- 27 9月, 2018 1 次提交
-
-
由 Mika Westerberg 提交于
HP 6730b laptop has an ethernet NIC connected to one of the PCIe root ports. The root ports themselves are native PCIe hotplug capable. Now, during boot after PCI devices are scanned the BIOS triggers ACPI bus check directly to the NIC: ACPI: \_SB_.PCI0.RP06.NIC_: Bus check in hotplug_event() It is not clear why it is sending bus check but regardless the ACPI hotplug notify handler calls enable_slot() directly (instead of going through acpiphp_check_bridge() as there is no bridge), which ends up handling special case for non-hotplug bridges with native PCIe hotplug. This results a crash of some kind but the reporter only sees black screen so it is hard to figure out the exact spot and what actually happens. Based on a few fix proposals it was tracked to crash somewhere inside pci_assign_unassigned_bridge_resources(). In any case we should not really be in that special branch at all because the ACPI notify happened to a slot that is not a PCI bridge (it is just a regular PCI device). Fix this so that we only go to that special branch if we are calling enable_slot() for a bridge (e.g., the ACPI notification was for the bridge). Link: https://bugzilla.kernel.org/show_bug.cgi?id=201127 Fixes: 84c8b58e ("ACPI / hotplug / PCI: Don't scan bridges managed by native hotplug") Reported-by: NPeter Anemone <peter.anemone@gmail.com> Signed-off-by: NMika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> CC: stable@vger.kernel.org # v4.18+
-
- 11 9月, 2018 1 次提交
-
-
由 Keith Busch 提交于
If both hot-add and power fault were observed in a single interrupt, we handled the hot-add first, then the power fault, in this path: pciehp_ist if (events & (PDC | DLLSC)) pciehp_handle_presence_or_link_change case OFF_STATE: pciehp_enable_slot __pciehp_enable_slot board_added pciehp_power_on_slot ctrl->power_fault_detected = 0 pcie_write_cmd(ctrl, PCI_EXP_SLTCTL_PWR_ON, PCI_EXP_SLTCTL_PCC) pciehp_green_led_on(p_slot) # power LED on pciehp_set_attention_status(p_slot, 0) # attention LED off if ((events & PFD) && !ctrl->power_fault_detected) ctrl->power_fault_detected = 1 pciehp_set_attention_status(1) # attention LED on pciehp_green_led_off(slot) # power LED off This left the attention indicator on (even though the hot-add succeeded) and the power indicator off (even though the slot power was on). Fix this by checking for power faults before checking for new devices. Prior to 0e94916e, this was successful because everything was chained through work queues and the order was: INT_PRESENCE_ON -> INT_POWER_FAULT -> ENABLE_REQ The ENABLE_REQ cleared the power fault at the end, but now everything is handled inline with the interrupt thread, such that the work ENABLE_REQ was doing happens before power fault handling now. Fixes: 0e94916e ("PCI: pciehp: Handle events synchronously") Signed-off-by: NKeith Busch <keith.busch@intel.com> [bhelgaas: changelog] Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NLukas Wunner <lukas@wunner.de>
-
- 01 8月, 2018 8 次提交
-
-
由 Lukas Wunner 提交于
On driver probe and on resume from system sleep, pciehp checks the Presence Detect State bit in the Slot Status register to bring up an occupied slot or bring down an unoccupied slot. Both code paths are identical, so deduplicate them per Mika's request. On probe, an additional check is performed to disable power of an unoccupied slot. This can e.g. happen if power was enabled by BIOS. It cannot happen once pciehp has taken control, hence is not necessary on resume: The Slot Control register is set to the same value that it had on suspend by pci_restore_state(), so if the slot was occupied, power is enabled and if it wasn't, power is disabled. Should occupancy have changed during the system sleep transition, power is adjusted by bringing up or down the slot per the paragraph above. To allow for deduplication of the presence check, move the power check to pcie_init(). This seems safer anyway, because right now it is performed while interrupts are already enabled, and although I can't think of a scenario where pciehp_power_off_slot() and the IRQ thread collide, it does feel brittle. However this means that pcie_init() may now write to the Slot Control register before the IRQ is requested. If both the CCIE and HPIE bits happen to be set, pcie_wait_cmd() will wait for an interrupt (instead of polling the Command Completed bit) and eventually emit a timeout message. Additionally, if a level-triggered INTx interrupt is used, the user may see a spurious interrupt splat. Avoid by disabling interrupts before disabling power. (Normally the HPIE and CCIE bits should be clear on probe, but conceivably they may already have been set e.g. by BIOS.) Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NMika Westerberg <mika.westerberg@linux.intel.com>
-
由 Lukas Wunner 提交于
Per Mika's request, add an explicit break to the last case of switch statements everywhere in pciehp to be more defensive towards future amendments. Per Gustavo's request, mark all non-empty implicit fallthroughs with a comment to silence warnings triggered by -Wimplicit-fallthrough=2. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NMika Westerberg <mika.westerberg@linux.intel.com> Acked-by: NGustavo A. R. Silva <gustavo@embeddedor.com>
-
由 Hari Vyas 提交于
When a PCI device is detected, pdev->is_added is set to 1 and proc and sysfs entries are created. When the device is removed, pdev->is_added is checked for one and then device is detached with clearing of proc and sys entries and at end, pdev->is_added is set to 0. is_added and is_busmaster are bit fields in pci_dev structure sharing same memory location. A strange issue was observed with multiple removal and rescan of a PCIe NVMe device using sysfs commands where is_added flag was observed as zero instead of one while removing device and proc,sys entries are not cleared. This causes issue in later device addition with warning message "proc_dir_entry" already registered. Debugging revealed a race condition between the PCI core setting the is_added bit in pci_bus_add_device() and the NVMe driver reset work-queue setting the is_busmaster bit in pci_set_master(). As these fields are not handled atomically, that clears the is_added bit. Move the is_added bit to a separate private flag variable and use atomic functions to set and retrieve the device addition state. This avoids the race because is_added no longer shares a memory location with is_busmaster. Link: https://bugzilla.kernel.org/show_bug.cgi?id=200283Signed-off-by: NHari Vyas <hari.vyas@broadcom.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NLukas Wunner <lukas@wunner.de> Acked-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Lukas Wunner 提交于
Ensure accessibility of a hotplug port's config space when accessed via sysfs by resuming its parent to D0. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Mika Westerberg <mika.westerberg@linux.intel.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Yinghai Lu <yinghai@kernel.org>
-
由 Lukas Wunner 提交于
pciehp's IRQ thread ensures accessibility of the port by runtime resuming its parent to D0. However when the slot is enabled/disabled, the port itself needs to be in D0 because its secondary bus is accessed in: pciehp_check_link_status(), pciehp_configure_device() (both called from board_added()) and pciehp_unconfigure_device() (called from remove_board()). Thus, acquire a runtime PM ref on enable/disablement of the slot. Yinghai Lu additionally discovered that some SkyLake servers feature a Power Controller for their PCIe hotplug ports (PCIe r3.1, sec 6.7.1.8) which requires the port to be in D0 when invoking pciehp_power_on_slot() (likewise called from board_added()). If slot power is turned on while in D3hot, link training later fails: https://lkml.kernel.org/r/20170205073454.GA253@wunner.de The spec is silent about such a requirement, but it seems prudent to assume that any hotplug port with a Power Controller may need this. The present commit holds a runtime PM ref whenever slot power is turned on and off, but it doesn't keep the port in D0 as long as slot power is on. If vendors determine that's necessary, they need to amend pciehp to acquire a runtime PM ref in pciehp_power_on_slot() and release one in pciehp_power_off_slot(). Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Mika Westerberg <mika.westerberg@linux.intel.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Yinghai Lu <yinghai@kernel.org>
-
由 Lukas Wunner 提交于
If a hotplug port is able to send an interrupt, one would naively assume that it is accessible at that moment. After all, if it wouldn't be accessible, i.e. if its parent is in D3hot and the link to the hotplug port is thus down, how should an interrupt come through? It turns out that assumption is wrong at least for Thunderbolt: Even though its parents are in D3hot, a Thunderbolt hotplug port is able to signal interrupts. Because the port's config space is inaccessible and resuming the parents may sleep, the hard IRQ handler has to defer runtime resuming the parents and reading the Slot Status register to the IRQ thread. If the hotplug port uses a level-triggered INTx interrupt, it needs to be masked until the IRQ thread has cleared the signaled events. For simplicity, this commit also masks edge-triggered MSI/MSI-X interrupts. Note that if the interrupt is shared (which can only happen for INTx), other devices are starved from receiving interrupts until the IRQ thread is scheduled, has runtime resumed the hotplug port's parents and has read and cleared the Slot Status register. That delay is dominated by the 10 ms D3hot->D0 transition time of each parent port. The worst case is a Thunderbolt downstream port at the end of a daisy chain: There may be up to six Thunderbolt controllers in-between it and the root port, each comprising an upstream and downstream port, plus its own upstream port. That's 13 x 10 = 130 ms. Possible mitigations are polling the interrupt while it's disabled or reducing the d3_delay of Thunderbolt ports if possible. Open code masking of the interrupt instead of requesting it with the IRQF_ONESHOT flag to minimize the period during which it is masked. (IRQF_ONESHOT unmasks the IRQ only after the IRQ thread has finished.) PCIe r4.0 sec 6.7.3.4 states that "If wake generation is required by the associated form factor specification, a hotplug capable Downstream Port must support generation of a wakeup event (using the PME mechanism) on hotplug events that occur when the system is in a sleep state or the Port is in device state D1, D2, or D3Hot." This would seem to imply that PME needs to be enabled on the hotplug port when it is runtime suspended. pci_enable_wake() currently doesn't enable PME on bridges, it may be necessary to add an exemption for hotplug bridges there. On "Light Ridge" Thunderbolt controllers, the PME_Status bit is not set when an interrupt occurs while the hotplug port is in D3hot, even if PME is enabled. (I've tested this on a Mac and we hardcode the OSC_PCI_EXPRESS_PME_CONTROL bit to 0 on Macs in negotiate_os_control(), modifying it to 1 didn't change the behavior.) (Side note: Section 6.7.3.4 also states that "PME and Hot-Plug Event interrupts (when both are implemented) always share the same MSI or MSI-X vector". That would only seem to apply to Root Ports, however the section never mentions Root Ports, only Downstream Ports. This is explained in the definition of "Downstream Port" in the "Terms and Acronyms" section of the PCIe Base Spec: "The Ports on a Switch that are not the Upstream Port are Downstream Ports. All Ports on a Root Complex are Downstream Ports.") Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Mika Westerberg <mika.westerberg@linux.intel.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Yinghai Lu <yinghai@kernel.org>
-
由 Lukas Wunner 提交于
Upon resume from system sleep, the Slot Control register is written via: pci_pm_resume_noirq() pci_pm_default_resume_early() pci_restore_state() pci_restore_pcie_state() PCIe r4.0, sec 6.7.3.2 says that after "issuing a write transaction that targets any portion of the Port's Slot Control register, [...] software must wait for [the] command to complete before issuing the next command". pciehp currently fails to enforce that rule after the above-mentioned write. Fix it. (Moving restoration of the Slot Control register to pciehp doesn't seem to make sense because the other PCIe hotplug drivers may need it as well.) Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
Thunderbolt hotplug ports that were occupied before system sleep resume with their downstream link in "off" state. Only after the Thunderbolt controller has reestablished the PCIe tunnels does the link go up. As a result, a spurious Presence Detect Changed and/or Data Link Layer State Changed event occurs. The events are not immediately acted upon because tunnel reestablishment happens in the ->resume_noirq phase, when interrupts are still disabled. Also, notification of events may initially be disabled in the Slot Control register when coming out of system sleep and is reenabled in the ->resume_noirq phase through: pci_pm_resume_noirq() pci_pm_default_resume_early() pci_restore_state() pci_restore_pcie_state() It is not guaranteed that the events are acted upon at all: PCIe r4.0, sec 6.7.3.4 says that "a port may optionally send an MSI when there are hot-plug events that occur while interrupt generation is disabled, and interrupt generation is subsequently enabled." Note the "optionally". If an MSI is sent, pciehp will gratuitously turn the slot off and back on once the ->resume_early phase has commenced. If an MSI is not sent, the extant, unacknowledged events in the Slot Status register will prevent future notification of presence or link changes. Commit 13c65840 ("PCI: pciehp: Clear Presence Detect and Data Link Layer Status Changed on resume") fixed the latter by clearing the events in the ->resume phase. Move this to the ->resume_noirq phase to also fix the gratuitous disable/enablement of the slot. The commit further restored the Slot Control register in the ->resume phase, but that's dispensable because as shown above it's already been done in the ->resume_noirq phase. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
-
- 31 7月, 2018 1 次提交
-
-
由 Lukas Wunner 提交于
The ->reset_slot callback introduced by commits: 2e35afae ("PCI: pciehp: Add reset_slot() method") and 06a8d89a ("PCI: pciehp: Disable link notification across slot reset") disables notification of Presence Detect Changed and Data Link Layer State Changed events for the duration of a secondary bus reset. However a bus reset not only triggers these events, but may also clear the Presence Detect State bit in the Slot Status register and the Data Link Layer Link Active bit in the Link Status register momentarily. According to Sinan Kaya: "I know for a fact that bus reset clears the Data Link Layer Active bit as soon as link goes down. It gets set again following link up. Presence detect depends on the HW implementation. QDT root ports don't change presence detect for instance since nobody actually removed the card. If an implementation supports in-band presence detect, the answer is yes. As soon as the link goes down, presence detect bit will get cleared until recovery." https://lkml.kernel.org/r/42e72f83-3b24-f7ef-e5bc-290fae99259a@codeaurora.org In-band presence detect is also covered in Table 4-15 in PCIe r4.0, sec 4.2.6. pciehp should therefore ensure that any parts of the driver that access those bits do not run concurrently to a bus reset. The only precaution the commits took to that effect was to halt interrupt polling. They made no effort to drain the slot workqueue, cancel an outstanding Attention Button work, or block slot enable/disable requests via sysfs and in the ->probe hook. Now that pciehp is converted to enable/disable the slot exclusively from the IRQ thread, the only places accessing the two above-mentioned bits are the IRQ thread and the ->probe hook. Add locking to serialize them with a bus reset. This obviates the need to halt interrupt polling. Do not add locking to the ->get_adapter_status sysfs callback to afford users unfettered access to that bit. Use an rw_semaphore in lieu of a regular mutex to allow parallel execution of the non-reset code paths accessing the critical bits, i.e. the IRQ thread and the ->probe hook. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Rajat Jain <rajatja@google.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Sinan Kaya <okaya@kernel.org>
-
- 24 7月, 2018 21 次提交
-
-
由 Lukas Wunner 提交于
Per PCIe r4.0, sec 6.7.3.4, a "port may optionally send an MSI when there are hot-plug events that occur while interrupt generation is disabled, and interrupt generation is subsequently enabled." On probe, we currently clear all event bits in the Slot Status register with the notable exception of the Presence Detect Changed bit. Thereby we seek to receive an interrupt for an already occupied slot once event notification is enabled. But because the interrupt is optional, users may have to specify the pciehp_force parameter on the command line, which is inconvenient. Moreover, now that pciehp's event handling has become resilient to missed events, a Presence Detect Changed interrupt for a slot which is powered on is interpreted as removal of the card. If the slot has already been brought up by the BIOS, receiving such an interrupt on probe causes the slot to be powered off and immediately back on, which is likewise undesirable. Avoid both issues by making the behavior of pciehp_force the default and clearing the Presence Detect Changed bit on probe. Note that the stated purpose of pciehp_force per the MODULE_PARM_DESC ("Force pciehp, even if OSHP is missing") seems nonsensical because the OSHP control method is only relevant for SHCP slots according to the PCI Firmware specification r3.0, sec 4.8. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
-
由 Lukas Wunner 提交于
A hotplug port's Slot Status register does not count how often each type of event occurred, it only records the fact *that* an event has occurred. Previously pciehp queued a work item for each event. But if it missed an event, e.g. removal of a card in-between two back-to-back insertions, it queued up the wrong work item or no work item at all. Commit fad214b0 ("PCI: pciehp: Process all hotplug events before looking for new ones") sought to improve the situation by shrinking the window during which events may be missed. But Stefan Roese reports unbalanced Card present and Link Up events, suggesting that we're still missing events if they occur very rapidly. Bjorn Helgaas responds that he considers pciehp's event handling "baroque" and calls for its simplification and rationalization: https://lkml.kernel.org/r/20180202192045.GA53759@bhelgaas-glaptop.roam.corp.google.com It gets worse once a hotplug port is runtime suspended: The port can signal an interrupt while it and its parents are in D3hot, i.e. while it is inaccessible. By the time we've runtime resumed all parents to D0 and read the port's Slot Status register, we may have missed an arbitrary number of events. Event handling therefore needs to be reworked to become resilient to missed events. Assume that a Presence Detect Changed event has occurred. Consider the following truth table: - Slot is in OFF_STATE and is currently empty. => Do nothing. (The event is trailing a Link Down or we've missed an insertion and subsequent removal.) - Slot is in OFF_STATE and is currently occupied. => Turn the slot on. - Slot is in ON_STATE and is currently empty. => Turn the slot off. - Slot is in ON_STATE and is currently occupied. => Turn the slot off, (Be cautious and assume the card in then back on. the slot isn't the same as before.) This leads to the following simple algorithm: 1 If the slot is in ON_STATE, turn it off unconditionally. 2 If the slot is currently occupied, turn it on. Because those actions are now carried out synchronously, rather than by scheduled work items, pciehp reacts to the *current* situation and missed events no longer matter. Data Link Layer State Changed events can be handled identically to Presence Detect Changed events. Note that in the above truth table, a Link Up trailing a Card present event didn't have to be accounted for: It is filtered out by pciehp_check_link_status(). As for Attention Button Pressed events, PCIe r4.0, sec 6.7.1.5 says: "Once the Power Indicator begins blinking, a 5-second abort interval exists during which a second depression of the Attention Button cancels the operation." In other words, the user can only expect the system to react to a button press after it starts blinking. Missed button presses that occur in-between are irrelevant. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Stefan Roese <sr@denx.de> Cc: Mayurkumar Patel <mayurkumar.patel@intel.com> Cc: Mika Westerberg <mika.westerberg@linux.intel.com> Cc: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
-
由 Lukas Wunner 提交于
When a device is hotplugged, Presence Detect and Link Up events often do not occur simultaneously, but with a lag of a few milliseconds. Only the first event received is relevant, the other one can be disregarded. Moreover, Stefan Roese reports that on certain platforms, Link State and Presence Detect may flap for up to 100 ms before stabilizing, suggesting that such events should be disregarded for at least this long: https://lkml.kernel.org/r/20180130084121.18653-1-sr@denx.de On slot enablement, pciehp_check_link_status() waits for 100 ms per PCIe r4.0, sec 6.7.3.3, then probes the hotplugged device's vendor register for up to 1 second. If this succeeds, the link is definitely up, so ignore any Presence Detect or Link State events that occurred up to this point. pciehp_check_link_status() then checks the Link Training bit in the Link Status register. This is the final opportunity to detect inaccessibility of the device and abort slot enablement. Any link or presence change that occurs afterwards will cause the slot to be disabled again immediately after attempting to enable it. The astute reviewer may appreciate that achieving this behavior would be more complicated had pciehp not just been converted to enable/disable the slot exclusively from the IRQ thread: When the slot is enabled via sysfs, each link or presence flap would otherwise cause the IRQ thread to run and it would have to sense that those events are belonging to a concurrent slot enablement operation and disregard them. It would be much more difficult than this mere 3 line change. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Stefan Roese <sr@denx.de>
-
由 Lukas Wunner 提交于
No callers of pciehp_enable/disable_slot() outside of pciehp_ctrl.c remain, so declare the functions static. For now this requires forward declarations. Those can be eliminated by reshuffling functions once the ongoing effort to refactor the driver has settled. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
Previously slot enablement and disablement could happen concurrently. But now it's under the exclusive control of the IRQ thread, rendering the locking obsolete. Drop it. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
Besides the IRQ thread, there are several other places in the driver which enable or disable the slot: - pciehp_probe() enables the slot if it's occupied and the pciehp_force module parameter is used. - pciehp_resume() enables or disables the slot after system sleep. - pciehp_queue_pushbutton_work() enables or disables the slot after the 5 second delay following an Attention Button press. - pciehp_sysfs_enable_slot() and pciehp_sysfs_disable_slot() enable or disable the slot on sysfs write. This requires locking and complicates pciehp's state machine. A simplification can be achieved by enabling and disabling the slot exclusively from the IRQ thread. Amend the functions listed above to request slot enable/disablement from the IRQ thread by either synthesizing a Presence Detect Changed event or, in the case of a disable user request (via sysfs or an Attention Button press), submitting a newly introduced force disable request. The latter is needed because the slot shall be forced off despite being occupied. For this force disable request, avoid colliding with Slot Status register bits by using a bit number greater than 16. For synchronous execution of requests (on sysfs write), wait for the request to finish and retrieve the result. There can only ever be one sysfs write in flight due to the locking in kernfs_fop_write(), hence there is no risk of returning the result of a different sysfs request to user space. The POWERON_STATE and POWEROFF_STATE is now no longer entered by the above-listed functions, but solely by the IRQ thread when it begins a power transition. Afterwards, it moves to STATIC_STATE. The same applies to canceling the Attention Button work, it likewise becomes an IRQ thread only operation. An immediate consequence is that the POWERON_STATE and POWEROFF_STATE is never observed by the IRQ thread itself, only by functions called in a different context, such as pciehp_sysfs_enable_slot(). So remove handling of these states from pciehp_handle_button_press() and pciehp_handle_link_change() which are exclusively called from the IRQ thread. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
handle_button_press_event() currently determines whether the slot has been turned on or off by looking at the Power Controller Control bit in the Slot Control register. This assumes that an attention button implies presence of a power controller even though that's not mandated by the spec. Moreover the Power Controller Control bit is unreliable when a power fault occurs (PCIe r4.0, sec 6.7.1.8). This issue has existed since the driver was introduced in 2004. Fix by replacing STATIC_STATE with ON_STATE and OFF_STATE and tracking whether the slot has been turned on or off. This is also a required ingredient to make pciehp resilient to missed events, which is the object of an upcoming commit. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
The PCI hotplug core has just been refactored to separate slot initialization for in-kernel use from publication to user space. Take advantage of it in pciehp by publishing to user space last on probe. This will allow enable/disablement of the slot exclusively from the IRQ thread because the IRQ is requested after initialization for in-kernel use (thereby getting its unique name needed by the IRQ thread) but before user space is able to submit enable/disable requests. On teardown, the order is the same in reverse: The user space interface is removed prior to freeing the IRQ and destroying the slot. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
When a hotplug driver calls pci_hp_register(), all steps necessary for registration are carried out in one go, including creation of a kobject and addition to sysfs. That's a problem for pciehp once it's converted to enable/disable the slot exclusively from the IRQ thread: The thread needs to be spawned after creation of the kobject (because it uses the kobject's name), but before addition to sysfs (because it will handle enable/disable requests submitted via sysfs). pci_hp_deregister() does offer a ->release callback that's invoked after deletion from sysfs and before destruction of the kobject. But because pci_hp_register() doesn't offer a counterpart, hotplug drivers' ->probe and ->remove code becomes asymmetric, which is error prone as recently discovered use-after-free bugs in pciehp's ->remove hook have shown. In a sense, this appears to be a case of the midlayer antipattern: "The core thesis of the "midlayer mistake" is that midlayers are bad and should not exist. That common functionality which it is so tempting to put in a midlayer should instead be provided as library routines which can [be] used, augmented, or ignored by each bottom level driver independently. Thus every subsystem that supports multiple implementations (or drivers) should provide a very thin top layer which calls directly into the bottom layer drivers, and a rich library of support code that eases the implementation of those drivers. This library is available to, but not forced upon, those drivers." -- Neil Brown (2009), https://lwn.net/Articles/336262/ The presence of midlayer traits in the PCI hotplug core might be ascribed to its age: When it was introduced in February 2002, the blessings of a library approach might not have been well known: https://git.kernel.org/tglx/history/c/a8a2069f432c For comparison, the driver core does offer split functions for creating a kobject (device_initialize()) and addition to sysfs (device_add()) as an alternative to carrying out everything at once (device_register()). This was introduced in October 2002: https://git.kernel.org/tglx/history/c/8b290eb19962 The odd ->release callback in the PCI hotplug core was added in 2003: https://git.kernel.org/tglx/history/c/69f8d663b595 Clearly, a library approach would not force every hotplug driver to implement a ->release callback, but rather allow the driver to remove the sysfs files, release its data structures and finally destroy the kobject. Alternatively, a driver may choose to remove everything with pci_hp_deregister(), then release its data structures. To this end, offer drivers pci_hp_initialize() and pci_hp_add() as a split-up version of pci_hp_register(). Likewise, offer pci_hp_del() and pci_hp_destroy() as a split-up version of pci_hp_deregister(). Eliminate the ->release callback and move its code into each driver's teardown routine. Declare pci_hp_deregister() void, in keeping with the usual kernel pattern that enablement can fail, but disablement cannot. It only returned an error if the caller passed in a NULL pointer or a slot which has never or is no longer registered or is sharing its name with another slot. Those would be bugs, so WARN about them. Few hotplug drivers actually checked the return value and those that did only printed a useless error message to dmesg. Remove that. For most drivers the conversion was straightforward since it doesn't matter whether the code in the ->release callback is executed before or after destruction of the kobject. But in the case of ibmphp, it was unclear to me whether setting slot_cur->ctrl and slot_cur->bus_on to NULL needs to happen before the kobject is destroyed, so I erred on the side of caution and ensured that the order stays the same. Another nontrivial case is pnv_php, I've found the list and kref logic difficult to understand, however my impression was that it is safe to delete the list element and drop the references until after the kobject is destroyed. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> # drivers/platform/x86 Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Scott Murray <scott@spiteful.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Gavin Shan <gwshan@linux.vnet.ibm.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Corentin Chary <corentin.chary@gmail.com> Cc: Darren Hart <dvhart@infradead.org> Cc: Andy Shevchenko <andy@infradead.org>
-
由 Lukas Wunner 提交于
Previously the slot workqueue was used to handle events and enable or disable the slot. That's no longer the case as those tasks are done synchronously in the IRQ thread. The slot workqueue is thus merely used to handle a button press after the 5 second delay and only one such work item may be in flight at any given time. A separate workqueue isn't necessary for this simple task, so use the system workqueue instead. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
Up until now, pciehp's IRQ handler schedules a work item for each event, which in turn schedules a work item to enable or disable the slot. This double indirection was necessary because sleeping wasn't allowed in the IRQ handler. However it is now that pciehp has been converted to threaded IRQ handling and polling, so handle events synchronously in pciehp_ist() and remove the work item infrastructure (with the exception of work items to handle a button press after the 5 second delay). For link or presence change events, move the register read to determine the current link or presence state behind acquisition of the slot lock to prevent it from becoming stale while the lock is contended. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
If the attention button is pressed to power on the slot AND the user powers on the slot via sysfs before 5 seconds have elapsed AND powering on the slot fails because either the slot is unoccupied OR the latch is open, we neglect turning off the green LED so it keeps on blinking. That's because the error path of pciehp_sysfs_enable_slot() doesn't call pciehp_green_led_off(), unlike pciehp_power_thread() which does. The bug has been present since 2004 when the driver was introduced. Fix by deduplicating common code in pciehp_sysfs_enable_slot() and pciehp_power_thread() into a wrapper function pciehp_enable_slot() and renaming the existing function to __pciehp_enable_slot(). Same for pciehp_disable_slot(). This will also simplify the upcoming rework of pciehp's event handling. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
We've just converted pciehp to threaded IRQ handling, but still cannot sleep in pciehp_ist() because the function is also called in poll mode, which runs in softirq context (from a timer). Convert poll mode to a kthread so that pciehp_ist() always runs in task context. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Thomas Gleixner <tglx@linutronix.de>
-
由 Lukas Wunner 提交于
pciehp's IRQ handler queues up a work item for each event signaled by the hardware. A more modern alternative is to let a long running kthread service the events. The IRQ handler's sole job is then to check whether the IRQ originated from the device in question, acknowledge its receipt to the hardware to quiesce the interrupt and wake up the kthread. One benefit is reduced latency to handle the IRQ, which is a necessity for realtime environments. Another benefit is that we can make pciehp simpler and more robust by handling events synchronously in process context, rather than asynchronously by queueing up work items. pciehp's usage of work items is a historic artifact, it predates the introduction of threaded IRQ handlers by two years. (The former was introduced in 2007 with commit 5d386e1a ("pciehp: Event handling rework"), the latter in 2009 with commit 3aa551c9 ("genirq: add threaded interrupt handler support").) Convert pciehp to threaded IRQ handling by retrieving the pending events in pciehp_isr(), saving them for later consumption by the thread handler pciehp_ist() and clearing them in the Slot Status register. By clearing the Slot Status (and thereby acknowledging the events) in pciehp_isr(), we can avoid requesting the IRQ with IRQF_ONESHOT, which would have the unpleasant side effect of starving devices sharing the IRQ until pciehp_ist() has finished. pciehp_isr() does not count how many times each event occurred, but merely records the fact *that* an event occurred. If the same event occurs a second time before pciehp_ist() is woken, that second event will not be recorded separately, which is problematic according to commit fad214b0 ("PCI: pciehp: Process all hotplug events before looking for new ones") because we may miss removal of a card in-between two back-to-back insertions. We're about to make pciehp_ist() resilient to missed events. The present commit regresses the driver's behavior temporarily in order to separate the changes into reviewable chunks. This doesn't affect regular slow-motion hotplug, only plug-unplug-plug operations that happen in a timespan shorter than wakeup of the IRQ thread. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Mayurkumar Patel <mayurkumar.patel@intel.com> Cc: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
-
由 Lukas Wunner 提交于
Document the driver's data structures to lower the barrier to entry for contributors. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
Since commit 0f4bd801 ("PCI: hotplug: Drop checking of PCI_BRIDGE_ CONTROL in *_unconfigure_device()"), pciehp_unconfigure_device() can no longer fail, so declare it and its sole caller remove_board() void, in keeping with the usual kernel pattern that enablement can fail, but disablement cannot. No functional change intended. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
-
由 Lukas Wunner 提交于
pciehp_disable_slot() checks if the ctrl attribute of the slot is NULL and bails out if so. However the function is not called prior to the attribute being set in pcie_init_slot(), and pcie_init_slot() is not called if ctrl is NULL. So the check is unnecessary. Drop it. It has been present ever since the driver was introduced in 2004, but it was already unnecessary back then: https://git.kernel.org/tglx/history/c/c16b4b14d980Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
Commit b440bde7 ("PCI: Add pci_ignore_hotplug() to ignore hotplug events for a device") iterates over the devices on a hotplug port's subordinate bus in pciehp's IRQ handler without acquiring pci_bus_sem. It is thus possible for a user to cause a crash by concurrently manipulating the device list, e.g. by disabling slot power via sysfs on a different CPU or by initiating a remove/rescan via sysfs. This can't be fixed by acquiring pci_bus_sem because it may sleep. The simplest fix is to avoid the list iteration altogether and just check the ignore_hotplug flag on the port itself. This works because pci_ignore_hotplug() sets the flag both on the device as well as on its parent bridge. We do lose the ability to print the name of the device blocking hotplug in the debug message, but that's probably bearable. Fixes: b440bde7 ("PCI: Add pci_ignore_hotplug() to ignore hotplug events for a device") Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: stable@vger.kernel.org
-
由 Lukas Wunner 提交于
When pciehp is unbound (e.g. on unplug of a Thunderbolt device), the hotplug_slot struct is deregistered and thus freed before freeing the IRQ. The IRQ handler and the work items it schedules print the slot name referenced from the freed structure in various informational and debug log messages, each time resulting in a quadruple dereference of freed pointers (hotplug_slot -> pci_slot -> kobject -> name). At best the slot name is logged as "(null)", at worst kernel memory is exposed in logs or the driver crashes: pciehp 0000:10:00.0:pcie204: Slot((null)): Card not present An attacker may provoke the bug by unplugging multiple devices on a Thunderbolt daisy chain at once. Unplugging can also be simulated by powering down slots via sysfs. The bug is particularly easy to trigger in poll mode. It has been present since the driver's introduction in 2004: https://git.kernel.org/tglx/history/c/c16b4b14d980 Fix by rearranging teardown such that the IRQ is freed first. Run the work items queued by the IRQ handler to completion before freeing the hotplug_slot struct by draining the work queue from the ->release_slot callback which is invoked by pci_hp_deregister(). Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: stable@vger.kernel.org # v2.6.4
-
由 Lukas Wunner 提交于
If addition of sysfs files fails on registration of a hotplug slot, the struct pci_slot as well as the entry in the slot_list is leaked. The issue has been present since the hotplug core was introduced in 2002: https://git.kernel.org/tglx/history/c/a8a2069f432c Perhaps the idea was that even though sysfs addition fails, the slot should still be usable. But that's not how drivers use the interface, they abort probe if a non-zero value is returned. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: stable@vger.kernel.org # v2.4.15+ Cc: Greg Kroah-Hartman <greg@kroah.com>
-
由 Lukas Wunner 提交于
Ten years ago, commit 58319b80 ("PCI: Hotplug core: remove 'name'") dropped the name element from struct hotplug_slot but neglected to update the skeleton driver. That same year, commit f46753c5 ("PCI: introduce pci_slot") raised the number of arguments to pci_hp_register() from one to four. Fourteen years ago, historic commit 7ab60fc1b8e7 ("PCI Hotplug skeleton: final cleanups") removed all usages of the retval variable from pcihp_skel_init() but not the variable itself, provoking a compiler warning: https://git.kernel.org/tglx/history/c/7ab60fc1b8e7 It seems fair to assume the driver hasn't been used as a template for a new driver in a while. Per Bjorn's and Christoph's preference, delete it. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Christoph Hellwig <hch@lst.de>
-
- 20 7月, 2018 2 次提交
-
-
由 Sinan Kaya 提交于
Rename pci_reset_bridge_secondary_bus() to pci_bridge_secondary_bus_reset() and move the declaration from linux/pci.h to drivers/pci.h to be used internally in PCI directory only. Signed-off-by: NSinan Kaya <okaya@codeaurora.org> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Sinan Kaya 提交于
Commit 01fd61c0 ("PCI: Add a return type for pci_reset_bridge_secondary_bus()") added a return value to the function to return if a device is accessible following a reset. Callers are not checking the value. Pass error code up high in the stack if device is not accessible. Fixes: 01fd61c0 ("PCI: Add a return type for pci_reset_bridge_secondary_bus()") Signed-off-by: NSinan Kaya <okaya@codeaurora.org> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
- 13 7月, 2018 1 次提交
-
-
由 Gustavo A. R. Silva 提交于
In preparation to enabling -Wimplicit-fallthrough, mark switch cases where we are expecting to fall through. Warning level 2 was used: -Wimplicit-fallthrough=2 Signed-off-by: NGustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
- 27 6月, 2018 1 次提交
-
-
由 Bjorn Helgaas 提交于
The shpchp driver registers for all PCI bridge devices. Its probe method should fail if either (1) the bridge doesn't have an SHPC or (2) the OS isn't allowed to use it (the platform firmware may be operating the SHPC itself). Separate these two tests into: - A new shpc_capable() that looks for the SHPC hardware and is applicable on all systems (ACPI and non-ACPI), and - A simplified acpi_get_hp_hw_control_from_firmware() that we call only when we already know an SHPC exists and there may be ACPI methods to either request permission to use it (_OSC) or transfer control to the OS (OSHP). acpi_get_hp_hw_control_from_firmware() is implemented when CONFIG_ACPI=y, but does nothing if the current platform doesn't support ACPI. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NMika Westerberg <mika.westerberg@linux.intel.com>
-
- 26 6月, 2018 1 次提交
-
-
由 Bjorn Helgaas 提交于
An SHPC can be operated either by platform firmware or by the OS. The OS uses a host bridge ACPI _OSC method to negotiate for control of SHPC. If firmware wants to prevent an OS from operating an SHPC, it must supply an _OSC method that declines to grant SHPC ownership to the OS. If acpi_pci_find_root() returns NULL, it means there's no ACPI host bridge device (PNP0A03 or PNP0A08) and hence no _OSC method, so the OS is always allowed to manage the SHPC. Fix a NULL pointer dereference when CONFIG_ACPI=y but the current hardware/firmware platform doesn't support ACPI. In that case, acpi_get_hp_hw_control_from_firmware() is implemented but acpi_pci_find_root() returns NULL. Fixes: 90cc0c3c ("PCI: shpchp: Add shpchp_is_native()") Link: https://lkml.kernel.org/r/20180621164715.28160-1-marc.zyngier@arm.comReported-by: NMarc Zyngier <marc.zyngier@arm.com> Tested-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NMika Westerberg <mika.westerberg@linux.intel.com>
-
- 05 6月, 2018 3 次提交
-
-
由 Mika Westerberg 提交于
Remove unnecessary parentheses. Signed-off-by: NMika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Mika Westerberg 提交于
Following PCIehp mark the unplugged PCI devices disconnected. This makes sure PCI core code leaves the now missing hardware registers alone. Signed-off-by: NMika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NAndy Shevchenko <andriy.shevchenko@linux.intel.com>
-
由 Mika Westerberg 提交于
When acpiphp re-enumerates a PCI hierarchy because of an ACPI Notify() event, we should skip bridges managed by native hotplug (pciehp or shpchp). We don't want to scan below a native hotplug bridge until the hotplug controller generates a hot-add event. A typical scenario is a Root Port leading to a Thunderbolt host router that remains powered off until something is connected to it. See [1] for the lspci details. 1. Before something is connected, only the Root Port exists. It has PCI_EXP_SLTCAP_HPC set and pciehp is responsible for hotplug: 00:1b.0 Root Port (HotPlug+) 2. When a USB-C or Thunderbolt device is connected, the Switch in the Thunderbolt host router is powered up, the Root Port signals a hotplug add event and pciehp enumerates the Switch: 01:00.0 Switch Upstream Port to [bus 02-39] 02:00.0 Switch Downstream Port to [bus 03] (HotPlug-, to NHI) 02:01.0 Switch Downstream Port to [bus 04-38] (HotPlug+, to Thunderbolt connector) 02:02.0 Switch Downstream Port to [bus 39] (HotPlug-, to xHCI) The 02:00.0 and 02:02.0 Ports lead to Endpoints that are not powered up yet. The Ports have PCI_EXP_SLTCAP_HPC cleared, so pciehp doesn't handle hotplug for them and we assign minimal resources to them. The 02:01.0 Port has PCI_EXP_SLTCAP_HPC set, so pciehp handles native hotplug events for it. 3. The BIOS powers up the xHCI controller. If a Thunderbolt device was connected (not just a USB-C device), it also powers up the NHI. Then it sends an ACPI Notify() to the Root Port, and acpiphp enumerates the new device(s): 03:00.0 Thunderbolt Host Controller (NHI) Endpoint 39:00.0 xHCI Endpoint 4. If a Thunderbolt device was connected, the host router firmware uses the NHI to set up Thunderbolt tunnels and triggers a native hotplug event (via 02:01.0 in this example). Then pciehp enumerates the new Thunderbolt devices: 04:00.0 Switch Upstream Port to [bus 05-38] 05:01.0 Switch Downstream Port to [bus 06-09] (HotPlug-) 05:04.0 Switch Downstream Port to [bus 0a-38] (HotPlug+) In this example, 05:01.0 leads to another Switch and some NICs. This subtree is static, so 05:01.0 doesn't support hotplug and has PCI_EXP_SLTCAP_HPC cleared. In step 3, acpiphp previously enumerated everything below the Root Port, including things below the 02:01.0 Port. We don't want that because pciehp expects to manage hotplug below that Port, and firmware on the host router may be in the middle of configuring its Link so it may not be ready yet. To make this work better with the native PCIe (pciehp) and standard PCI (shpchp) hotplug drivers, we let them handle all slot management and resource allocation for hotplug bridges and restrict ACPI hotplug to non-hotplug bridges. [1] https://bugzilla.kernel.org/show_bug.cgi?id=199581#c5 Link: https://lkml.kernel.org/r/20180529160155.1738-1-mika.westerberg@linux.intel.comSigned-off-by: NMika Westerberg <mika.westerberg@linux.intel.com> [bhelgaas: changelog, use hotplug_is_native() instead of dev->is_hotplug_bridge] Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NAndy Shevchenko <andriy.shevchenko@linux.intel.com>
-