abs+vlan_push/pop jited:0 19583 PASS For real world production programs the difference is noise. This patch is first step towards reducing interpreter stack consumption. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
free up BPF_JMP | BPF_CALL | BPF_X opcode to be used by actual indirect call by register and use kernel internal opcode to mark call instruction into bpf_tail_call() helper. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 5月, 2017 1 次提交
-
-
由 Michal Hocko 提交于
__vmalloc* allows users to provide gfp flags for the underlying allocation. This API is quite popular $ git grep "=[[:space:]]__vmalloc\|return[[:space:]]*__vmalloc" | wc -l 77 The only problem is that many people are not aware that they really want to give __GFP_HIGHMEM along with other flags because there is really no reason to consume precious lowmemory on CONFIG_HIGHMEM systems for pages which are mapped to the kernel vmalloc space. About half of users don't use this flag, though. This signals that we make the API unnecessarily too complex. This patch simply uses __GFP_HIGHMEM implicitly when allocating pages to be mapped to the vmalloc space. Current users which add __GFP_HIGHMEM are simplified and drop the flag. Link: http://lkml.kernel.org/r/20170307141020.29107-1-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NMatthew Wilcox <mawilcox@microsoft.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Cristopher Lameter <cl@linux.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 4月, 2017 1 次提交
-
-
由 Hannes Frederic Sowa 提交于
Hannes rightfully spotted that the bpf_lock doesn't need to be irqsave variant. We never perform any such updates where this would be necessary (neither right now nor in future), therefore relax this further. Signed-off-by: NHannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 11 4月, 2017 1 次提交
-
-
由 Johannes Berg 提交于
It took me quite some time to figure out how this was linked, so in order to save the next person the effort of finding it add a comment in __bpf_prog_run() that indicates what exactly determines that a program can access the ctx == skb. Signed-off-by: NJohannes Berg <johannes.berg@intel.com> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 2月, 2017 2 次提交
-
-
由 Daniel Borkmann 提交于
Long standing issue with JITed programs is that stack traces from function tracing check whether a given address is kernel code through {__,}kernel_text_address(), which checks for code in core kernel, modules and dynamically allocated ftrace trampolines. But what is still missing is BPF JITed programs (interpreted programs are not an issue as __bpf_prog_run() will be attributed to them), thus when a stack trace is triggered, the code walking the stack won't see any of the JITed ones. The same for address correlation done from user space via reading /proc/kallsyms. This is read by tools like perf, but the latter is also useful for permanent live tracing with eBPF itself in combination with stack maps when other eBPF types are part of the callchain. See offwaketime example on dumping stack from a map. This work tries to tackle that issue by making the addresses and symbols known to the kernel. The lookup from *kernel_text_address() is implemented through a latched RB tree that can be read under RCU in fast-path that is also shared for symbol/size/offset lookup for a specific given address in kallsyms. The slow-path iteration through all symbols in the seq file done via RCU list, which holds a tiny fraction of all exported ksyms, usually below 0.1 percent. Function symbols are exported as bpf_prog_<tag>, in order to aide debugging and attribution. This facility is currently enabled for root-only when bpf_jit_kallsyms is set to 1, and disabled if hardening is active in any mode. The rationale behind this is that still a lot of systems ship with world read permissions on kallsyms thus addresses should not get suddenly exposed for them. If that situation gets much better in future, we always have the option to change the default on this. Likewise, unprivileged programs are not allowed to add entries there either, but that is less of a concern as most such programs types relevant in this context are for root-only anyway. If enabled, call graphs and stack traces will then show a correct attribution; one example is illustrated below, where the trace is now visible in tooling such as perf script --kallsyms=/proc/kallsyms and friends. Before: 7fff8166889d bpf_clone_redirect+0x80007f0020ed (/lib/modules/4.9.0-rc8+/build/vmlinux) f5d80 __sendmsg_nocancel+0xffff006451f1a007 (/usr/lib64/libc-2.18.so) After: 7fff816688b7 bpf_clone_redirect+0x80007f002107 (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fffa0575728 bpf_prog_33c45a467c9e061a+0x8000600020fb (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fffa07ef1fc cls_bpf_classify+0x8000600020dc (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fff81678b68 tc_classify+0x80007f002078 (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fff8164d40b __netif_receive_skb_core+0x80007f0025fb (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fff8164d718 __netif_receive_skb+0x80007f002018 (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fff8164e565 process_backlog+0x80007f002095 (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fff8164dc71 net_rx_action+0x80007f002231 (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fff81767461 __softirqentry_text_start+0x80007f0020d1 (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fff817658ac do_softirq_own_stack+0x80007f00201c (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fff810a2c20 do_softirq+0x80007f002050 (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fff810a2cb5 __local_bh_enable_ip+0x80007f002085 (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fff8168d452 ip_finish_output2+0x80007f002152 (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fff8168ea3d ip_finish_output+0x80007f00217d (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fff8168f2af ip_output+0x80007f00203f (/lib/modules/4.9.0-rc8+/build/vmlinux) [...] 7fff81005854 do_syscall_64+0x80007f002054 (/lib/modules/4.9.0-rc8+/build/vmlinux) 7fff817649eb return_from_SYSCALL_64+0x80007f002000 (/lib/modules/4.9.0-rc8+/build/vmlinux) f5d80 __sendmsg_nocancel+0xffff01c484812007 (/usr/lib64/libc-2.18.so) Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
Remove the dummy bpf_jit_compile() stubs for eBPF JITs and make that a single __weak function in the core that can be overridden similarly to the eBPF one. Also remove stale pr_err() mentions of bpf_jit_compile. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 1月, 2017 1 次提交
-
-
由 Daniel Borkmann 提交于
This work adds a number of tracepoints to paths that are either considered slow-path or exception-like states, where monitoring or inspecting them would be desirable. For bpf(2) syscall, tracepoints have been placed for main commands when they succeed. In XDP case, tracepoint is for exceptions, that is, f.e. on abnormal BPF program exit such as unknown or XDP_ABORTED return code, or when error occurs during XDP_TX action and the packet could not be forwarded. Both have been split into separate event headers, and can be further extended. Worst case, if they unexpectedly should get into our way in future, they can also removed [1]. Of course, these tracepoints (like any other) can be analyzed by eBPF itself, etc. Example output: # ./perf record -a -e bpf:* sleep 10 # ./perf script sock_example 6197 [005] 283.980322: bpf:bpf_map_create: map type=ARRAY ufd=4 key=4 val=8 max=256 flags=0 sock_example 6197 [005] 283.980721: bpf:bpf_prog_load: prog=a5ea8fa30ea6849c type=SOCKET_FILTER ufd=5 sock_example 6197 [005] 283.988423: bpf:bpf_prog_get_type: prog=a5ea8fa30ea6849c type=SOCKET_FILTER sock_example 6197 [005] 283.988443: bpf:bpf_map_lookup_elem: map type=ARRAY ufd=4 key=[06 00 00 00] val=[00 00 00 00 00 00 00 00] [...] sock_example 6197 [005] 288.990868: bpf:bpf_map_lookup_elem: map type=ARRAY ufd=4 key=[01 00 00 00] val=[14 00 00 00 00 00 00 00] swapper 0 [005] 289.338243: bpf:bpf_prog_put_rcu: prog=a5ea8fa30ea6849c type=SOCKET_FILTER [1] https://lwn.net/Articles/705270/Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 1月, 2017 1 次提交
-
-
由 Daniel Borkmann 提交于
Commit 7bd509e3 ("bpf: add prog_digest and expose it via fdinfo/netlink") was recently discussed, partially due to admittedly suboptimal name of "prog_digest" in combination with sha1 hash usage, thus inevitably and rightfully concerns about its security in terms of collision resistance were raised with regards to use-cases. The intended use cases are for debugging resp. introspection only for providing a stable "tag" over the instruction sequence that both kernel and user space can calculate independently. It's not usable at all for making a security relevant decision. So collisions where two different instruction sequences generate the same tag can happen, but ideally at a rather low rate. The "tag" will be dumped in hex and is short enough to introspect in tracepoints or kallsyms output along with other data such as stack trace, etc. Thus, this patch performs a rename into prog_tag and truncates the tag to a short output (64 bits) to make it obvious it's not collision-free. Should in future a hash or facility be needed with a security relevant focus, then we can think about requirements, constraints, etc that would fit to that situation. For now, rework the exposed parts for the current use cases as long as nothing has been released yet. Tested on x86_64 and s390x. Fixes: 7bd509e3 ("bpf: add prog_digest and expose it via fdinfo/netlink") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 12月, 2016 2 次提交
-
-
由 Daniel Borkmann 提交于
Commit aaac3ba9 ("bpf: charge user for creation of BPF maps and programs") made a wrong assumption of charging against prog->pages. Unlike map->pages, prog->pages are still subject to change when we need to expand the program through bpf_prog_realloc(). This can for example happen during verification stage when we need to expand and rewrite parts of the program. Should the required space cross a page boundary, then prog->pages is not the same anymore as its original value that we used to bpf_prog_charge_memlock() on. Thus, we'll hit a wrap-around during bpf_prog_uncharge_memlock() when prog is freed eventually. I noticed this that despite having unlimited memlock, programs suddenly refused to load with EPERM error due to insufficient memlock. There are two ways to fix this issue. One would be to add a cached variable to struct bpf_prog that takes a snapshot of prog->pages at the time of charging. The other approach is to also account for resizes. I chose to go with the latter for a couple of reasons: i) We want accounting rather to be more accurate instead of further fooling limits, ii) adding yet another page counter on struct bpf_prog would also be a waste just for this purpose. We also do want to charge as early as possible to avoid going into the verifier just to find out later on that we crossed limits. The only place that needs to be fixed is bpf_prog_realloc(), since only here we expand the program, so we try to account for the needed delta and should we fail, call-sites check for outcome anyway. On cBPF to eBPF migrations, we don't grab a reference to the user as they are charged differently. With that in place, my test case worked fine. Fixes: aaac3ba9 ("bpf: charge user for creation of BPF maps and programs") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
Geert rightfully complained that 7bd509e3 ("bpf: add prog_digest and expose it via fdinfo/netlink") added a too large allocation of variable 'raw' from bss section, and should instead be done dynamically: # ./scripts/bloat-o-meter kernel/bpf/core.o.1 kernel/bpf/core.o.2 add/remove: 3/0 grow/shrink: 0/0 up/down: 33291/0 (33291) function old new delta raw - 32832 +32832 [...] Since this is only relevant during program creation path, which can be considered slow-path anyway, lets allocate that dynamically and be not implicitly dependent on verifier mutex. Move bpf_prog_calc_digest() at the beginning of replace_map_fd_with_map_ptr() and also error handling stays straight forward. Reported-by: NGeert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 12月, 2016 1 次提交
-
-
由 Martin KaFai Lau 提交于
This patch allows XDP prog to extend/remove the packet data at the head (like adding or removing header). It is done by adding a new XDP helper bpf_xdp_adjust_head(). It also renames bpf_helper_changes_skb_data() to bpf_helper_changes_pkt_data() to better reflect that XDP prog does not work on skb. This patch adds one "xdp_adjust_head" bit to bpf_prog for the XDP-capable driver to check if the XDP prog requires bpf_xdp_adjust_head() support. The driver can then decide to error out during XDP_SETUP_PROG. Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NJohn Fastabend <john.r.fastabend@intel.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 12月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
When loading a BPF program via bpf(2), calculate the digest over the program's instruction stream and store it in struct bpf_prog's digest member. This is done at a point in time before any instructions are rewritten by the verifier. Any unstable map file descriptor number part of the imm field will be zeroed for the hash. fdinfo example output for progs: # cat /proc/1590/fdinfo/5 pos: 0 flags: 02000002 mnt_id: 11 prog_type: 1 prog_jited: 1 prog_digest: b27e8b06da22707513aa97363dfb11c7c3675d28 memlock: 4096 When programs are pinned and retrieved by an ELF loader, the loader can check the program's digest through fdinfo and compare it against one that was generated over the ELF file's program section to see if the program needs to be reloaded. Furthermore, this can also be exposed through other means such as netlink in case of a tc cls/act dump (or xdp in future), but also through tracepoints or other facilities to identify the program. Other than that, the digest can also serve as a base name for the work in progress kallsyms support of programs. The digest doesn't depend/select the crypto layer, since we need to keep dependencies to a minimum. iproute2 will get support for this facility. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 10月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
Use case is mainly for soreuseport to select sockets for the local numa node, but since generic, lets also add this for other networking and tracing program types. Suggested-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 9月, 2016 1 次提交
-
-
由 Shaohua Li 提交于
put_cpu_var takes the percpu data, not the data returned from get_cpu_var. This doesn't change the behavior. Cc: Tejun Heo <tj@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Signed-off-by: NShaohua Li <shli@fb.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 10 9月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros that are used today. Motivation for this is to hide all the register handling and all necessary casts from the user, so that it is done automatically in the background when adding a BPF_CALL_<n>() call. This makes current helpers easier to review, eases to write future helpers, avoids getting the casting mess wrong, and allows for extending all helpers at once (f.e. build time checks, etc). It also helps detecting more easily in code reviews that unused registers are not instrumented in the code by accident, breaking compatibility with existing programs. BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some fundamental differences, for example, for generating the actual helper function that carries all u64 regs, we need to fill unused regs, so that we always end up with 5 u64 regs as an argument. I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and they look all as expected. No sparse issue spotted. We let this also sit for a few days with Fengguang's kbuild test robot, and there were no issues seen. On s390, it barked on the "uses dynamic stack allocation" notice, which is an old one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion to the call wrapper, just telling that the perf raw record/frag sits on stack (gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests and they were fine as well. All eBPF helpers are now converted to use these macros, getting rid of a good chunk of all the raw castings. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-