- 07 1月, 2011 1 次提交
-
-
由 Russell King 提交于
Add ARM support for the DMA debug infrastructure, which allows the DMA API usage to be debugged. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 03 1月, 2011 1 次提交
-
-
由 Russell King 提交于
Replace the page_to_dma() and dma_to_page() macros with their PFN equivalents. This allows us to map parts of memory which do not have a struct page allocated to them to bus addresses. This will be used internally by dma_alloc_coherent()/dma_alloc_writecombine(). Build tested on Versatile, OMAP1, IOP13xx and KS8695. Tested-by: NJanusz Krzysztofik <jkrzyszt@tis.icnet.pl> Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 19 9月, 2010 1 次提交
-
-
由 Catalin Marinas 提交于
There are places in Linux where writes to newly allocated page cache pages happen without a subsequent call to flush_dcache_page() (several PIO drivers including USB HCD). This patch changes the meaning of PG_arch_1 to be PG_dcache_clean and always flush the D-cache for a newly mapped page in update_mmu_cache(). The patch also sets the PG_arch_1 bit in the DMA cache maintenance function to avoid additional cache flushing in update_mmu_cache(). Tested-by: NRabin Vincent <rabin.vincent@stericsson.com> Cc: Nicolas Pitre <nicolas.pitre@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 08 9月, 2010 1 次提交
-
-
由 Russell King 提交于
Dave Hylands reports: | We've observed a problem with dma_alloc_writecombine when the system | is under heavy load (heavy bus traffic). We've managed to reduce the | problem to the following snippet, which is run from a kthread in a | continuous loop: | | void *virtAddr; | dma_addr_t physAddr; | unsigned int numBytes = 256; | | for (;;) { | virtAddr = dma_alloc_writecombine(NULL, | numBytes, &physAddr, GFP_KERNEL); | if (virtAddr == NULL) { | printk(KERN_ERR "Running out of memory\n"); | break; | } | | /* access DMA memory allocated */ | tmp = virtAddr; | *tmp = 0x77; | | /* free DMA memory */ | dma_free_writecombine(NULL, | numBytes, virtAddr, physAddr); | | ...sleep here... | } | | By itself, the code will run forever with no issues. However, as we | increase our bus traffic (typically using DMA) then the *tmp = 0x77 | line will eventually cause a page fault. If we add a small delay (a | few microseconds) before the *tmp = 0x77, then we don't see a page | fault, even under heavy load. A dsb() is required after modifying the PTE entries to ensure that they will always be visible. Add this dsb(). Reported-by: NDave Hylands <dhylands@gmail.com> Tested-by: NDave Hylands <dhylands@gmail.com> Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 27 7月, 2010 1 次提交
-
-
由 Russell King 提交于
The DMA coherent remap area is used to provide an uncached mapping of memory for coherency with DMA engines. Currently, we look for any free hole which our allocation will fit in with page alignment. However, this can lead to fragmentation of the area, and allows small allocations to cross L1 entry boundaries. This is undesirable as we want to move towards allocating sections of memory. Align allocations according to the size, limiting the alignment between the page and section sizes. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 01 7月, 2010 1 次提交
-
-
由 Catalin Marinas 提交于
This macro is not defined when !CONFIG_MMU so this patch moves the CONSISTENT_* definitions to the CONFIG_MMU section. Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 14 4月, 2010 1 次提交
-
-
由 Nicolas Pitre 提交于
The VIVT cache of a highmem page is always flushed before the page is unmapped. This cache flush is explicit through flush_cache_kmaps() in flush_all_zero_pkmaps(), or through __cpuc_flush_dcache_area() in kunmap_atomic(). There is also an implicit flush of those highmem pages that were part of a process that just terminated making those pages free as the whole VIVT cache has to be flushed on every task switch. Hence unmapped highmem pages need no cache maintenance in that case. However unmapped pages may still be cached with a VIPT cache because the cache is tagged with physical addresses. There is no need for a whole cache flush during task switching for that reason, and despite the explicit cache flushes in flush_all_zero_pkmaps() and kunmap_atomic(), some highmem pages that were mapped in user space end up still cached even when they become unmapped. So, we do have to perform cache maintenance on those unmapped highmem pages in the context of DMA when using a VIPT cache. Unfortunately, it is not possible to perform that cache maintenance using physical addresses as all the L1 cache maintenance coprocessor functions accept virtual addresses only. Therefore we have no choice but to set up a temporary virtual mapping for that purpose. And of course the explicit cache flushing when unmapping a highmem page on a system with a VIPT cache now can go, which should increase performance. While at it, because the code in __flush_dcache_page() has to be modified anyway, let's also make sure the mapped highmem pages are pinned with kmap_high_get() for the duration of the cache maintenance operation. Because kunmap() does unmap highmem pages lazily, it was reported by Gary King <GKing@nvidia.com> that those pages ended up being unmapped during cache maintenance on SMP causing segmentation faults. Signed-off-by: NNicolas Pitre <nico@marvell.com> Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 30 3月, 2010 1 次提交
-
-
由 Tejun Heo 提交于
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: NTejun Heo <tj@kernel.org> Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
-
- 16 2月, 2010 1 次提交
-
-
由 Fenkart/Bostandzhyan 提交于
Adds DMA area to 'virtual memory map' startup message Tested-by: NH Hartley Sweeten <hsweeten@visionengravers.com> Signed-off-by: NAndreas Fenkart <andreas.fenkart@streamunlimited.com> Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 15 2月, 2010 6 次提交
-
-
由 Russell King 提交于
ARMv6 and ARMv7 CPUs can perform speculative prefetching, which makes DMA cache coherency handling slightly more interesting. Rather than being able to rely upon the CPU not accessing the DMA buffer until DMA has completed, we now must expect that the cache could be loaded with possibly stale data from the DMA buffer. Where DMA involves data being transferred to the device, we clean the cache before handing it over for DMA, otherwise we invalidate the buffer to get rid of potential writebacks. On DMA Completion, if data was transferred from the device, we invalidate the buffer to get rid of any stale speculative prefetches. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Tested-By: NSantosh Shilimkar <santosh.shilimkar@ti.com>
-
由 Russell King 提交于
Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Tested-By: NSantosh Shilimkar <santosh.shilimkar@ti.com>
-
由 Russell King 提交于
dma_cache_maint_contiguous is now simple enough to live inside dma_cache_maint_page, so move it there. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Tested-By: NSantosh Shilimkar <santosh.shilimkar@ti.com>
-
由 Russell King 提交于
Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Tested-By: NSantosh Shilimkar <santosh.shilimkar@ti.com>
-
由 Russell King 提交于
Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Tested-By: NSantosh Shilimkar <santosh.shilimkar@ti.com>
-
由 Russell King 提交于
The DMA API has the notion of buffer ownership; make it explicit in the ARM implementation of this API. This gives us a set of hooks to allow us to deal with CPU cache issues arising from non-cache coherent DMA. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Tested-By: NSantosh Shilimkar <santosh.shilimkar@ti.com> Tested-By: NJamie Iles <jamie@jamieiles.com>
-
- 25 11月, 2009 10 次提交
-
-
由 Russell King 提交于
On ARMv7, it is invalid to map the same physical address multiple times with different memory types. Since system RAM is already mapped as 'memory', subsequent remapping of it must retain this attribute. However, DMA memory maps it as "strongly ordered". Fix this by introducing 'pgprot_dmacoherent()' which provides the necessary page table bits for DMA mappings. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Acked-by: NGreg Ungerer <gerg@uclinux.org> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Russell King 提交于
It's unnecessary; x86 doesn't do it, and ALSA doesn't require it anymore. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Acked-by: NGreg Ungerer <gerg@uclinux.org>
-
由 Russell King 提交于
This entirely separates the DMA coherent buffer remapping code from the allocation code, and gets rid of the duplicate copy in the !MMU section. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Acked-by: NGreg Ungerer <gerg@uclinux.org>
-
由 Russell King 提交于
IXP23xx added support for dma_alloc_coherent() for DMA arches with an exception in dma_alloc_coherent(). This is a subset of what goes on in __dma_alloc(), and there is no reason why dma_alloc_writecombine() should not be given the same treatment (except, maybe, that IXP23xx doesn't use it.) We can better deal with this by moving the arch_is_coherent() test inside __dma_alloc() and killing the code duplication. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Acked-by: NGreg Ungerer <gerg@uclinux.org>
-
由 Russell King 提交于
No point wrapping the contents of this function with #ifdef CONFIG_MMU when we can place it and the core_initcall() entirely within the existing conditional block. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Acked-by: NGreg Ungerer <gerg@uclinux.org>
-
由 Russell King 提交于
We effectively have three implementations of dma_free_coherent() mixed up in the code; the incoherent MMU, coherent MMU and noMMU versions. The coherent MMU and noMMU versions are actually functionally identical. The incoherent MMU version is almost the same, but with the additional step of unmapping the secondary mapping. Separate out this additional step into __dma_free_remap() and simplify the resulting dma_free_coherent() code. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Acked-by: NGreg Ungerer <gerg@uclinux.org>
-
由 Russell King 提交于
The nommu version of dma_alloc_coherent was using kmalloc/kfree to manage the memory. dma_alloc_coherent() is expected to work with a granularity of a page, so this is wrong. Fix it by using the helper functions now provided. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Acked-by: NGreg Ungerer <gerg@uclinux.org>
-
由 Russell King 提交于
The coherent architecture dma_alloc_coherent was using kmalloc/kfree to manage the memory. dma_alloc_coherent() is expected to work with a granularity of a page, so this is wrong. Fix it by using the helper functions now provided. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Acked-by: NGreg Ungerer <gerg@uclinux.org>
-
由 Russell King 提交于
Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Acked-by: NGreg Ungerer <gerg@uclinux.org>
-
由 Russell King 提交于
Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk> Acked-by: NGreg Ungerer <gerg@uclinux.org>
-
- 26 10月, 2009 1 次提交
-
-
由 Russell King 提交于
We were using GFP_DMA for masks other than 0xffffffff, which is wrong when some masks are initialized to 0xffffffffffffffff. This caused such masks to obtain memory from the precious DMA pool. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 24 7月, 2009 1 次提交
-
-
由 Catalin Marinas 提交于
Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 16 3月, 2009 1 次提交
-
-
由 Nicolas Pitre 提交于
This is a helper to be used by the DMA mapping API to handle cache maintenance for memory identified by a page structure instead of a virtual address. Those pages may or may not be highmem pages, and when they're highmem pages, they may or may not be virtually mapped. When they're not mapped then there is no L1 cache to worry about. But even in that case the L2 cache must be processed since unmapped highmem pages can still be L2 cached. Signed-off-by: NNicolas Pitre <nico@marvell.com>
-
- 13 3月, 2009 1 次提交
-
-
由 Russell King 提交于
The current use of these macros works well when the conversion is entirely linear. In this case, we can be assured that the following holds true: __va(p + s) - s = __va(p) However, this is not always the case, especially when there is a non-linear conversion (eg, when there is a 3.5GB hole in memory.) In this case, if 's' is the size of the region (eg, PAGE_SIZE) and 'p' is the final page, the above is most definitely not true. So, we must ensure that __va() and __pa() are only used with valid kernel direct mapped RAM addresses. This patch tweaks the code to achieve this. Tested-by: NCharles Moschel <fred99@carolina.rr.com> Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 08 1月, 2009 1 次提交
-
-
由 David Howells 提交于
Rename ARM's struct vm_region so that I can introduce my own global version for NOMMU. It's feasible that the ARM version may wish to use my global one instead. The NOMMU vm_region struct defines areas of the physical memory map that are under mmap. This may include chunks of RAM or regions of memory mapped devices, such as flash. It is also used to retain copies of file content so that shareable private memory mappings of files can be made. As such, it may be compatible with what is described in the banner comment for ARM's vm_region struct. Signed-off-by: NDavid Howells <dhowells@redhat.com>
-
- 30 9月, 2008 1 次提交
-
-
由 Russell King 提交于
As per the dma_unmap_* calls, we don't touch the cache when a DMA buffer transitions from device to CPU ownership. Presently, no problems have been identified with speculative cache prefetching which in itself is a new feature in later architectures. We may have to revisit the DMA API later for these architectures anyway. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 29 9月, 2008 1 次提交
-
-
由 Russell King 提交于
Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 26 9月, 2008 2 次提交
-
-
由 Russell King 提交于
No point having two of these; dma_map_page() can do all the work for us. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
由 Russell King 提交于
Update the ARM DMA scatter gather APIs for the scatterlist changes. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 25 9月, 2008 1 次提交
-
-
由 Russell King 提交于
Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 19 7月, 2008 1 次提交
-
-
由 Dmitry Baryshkov 提交于
Signed-off-by: NDmitry Baryshkov <dbaryshkov@gmail.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 11 11月, 2007 1 次提交
-
-
由 Russell King 提交于
remap_pfn_range() takes care of setting the appropriate VM_* flags itself; there's no need for callers of remap_pfn_range() to set VM_RESERVED before it is called. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 13 10月, 2007 1 次提交
-
-
由 Russell King 提交于
consistent_sync() is used to handle the cache maintainence issues with DMA operations. Since we've now removed the misuse of this function from the two MTD drivers, rename it to prevent future mis-use. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 08 2月, 2007 2 次提交
-
-
由 Lennert Buytenhek 提交于
In consistent_sync(), start + size can end up pointing one byte beyond the end of the direct RAM mapping. We shouldn't BUG() when this happens. Signed-off-by: NLennert Buytenhek <buytenh@wantstofly.org> Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
由 Russell King 提交于
The DMA cache handling functions take virtual addresses, but in the form of unsigned long arguments. This leads to a little confusion about what exactly they take. So, convert them to take const void * instead. Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-