- 02 5月, 2018 4 次提交
-
-
由 Takashi Sakamoto 提交于
Alesis shipped some models with DICE ASICs. All of them just support DICE original protocol and drivers can't retrieve all of available stream formats without changing status of sampling transmission frequency actually. This commit puts some hard-coded parameters for the models. When detecting the models, the corresponding parameters are copied as cache of stream formats. I note that each of pair of iO14/iO26 and MultiMix 8/12/16 has the same model ID on their configuration ROM. The MultiMix 8/12/16 just support one mode for sampling transmission frequency and ALSA dice driver already handles them correctly. The iO14/iO26 support three modes and need hard-coded parameters. To distinguish these two models, this commit let the driver to retrieve current stream formats and compare it to known parameters, then decide it. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
由 Takashi Sakamoto 提交于
TC Electronic shipped some models with DICE ASICs. All of them just support DICE original protocol and drivers can't retrieve all of available stream formats without changing status of sampling transmission frequency actually. This commit puts some hard-coded parameters for the models. When detecting the models, the corresponding parameters are copied as cache of stream formats. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
由 Takashi Sakamoto 提交于
In former commits, proxy structure get members for cache of stream formats. This commit fills the cache with stream formats at current mode of sampling transmission frequency. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
由 Takashi Sakamoto 提交于
A previous commit 6f688268 ('ALSA: dice: purge generating channel cache') purged cache of stream formats. DICE interface originally has no feature to assist drivers to retrieve available formats for all of supported sampling transmission frequencies, without changing the frequency actually. For later release of Dice ASICs such as TCD2210, Dice interface has extended protocol and can support the feature. This assists drivers to retrieve available stream formats. This commit is a first step to regain the cache to generate PCM rules for all of supported sampling transmission frequencies. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
- 02 3月, 2017 1 次提交
-
-
由 Ingo Molnar 提交于
sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched.h> into <linux/sched/signal.h> Fix up affected files that include this signal functionality via sched.h. Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 09 3月, 2016 2 次提交
-
-
由 Takashi Sakamoto 提交于
Some models reduce the number of available isochronous streams for higher sampling transfer frequency. Such models bring an issue about how to add PCM substreams. When at lower sampling transfer frequency, the models reports whole available streams, thus this driver can add enough number of PCM substreams at probing time. On the other hand, at higher sampling transfer frequency, this driver can just add reduced number of PCM substreams. After probed, even if the sampling transfer frequency is changed to lower rate, fewer PCM substreams are actually available. This is inconvenience. For the reason, this commit adds a list so that this driver assume models on the list to have two pairs of PCM substreams. This list keeps the name of model in which the number of available streams differs depending on sampling transfer frequency. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
由 Takashi Sakamoto 提交于
Currently ALSA dice driver handles a pair of isochronous resources for IEC 61883-1/6 packet streaming. While, according to some documents about ASICs named as 'Dice', several isochronous streams are available. Here, I start to describe ASICs produced under 'Dice' name. * Dice II (designed by wavefront semiconductor, including TCAT's IP) * STD (with limited functionality of DTCP) * CP (with full functionality of DTCP) * TCD2210/2210-E (so-called 'Dice Mini') * TCD2220/2220-E (so-called 'Dice Jr.') * TCD3070-CH (so-called 'Dice III') Some documents are public and we can see hardware design of them. We can find some articles about hardware internal register definitions (not registers exported to IEEE 1394 bus). * DICE II User Guide * http://www.tctechnologies.tc/archive/downloads/dice_ii_user_guide.pdf * 6.1 AVS Audio Receivers * Table 6.1: AVS Audio Receiver Memory Map * ARX1-ARX4 * 6.2 AVS Audio Transmitters * Table 6.2: AVS Audio Transmitter Memory Map * ATX1, ATX2 * TCD22xx User Guide * http://www.tctechnologies.tc/downloads/tcd22xx_user_guide.pdf * 6.1 AVS Audio Receivers * Table 66: AVS Audio Receiver Memory Map * ARX1, ARX2 * 6/2 AVS Audio Transmitters * Table 67: AVS Audio Transmitter Memory Map * ATX1, ATX2 * DICE III * http://www.tctechnologies.tc/downloads/TCD3070-CH.pdf * Dual stream 63 channel transmitter/receiver For Dice II and TCD22xx series, maximum 16 data channels are transferred in an AMDTP packet, while for Dice III, maximum 32 data channels are transferred. According to the design of the series of these ASICs, this commit allows this driver to handle additional set of isochronous resources. For practical reason, two pair of isochronous resources are added. As of this commit, this driver still use a pair of the first isochronous resources. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
- 09 2月, 2016 2 次提交
-
-
由 Takashi Sakamoto 提交于
In former commits, probing process has no need to set sampling transfer frequency. Although it's OK to drop a function to change the frequency from this module, some models require it before streaming. This seems to be due to phase lock of clock source. This commit moves the function from transaction layer to stream layer, and rename it according to the purpose. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
由 Takashi Sakamoto 提交于
Dice interface design doesn't allow drivers to read supported combination between sampling transfer frequencies and the number of Multi bit linear audio data channels. Due to the design, ALSA dice driver changes current sampling transfer frequency to generate cache of the combinations at device probing processing. Although, this idea is worse because ALSA dice driver changes the state of clock. This is not what users want when they save favorite configuration to the device in advance. Furthermore, there's a possibility that the format of data block is decided not only according to current sampling transfer frequency, but also the other factors, i.e. data format for digital interface. It's not good to generate channel cache according to the sampling transfer frequency only. This commit purges processing cache data and related structure members. As a result, users must set preferable sampling transfer frequency before using ALSA PCM applications, as long as they want to start any PCM substreams at the rate except for current one. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
- 06 1月, 2016 1 次提交
-
-
由 Takashi Sakamoto 提交于
Some models based on ASIC for Dice II series (STD, CP) change their hardware configurations after appearing on IEEE 1394 bus. This is due to interactions of boot loader (RedBoot), firmwares (eCos) and vendor's configurations. This causes current ALSA dice driver to get wrong information about the hardware's capability because its probe function runs just after detecting unit of the model. As long as I investigated, it takes a bit time (less than 1 second) to load the firmware after bootstrap. Just after loaded, the driver can get information about the unit. Then the hardware is initialized according to vendor's configurations. After, the got information becomes wrong. Between bootstrap, firmware loading and post configuration, some bus resets are observed. This commit offloads most processing of probe function into workqueue and schedules the workqueue after successive bus resets. This has an effect to get correct hardware information and avoid involvement to bus reset storm. For code simplicity, this change effects all of Dice-based models, i.e. Dice II, Dice Jr., Dice Mini and Dice III. I use a loose strategy to manage a race condition between the work and the bus reset. This is due to a specification of dice transaction. When bus reset occurs, registered address for the transaction is cleared. Drivers must re-register their own address again. While, this operation is required for the work because the work includes to wait for the transaction. This commit uses no lock primitives for the race condition. Instead, checking 'registered' member of 'struct snd_dice' avoid executing the work again. If sound card is not registered, the work can be scheduled again by bus reset handler. When .remove callback is executed, the sound card is going to be released. The work should not be pending or executed in the releasing. This commit uses cancel_delayed_work_sync() in .remove callback and wait till the pending work finished. After .remove callback, .update callback is not executed, therefore no works are scheduled again. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
- 29 9月, 2015 2 次提交
-
-
由 Takashi Sakamoto 提交于
This commit adds data block processing layer for AM824 format. The new layer initializes streaming layer with its value for fmt field. Currently, most implementation of data block processing still remains streaming layer. In later commits, these codes will be moved to the layer. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
由 Takashi Sakamoto 提交于
In later commit, data block processing layer will be newly added. This layer will be named as 'amdtp-am824'. This commit renames current amdtp file to amdtp-stream, to distinguish it from the new layer. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
- 10 12月, 2014 4 次提交
-
-
由 Takashi Sakamoto 提交于
This commit adds a support for MIDI capture/playback When MIDI substrams already start streaming and PCM substreams are going to join at different sampling rate, streams are stopped once. Then sampling rate is changed and streams are restarted. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Acked-by: NClemens Ladisch <clemens@ladisch.de> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
由 Takashi Sakamoto 提交于
This commit allows this driver to handle devices with non SYT-Match sampling clock source. When sampling clock source is SYT-Match mode, devices handle 'presentation timestamp' in received packets and generates sampling clock according to the information. In this case, driver is synchronization master and must transfer correct value in SYT field of each packets in outgoing stream, then the outgoing stream is a master stream. On the other hand, non SYT-Match mode, devices do this. So drivers must pick up the value in SYT field of incoming packets and use the value for outgoing stream. Currently firewire-lib module achieve this work. Furthermore, without SYT-Match and internal clock source, the sampling rate should be fixed for the other devices connected to the handled device. This commit add a restriction of sampling rate at this situation. With these implementations, this driver has no need to set clock source. This commit remove set function. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Acked-by: NClemens Ladisch <clemens@ladisch.de> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
由 Takashi Sakamoto 提交于
This commit adds support for AMDTP in-stream. As a result, Dice driver supports full duplex streams with synchronization. AMDTP can transfer timestamps in its packets. By handling the timestamp, devices can synchronize to the other devices or drivers on the same bus. When Dice chipset is 'enabled', it starts streams with correct settings. This 'enable' register is global, thus, when a stream is started to run, an opposite stream can't start unless turning off 'enable'. Therefore a pair of streams must be running. This causes a loss of CPU usage when single stream is needed for neither playbacking or capturing. This commit assumes that playback-only models also have a functionality to transmit stream for delivering timestamps. Currently, sampling clock source is restricted to SYT-Match mode. This is improved in followed commit. I note that at SYT-Match mode, Dice can select from 4 streams for synchronization but this driver uses the 1st stream only for simplicity. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Acked-by: NClemens Ladisch <clemens@ladisch.de> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
由 Takashi Sakamoto 提交于
Streaming functionality can start streams when rate is given but currently some codes are in PCM functionality. This commit changes the way to start stream and add some arrangement to make it easy to understand the way. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Acked-by: NClemens Ladisch <clemens@ladisch.de> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
- 30 11月, 2014 5 次提交
-
-
由 Takashi Sakamoto 提交于
This commit adds a file and move some codes related to proc output. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
由 Takashi Sakamoto 提交于
This commit adds a file and move some codes related to hwdep functionality. This interface is designed for mixer/control application. By using hwdep interface, the application can get information about firewire node, can lock/unlock kernel streaming and can get notification at starting/stopping kernel streaming. Additionally, this interface give a way to read Dice notification. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
由 Takashi Sakamoto 提交于
This commit adds a file and move some codes related to PCM functionality. Currently PCM playback is supported. PCM capture will be supported in followed commits. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
由 Takashi Sakamoto 提交于
This commit adds a file with some helper functions for streaming, and move some codes into the file with some arrangements. Well-known CMP is not used to start/stop streams for Dice chipset. It's achieved by writing to specific address. We call this way as 'enable'. When devices are 'enabled', streaming starts in registered isochronous channel. Some helper functions are already implemented in previous commit. Basically, the stream is compliant to IEC 61883-6, so-called as AMDTP. But Dice has a specific quirk, so called-as 'Dual Wire'. This quirk is applied at 176.4/192.0kHz. In this mode, each packet includes double number of events than number in the specification, and stream runs at a half of sampling rate. There is another quirk at bus reset. Dice chipset handles drivers' request but don't re-enable streaming. So stream should be stopped. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-
由 Takashi Sakamoto 提交于
This commit adds a file with some helper functions for transaction, and move some codes into the file with some arrangements. For Dice chipset, well-known FCP or AV/C commands are not used to control devices. It's achieved by read/write transactions into specific addresses. Dice's address area is split into 5 areas. Each area has its own role. The offset for each area can be got by reading head of the address area. By reading these areas, drivers can get to know device status. By writing these areas, drivers can change device status. Dice has a specific mechanism called as 'notification'. When device status is changed, Dice devices tells the event by sending transaction. This notification is sent to an address which drivers register in advance. But this causes an issue to drivers. To handle the notification, drivers need to allocate its own callback function to the address region in host controller. This region is exclusive. For the other applications, drivers must give a mechanism to read the received notification. For this purpose, Dice driver already implements hwdep interface. Dice chipset doesn't allow drivers to register several addresses. In this reason, when this driver is applied to a device, the other drivers should _not_ try to register its own address to the device. Signed-off-by: NTakashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: NTakashi Iwai <tiwai@suse.de>
-