- 25 3月, 2015 1 次提交
-
-
由 Sheng Yong 提交于
In the case where we have more than one volumes on different UBI devices, it may be not that easy to tell which volume prints the messages. Add ubi number and volume id in ubifs_msg/warn/error to help debug. These two values are passed by struct ubifs_info. For those where ubifs_info is not initialized yet, ubifs_* is replaced by pr_*. For those where ubifs_info is not avaliable, ubifs_info is passed to the calling function as a const parameter. The output looks like, [ 95.444879] UBIFS (ubi0:1): background thread "ubifs_bgt0_1" started, PID 696 [ 95.484688] UBIFS (ubi0:1): UBIFS: mounted UBI device 0, volume 1, name "test1" [ 95.484694] UBIFS (ubi0:1): LEB size: 126976 bytes (124 KiB), min./max. I/O unit sizes: 2048 bytes/2048 bytes [ 95.484699] UBIFS (ubi0:1): FS size: 30220288 bytes (28 MiB, 238 LEBs), journal size 1523712 bytes (1 MiB, 12 LEBs) [ 95.484703] UBIFS (ubi0:1): reserved for root: 1427378 bytes (1393 KiB) [ 95.484709] UBIFS (ubi0:1): media format: w4/r0 (latest is w4/r0), UUID 40DFFC0E-70BE-4193-8905-F7D6DFE60B17, small LPT model [ 95.489875] UBIFS (ubi1:0): background thread "ubifs_bgt1_0" started, PID 699 [ 95.529713] UBIFS (ubi1:0): UBIFS: mounted UBI device 1, volume 0, name "test2" [ 95.529718] UBIFS (ubi1:0): LEB size: 126976 bytes (124 KiB), min./max. I/O unit sizes: 2048 bytes/2048 bytes [ 95.529724] UBIFS (ubi1:0): FS size: 19808256 bytes (18 MiB, 156 LEBs), journal size 1015809 bytes (0 MiB, 8 LEBs) [ 95.529727] UBIFS (ubi1:0): reserved for root: 935592 bytes (913 KiB) [ 95.529733] UBIFS (ubi1:0): media format: w4/r0 (latest is w4/r0), UUID EEB7779D-F419-4CA9-811B-831CAC7233D4, small LPT model [ 954.264767] UBIFS error (ubi1:0 pid 756): ubifs_read_node: bad node type (255 but expected 6) [ 954.367030] UBIFS error (ubi1:0 pid 756): ubifs_read_node: bad node at LEB 0:0, LEB mapping status 1 Signed-off-by: NSheng Yong <shengyong1@huawei.com> Signed-off-by: NArtem Bityutskiy <artem.bityutskiy@linux.intel.com>
-
- 19 7月, 2014 1 次提交
-
-
由 hujianyang 提交于
This patch removes useless and duplicate statements. Signed-off-by: Nhujianyang <hujianyang@huawei.com> Signed-off-by: NArtem Bityutskiy <artem.bityutskiy@linux.intel.com>
-
- 03 6月, 2014 1 次提交
-
-
由 hujianyang 提交于
This patch adds a new ubifs_assert() in ubifs_tnc_close() to check if there are any leaks of per-filesystem @clean_zn_cnt. This new assert inspects whether the return value of ubifs_destroy_tnc_subtree() is equal to @clean_zn_cnt or not while umount. Artem: a minor amendment Signed-off-by: Nhujianyang <hujianyang@huawei.com> Signed-off-by: NArtem Bityutskiy <artem.bityutskiy@linux.intel.com>
-
- 24 1月, 2014 1 次提交
-
-
由 Cody P Schafer 提交于
Use rbtree_postorder_for_each_entry_safe() to destroy the rbtree instead of opencoding an alternate postorder iteration that modifies the tree Signed-off-by: NCody P Schafer <cody@linux.vnet.ibm.com> Cc: Michel Lespinasse <walken@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 5月, 2012 3 次提交
-
-
由 Artem Bityutskiy 提交于
Have the debugging stuff always compiled-in instead. It simplifies maintanance a lot. Signed-off-by: NArtem Bityutskiy <artem.bityutskiy@linux.intel.com>
-
由 Artem Bityutskiy 提交于
This commit re-names all functions which dump something from "dbg_dump_*()" to "ubifs_dump_*()". This is done for consistency with UBI and because this way it will be more logical once we remove the debugging sompilation option. Signed-off-by: NArtem Bityutskiy <artem.bityutskiy@linux.intel.com>
-
由 Artem Bityutskiy 提交于
In case of errors we almost always need the stack dump - it makes no sense to compile it out. Remove the 'dbg_dump_stack()' function completely. Signed-off-by: NArtem Bityutskiy <artem.bityutskiy@linux.intel.com>
-
- 11 5月, 2012 1 次提交
-
-
由 Linus Torvalds 提交于
This allows comparing hash and len in one operation on 64-bit architectures. Right now only __d_lookup_rcu() takes advantage of this, since that is the case we care most about. The use of anonymous struct/unions hides the alternate 64-bit approach from most users, the exception being a few cases where we initialize a 'struct qstr' with a static initializer. This makes the problematic cases use a new QSTR_INIT() helper function for that (but initializing just the name pointer with a "{ .name = xyzzy }" initializer remains valid, as does just copying another qstr structure). Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 1月, 2012 1 次提交
-
-
由 Artem Bityutskiy 提交于
Before commit 56e46742 we have had locking around all printing macros and we could use static buffers for creating key strings and printing them. However, now we do not have that locking and we cannot use static buffers. This commit removes the old DBGKEY() macros and introduces few new helper macros for printing debugging messages plus a key at the end. Thankfully, all the messages are already structures in a way that the key is printed in the end. Signed-off-by: NArtem Bityutskiy <artem.bityutskiy@linux.intel.com>
-
- 22 11月, 2011 1 次提交
-
-
由 Thomas Meyer 提交于
The semantic patch that makes this change is available in scripts/coccinelle/api/memdup.cocci. Signed-off-by: NThomas Meyer <thomas@m3y3r.de> Signed-off-by: NArtem Bityutskiy <artem.bityutskiy@linux.intel.com>
-
- 04 7月, 2011 4 次提交
-
-
由 Artem Bityutskiy 提交于
Instead of using 'ubi_read()' function directly, used the 'ubifs_leb_read()' helper function instead. This allows to get rid of several redundant error messages and make sure that we always have a stack dump on read errors. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
This patch introduces helper functions for all debugging checks, so instead of doing if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) we now do if (!dbg_is_chk_gen(c)) This is a preparation to further changes where the flags will go away, and we'll need to only change the helper functions, but the code which utilizes them won't be touched. At the same time this patch removes 'dbg_force_in_the_gaps()', 'dbg_force_in_the_gaps_enabled()', and dbg_failure_mode helpers for consistency. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
We have 3 znode flags: cow, obsolete, dirty. For the last flag we have a 'ubifs_zn_dirty()' helper function, but for the other 2 flags we use 'test_bit()' directly. This patch makes the situation more consistent and introduces helpers for the other 2 flags: 'ubifs_zn_cow()' and 'ubifs_zn_obsolete()'. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Teach 'dbg_dump_inode()' dump directory entries for directory inodes. This requires few additional changes: 1. The 'c' argument of 'dbg_dump_inode()' cannot be const any more. 2. Users of 'dbg_dump_inode()' should not have 'tnc_mutex' locked. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 03 6月, 2011 1 次提交
-
-
由 Artem Bityutskiy 提交于
UBIFS maintains per-filesystem and global clean znode counters ('c->clean_zn_cnt' and 'ubifs_clean_zn_cnt'). It is important to maintain correct values there since the shrinker relies on 'ubifs_clean_zn_cnt'. However, in case of failures during commit the counters were corrupted. E.g., if a failure happens in the middle of 'write_index()', then some nodes in the commit list ('c->cnext') are marked as clean, and some are marked as dirty. And the 'ubifs_destroy_tnc_subtree()' frees does not retrun correct count, and we end up with non-zero 'c->clean_zn_cnt' when unmounting. This means that if we have 2 file-sytem and one of them fails, and we unmount it, 'ubifs_clean_zn_cnt' stays incorrect and confuses the shrinker. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 14 5月, 2011 1 次提交
-
-
由 Artem Bityutskiy 提交于
Fix several minor stylistic issues: * lines longer than 80 characters * space before closing parenthesis ')' * spaces in the indentations Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 18 1月, 2011 1 次提交
-
-
由 Artem Bityutskiy 提交于
This is a preparational patch which removes the 'c->always_chk_crc' which was set during mounting and remounting to R/W mode and introduces 'c->mounting' flag which is set when mounting. Now the 'c->always_chk_crc' flag is the same as 'c->remounting_rw && c->mounting'. This patch is a preparation for the next one which will need to know when we are mounting and remounting to R/W mode, which is exactly what 'c->always_chk_crc' effectively is, but its name does not suite the next patch. The other possibility would be to just re-name it, but then we'd end up with less logical flags coverage. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 30 8月, 2010 1 次提交
-
-
由 Artem Bityutskiy 提交于
When scanning the flash, UBIFS builds a list of flash nodes of type 'struct ubifs_scan_node'. Each scanned node has a 'snod->key' field. This field is valid for most of the nodes, but invalid for some node type, e.g., truncation nodes. It is safer to explicitly initialize such keys to something invalid, rather than leaving them initialized to all zeros, which has key type of UBIFS_INO_KEY. This patch introduces new "fake" key type UBIFS_INVALID_KEY and initializes unused 'snod->key' objects to this type. It also adds debugging assertions in the TNC code to make sure no one ever tries to look these nodes up in the TNC. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 30 3月, 2010 1 次提交
-
-
由 Tejun Heo 提交于
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: NTejun Heo <tj@kernel.org> Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
-
- 10 9月, 2009 1 次提交
-
-
由 Artem Bityutskiy 提交于
Add one more check to UBIFS - a check that makes sure that there are no data nodes beyond inode size. And few commantaries fixes along the line. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com> Reviewed-by: NAdrian Hunter <Adrian.Hunter@nokia.com>
-
- 21 3月, 2009 1 次提交
-
-
由 Artem Bityutskiy 提交于
Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 27 1月, 2009 1 次提交
-
-
由 Artem Bityutskiy 提交于
When data CRC checking is disabled, UBIFS returns incorrect return code from the 'try_read_node()' function (0 instead of 1, which means CRC error), which make the caller re-read the data node again, but using a different code patch, so the second read is fine. Thus, we read the same node twice. And the result of this is that UBIFS is slower with no_chk_data_crc option than it is with chk_data_crc option. This patches fixes the problem. Reported-by: NReuben Dowle <Reuben.Dowle@navico.com> Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 31 12月, 2008 1 次提交
-
-
由 Artem Bityutskiy 提交于
These are mostly long lines and wrong indentation warning fixes. But also there are two volatile variables and checkpatch.pl complains about them: WARNING: Use of volatile is usually wrong: see Documentation/volatile-considered-harmful.txt + volatile int gc_seq; WARNING: Use of volatile is usually wrong: see Documentation/volatile-considered-harmful.txt + volatile int gced_lnum; Well, we anyway use smp_wmb() for c->gc_seq and c->gced_lnum, so these 'volatile' modifiers can be just dropped. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 22 11月, 2008 1 次提交
-
-
由 Artem Bityutskiy 提交于
Bulk-read allocates 128KiB or more using kmalloc. The allocation starts failing often when the memory gets fragmented. UBIFS still works fine in this case, because it falls-back to standard (non-optimized) read method, though. This patch teaches bulk-read to allocate exactly the amount of memory it needs, instead of allocating 128KiB every time. This patch is also a preparation to the further fix where we'll have a pre-allocated bulk-read buffer as well. For example, now the @bu object is prepared in 'ubifs_bulk_read()', so we could path either pre-allocated or allocated information to 'ubifs_do_bulk_read()' later. Or teaching 'ubifs_do_bulk_read()' not to allocate 'bu->buf' if it is already there. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 06 11月, 2008 1 次提交
-
-
由 Artem Bityutskiy 提交于
We print 'ino_t' type using '%lu' printk() placeholder, but this results in many warnings when compiling for Alpha platform. Fix this by adding (unsingned long) casts. Fixes these warnings: fs/ubifs/journal.c:693: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/journal.c:1131: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/dir.c:163: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/tnc.c:2680: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/tnc.c:2700: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/replay.c:1066: warning: format '%lu' expects type 'long unsigned int', but argument 7 has type 'ino_t' fs/ubifs/orphan.c:108: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:135: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:142: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:154: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:159: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:451: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:539: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:612: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:843: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:856: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/recovery.c:1438: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/recovery.c:1443: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/recovery.c:1475: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/recovery.c:1495: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:105: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:105: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:110: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:110: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:114: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:114: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:118: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:118: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:1591: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1671: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1674: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/debug.c:1680: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1699: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/debug.c:1788: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/debug.c:1821: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/debug.c:1833: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/debug.c:1924: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1932: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1938: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1945: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1953: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1960: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1967: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1973: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1988: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1991: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/debug.c:2009: warning: format '%lu' expects type 'long unsigned int', but argument 2 has type 'ino_t' Reported-by: NRandy Dunlap <randy.dunlap@oracle.com> Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 30 9月, 2008 5 次提交
-
-
由 Adrian Hunter 提交于
Signed-off-by: NAdrian Hunter <ext-adrian.hunter@nokia.com>
-
由 Adrian Hunter 提交于
When inserting into a full znode it is split into two znodes. Because data node keys are usually consecutive, it is better to try to keep them together. This patch does a better job of that. Signed-off-by: NAdrian Hunter <ext-adrian.hunter@nokia.com>
-
由 Adrian Hunter 提交于
UBIFS read performance can be improved by skipping the CRC check when data nodes are read. This option can be used if the underlying media is considered to be highly reliable. Note that CRCs are always checked for metadata. Read speed on Arm platform with OneNAND goes from 19 MiB/s to 27 MiB/s with data CRC checking disabled. Signed-off-by: NAdrian Hunter <ext-adrian.hunter@nokia.com>
-
由 Adrian Hunter 提交于
Some flash media are capable of reading sequentially at faster rates. UBIFS bulk-read facility is designed to take advantage of that, by reading in one go consecutive data nodes that are also located consecutively in the same LEB. Read speed on Arm platform with OneNAND goes from 17 MiB/s to 19 MiB/s. Signed-off-by: NAdrian Hunter <ext-adrian.hunter@nokia.com>
-
由 Hirofumi Nakagawa 提交于
IS_ERR() macro already has unlikely(), so do not use constructions like 'if (unlikely(IS_ERR())'. Signed-off-by: NHirofumi Nakagawa <hnakagawa@miraclelinux.com> Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 17 9月, 2008 1 次提交
-
-
由 Adrian Hunter 提交于
- update GC sequence number if any nodes may have been moved even if GC did not finish the LEB - don't ignore error return when reading Signed-off-by: NAdrian Hunter <ext-adrian.hunter@nokia.com> Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 25 8月, 2008 2 次提交
-
-
由 Adrian Hunter 提交于
The TNC mutex is unlocked prematurely when reading leaf nodes with non-hashed keys. This is unsafe because the node may be moved by garbage collection and the eraseblock unmapped, although that has never actually happened during stress testing. This patch fixes the flaw by detecting the race and retrying with the TNC mutex locked. Signed-off-by: NAdrian Hunter <ext-adrian.hunter@nokia.com>
-
由 Adrian Hunter 提交于
Leaf-nodes that have a hashed key are stored in the leaf-node-cache (LNC) which is protected by the TNC mutex. Consequently, when reading a leaf node with a hashed key (i.e. directory entries, xattr entries) the TNC mutex is always required. Signed-off-by: NAdrian Hunter <ext-adrian.hunter@nokia.com>
-
- 15 7月, 2008 1 次提交
-
-
由 Artem Bityutskiy 提交于
This is a new flash file system. See http://www.linux-mtd.infradead.org/doc/ubifs.htmlSigned-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com> Signed-off-by: NAdrian Hunter <ext-adrian.hunter@nokia.com>
-