- 12 4月, 2018 3 次提交
-
-
由 Marc Zyngier 提交于
The very existence of __smccc_workaround_1_hvc_* is a thinko, as KVM will never use a HVC call to perform the branch prediction invalidation. Even as a nested hypervisor, it would use an SMC instruction. Let's get rid of it. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Marc Zyngier 提交于
Since 5e7951ce ("arm64: capabilities: Clean up midr range helpers"), capabilities must be represented with a single entry. If multiple CPU types can use the same capability, then they need to be enumerated in a list. The EL2 hardening stuff (which affects both A57 and A72) managed to escape the conversion in the above patch thanks to the 4.17 merge window. Let's fix it now. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Shanker Donthineni 提交于
The function SMCCC_ARCH_WORKAROUND_1 was introduced as part of SMC V1.1 Calling Convention to mitigate CVE-2017-5715. This patch uses the standard call SMCCC_ARCH_WORKAROUND_1 for Falkor chips instead of Silicon provider service ID 0xC2001700. Cc: <stable@vger.kernel.org> # 4.14+ Signed-off-by: NShanker Donthineni <shankerd@codeaurora.org> [maz: reworked errata framework integration] Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 28 3月, 2018 2 次提交
-
-
由 Marc Zyngier 提交于
MIDR_ALL_VERSIONS is changing, and won't have the same meaning in 4.17, and the right thing to use will be ERRATA_MIDR_ALL_VERSIONS. In order to cope with the merge window, let's add a compatibility macro that will allow a relatively smooth transition, and that can be removed post 4.17-rc1. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Creates far too many conflicts with arm64/for-next/core, to be resent post -rc1. This reverts commit f9f5dc19. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 27 3月, 2018 9 次提交
-
-
由 Will Deacon 提交于
An allnoconfig build complains about unused symbols due to functions that are called via conditional cpufeature and cpu_errata table entries. Annotate these as __maybe_unused if they are likely to be generic, or predicate their compilation on the same option as the table entry if they are specific to a given alternative. Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
Some capabilities have different criteria for detection and associated actions based on the matching criteria, even though they all share the same capability bit. So far we have used multiple entries with the same capability bit to handle this. This is prone to errors, as the cpu_enable is invoked for each entry, irrespective of whether the detection rule applies to the CPU or not. And also this complicates other helpers, e.g, __this_cpu_has_cap. This patch adds a wrapper entry to cover all the possible variations of a capability by maintaining list of matches + cpu_enable callbacks. To avoid complicating the prototypes for the "matches()", we use arm64_cpu_capabilities maintain the list and we ignore all the other fields except the matches & cpu_enable. This ensures : 1) The capabilitiy is set when at least one of the entry detects 2) Action is only taken for the entries that "matches". This avoids explicit checks in the cpu_enable() take some action. The only constraint here is that, all the entries should have the same "type" (i.e, scope and conflict rules). If a cpu_enable() method is associated with multiple matches for a single capability, care should be taken that either the match criteria are mutually exclusive, or that the method is robust against being called multiple times. This also reverts the changes introduced by commit 67948af4 ("arm64: capabilities: Handle duplicate entries for a capability"). Cc: Robin Murphy <robin.murphy@arm.com> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
Add helpers for detecting an errata on list of midr ranges of affected CPUs, with the same work around. Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
Add helpers for checking if the given CPU midr falls in a range of variants/revisions for a given model. Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
We are about to introduce generic MIDR range helpers. Clean up the existing helpers in erratum handling, preparing them to use generic version. Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
When a CPU is brought up, it is checked against the caps that are known to be enabled on the system (via verify_local_cpu_capabilities()). Based on the state of the capability on the CPU vs. that of System we could have the following combinations of conflict. x-----------------------------x | Type | System | Late CPU | |-----------------------------| | a | y | n | |-----------------------------| | b | n | y | x-----------------------------x Case (a) is not permitted for caps which are system features, which the system expects all the CPUs to have (e.g VHE). While (a) is ignored for all errata work arounds. However, there could be exceptions to the plain filtering approach. e.g, KPTI is an optional feature for a late CPU as long as the system already enables it. Case (b) is not permitted for errata work arounds that cannot be activated after the kernel has finished booting.And we ignore (b) for features. Here, yet again, KPTI is an exception, where if a late CPU needs KPTI we are too late to enable it (because we change the allocation of ASIDs etc). Add two different flags to indicate how the conflict should be handled. ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - CPUs may have the capability ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - CPUs may not have the cappability. Now that we have the flags to describe the behavior of the errata and the features, as we treat them, define types for ERRATUM and FEATURE. Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
We use arm64_cpu_capabilities to represent CPU ELF HWCAPs exposed to the userspace and the CPU hwcaps used by the kernel, which include cpu features and CPU errata work arounds. Capabilities have some properties that decide how they should be treated : 1) Detection, i.e scope : A cap could be "detected" either : - if it is present on at least one CPU (SCOPE_LOCAL_CPU) Or - if it is present on all the CPUs (SCOPE_SYSTEM) 2) When is it enabled ? - A cap is treated as "enabled" when the system takes some action based on whether the capability is detected or not. e.g, setting some control register, patching the kernel code. Right now, we treat all caps are enabled at boot-time, after all the CPUs are brought up by the kernel. But there are certain caps, which are enabled early during the boot (e.g, VHE, GIC_CPUIF for NMI) and kernel starts using them, even before the secondary CPUs are brought up. We would need a way to describe this for each capability. 3) Conflict on a late CPU - When a CPU is brought up, it is checked against the caps that are known to be enabled on the system (via verify_local_cpu_capabilities()). Based on the state of the capability on the CPU vs. that of System we could have the following combinations of conflict. x-----------------------------x | Type | System | Late CPU | ------------------------------| | a | y | n | ------------------------------| | b | n | y | x-----------------------------x Case (a) is not permitted for caps which are system features, which the system expects all the CPUs to have (e.g VHE). While (a) is ignored for all errata work arounds. However, there could be exceptions to the plain filtering approach. e.g, KPTI is an optional feature for a late CPU as long as the system already enables it. Case (b) is not permitted for errata work arounds which requires some work around, which cannot be delayed. And we ignore (b) for features. Here, yet again, KPTI is an exception, where if a late CPU needs KPTI we are too late to enable it (because we change the allocation of ASIDs etc). So this calls for a lot more fine grained behavior for each capability. And if we define all the attributes to control their behavior properly, we may be able to use a single table for the CPU hwcaps (which cover errata and features, not the ELF HWCAPs). This is a prepartory step to get there. More bits would be added for the properties listed above. We are going to use a bit-mask to encode all the properties of a capabilities. This patch encodes the "SCOPE" of the capability. As such there is no change in how the capabilities are treated. Cc: Mark Rutland <mark.rutland@arm.com> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
We have errata work around processing code in cpu_errata.c, which calls back into helpers defined in cpufeature.c. Now that we are going to make the handling of capabilities generic, by adding the information to each capability, move the errata work around specific processing code. No functional changes. Cc: Will Deacon <will.deacon@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andre Przywara <andre.przywara@arm.com> Reviewed-by: NDave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Dave Martin 提交于
We issue the enable() call back for all CPU hwcaps capabilities available on the system, on all the CPUs. So far we have ignored the argument passed to the call back, which had a prototype to accept a "void *" for use with on_each_cpu() and later with stop_machine(). However, with commit 0a0d111d ("arm64: cpufeature: Pass capability structure to ->enable callback"), there are some users of the argument who wants the matching capability struct pointer where there are multiple matching criteria for a single capability. Clean up the declaration of the call back to make it clear. 1) Renamed to cpu_enable(), to imply taking necessary actions on the called CPU for the entry. 2) Pass const pointer to the capability, to allow the call back to check the entry. (e.,g to check if any action is needed on the CPU) 3) We don't care about the result of the call back, turning this to a void. Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andre Przywara <andre.przywara@arm.com> Cc: James Morse <james.morse@arm.com> Acked-by: NRobin Murphy <robin.murphy@arm.com> Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Signed-off-by: NDave Martin <dave.martin@arm.com> [suzuki: convert more users, rename call back and drop results] Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 20 3月, 2018 1 次提交
-
-
由 Shanker Donthineni 提交于
The function SMCCC_ARCH_WORKAROUND_1 was introduced as part of SMC V1.1 Calling Convention to mitigate CVE-2017-5715. This patch uses the standard call SMCCC_ARCH_WORKAROUND_1 for Falkor chips instead of Silicon provider service ID 0xC2001700. Cc: <stable@vger.kernel.org> # 4.14+ Signed-off-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 19 3月, 2018 2 次提交
-
-
由 Marc Zyngier 提交于
Cortex-A57 and A72 are vulnerable to the so-called "variant 3a" of Meltdown, where an attacker can speculatively obtain the value of a privileged system register. By enabling ARM64_HARDEN_EL2_VECTORS on these CPUs, obtaining VBAR_EL2 is not disclosing the hypervisor mappings anymore. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
We're about to need to allocate hardening slots from other parts of the kernel (in order to support ARM64_HARDEN_EL2_VECTORS). Turn the counter into an atomic_t and make it available to the rest of the kernel. Also add BP_HARDEN_EL2_SLOTS as the number of slots instead of the hardcoded 4... Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 10 3月, 2018 1 次提交
-
-
由 Marc Zyngier 提交于
A recent update to the ARM SMCCC ARCH_WORKAROUND_1 specification allows firmware to return a non zero, positive value to describe that although the mitigation is implemented at the higher exception level, the CPU on which the call is made is not affected. Let's relax the check on the return value from ARCH_WORKAROUND_1 so that we only error out if the returned value is negative. Fixes: b092201e ("arm64: Add ARM_SMCCC_ARCH_WORKAROUND_1 BP hardening support") Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 09 3月, 2018 2 次提交
-
-
由 Ard Biesheuvel 提交于
Omit patching of ADRP instruction at module load time if the current CPUs are not susceptible to the erratum. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> [will: Drop duplicate initialisation of .def_scope field] Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
In some cases, core variants that are affected by a certain erratum also exist in versions that have the erratum fixed, and this fact is recorded in a dedicated bit in system register REVIDR_EL1. Since the architecture does not require that a certain bit retains its meaning across different variants of the same model, each such REVIDR bit is tightly coupled to a certain revision/variant value, and so we need a list of revidr_mask/midr pairs to carry this information. So add the struct member and the associated macros and handling to allow REVIDR fixes to be taken into account. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 12 2月, 2018 1 次提交
-
-
由 Shanker Donthineni 提交于
References to CPU part number MIDR_QCOM_FALKOR were dropped from the mailing list patch due to mainline/arm64 branch dependency. So this patch adds the missing part number. Fixes: ec82b567 ("arm64: Implement branch predictor hardening for Falkor") Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NShanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 07 2月, 2018 2 次提交
-
-
由 Marc Zyngier 提交于
Now that we've standardised on SMCCC v1.1 to perform the branch prediction invalidation, let's drop the previous band-aid. If vendors haven't updated their firmware to do SMCCC 1.1, they haven't updated PSCI either, so we don't loose anything. Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Marc Zyngier 提交于
Add the detection and runtime code for ARM_SMCCC_ARCH_WORKAROUND_1. It is lovely. Really. Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 24 1月, 2018 2 次提交
-
-
由 Jayachandran C 提交于
Use PSCI based mitigation for speculative execution attacks targeting the branch predictor. We use the same mechanism as the one used for Cortex-A CPUs, we expect the PSCI version call to have a side effect of clearing the BTBs. Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NJayachandran C <jnair@caviumnetworks.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Suzuki K Poulose 提交于
When a CPU is brought up after we have finalised the system wide capabilities (i.e, features and errata), we make sure the new CPU doesn't need a new errata work around which has not been detected already. However we don't run enable() method on the new CPU for the errata work arounds already detected. This could cause the new CPU running without potential work arounds. It is upto the "enable()" method to decide if this CPU should do something about the errata. Fixes: commit 6a6efbb4 ("arm64: Verify CPU errata work arounds on hotplugged CPU") Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andre Przywara <andre.przywara@arm.com> Cc: Dave Martin <dave.martin@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 15 1月, 2018 1 次提交
-
-
由 Stephen Boyd 提交于
The Kryo CPUs are also affected by the Falkor 1003 errata, so we need to do the same workaround on Kryo CPUs. The MIDR is slightly more complicated here, where the PART number is not always the same when looking at all the bits from 15 to 4. Drop the lower 8 bits and just look at the top 4 to see if it's '2' and then consider those as Kryo CPUs. This covers all the combinations without having to list them all out. Fixes: 38fd94b0 ("arm64: Work around Falkor erratum 1003") Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NStephen Boyd <sboyd@codeaurora.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 09 1月, 2018 3 次提交
-
-
由 Shanker Donthineni 提交于
Falkor is susceptible to branch predictor aliasing and can theoretically be attacked by malicious code. This patch implements a mitigation for these attacks, preventing any malicious entries from affecting other victim contexts. Signed-off-by: NShanker Donthineni <shankerd@codeaurora.org> [will: fix label name when !CONFIG_KVM and remove references to MIDR_FALKOR] Signed-off-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Will Deacon 提交于
Cortex-A57, A72, A73 and A75 are susceptible to branch predictor aliasing and can theoretically be attacked by malicious code. This patch implements a PSCI-based mitigation for these CPUs when available. The call into firmware will invalidate the branch predictor state, preventing any malicious entries from affecting other victim contexts. Co-developed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Will Deacon 提交于
Aliasing attacks against CPU branch predictors can allow an attacker to redirect speculative control flow on some CPUs and potentially divulge information from one context to another. This patch adds initial skeleton code behind a new Kconfig option to enable implementation-specific mitigations against these attacks for CPUs that are affected. Co-developed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 15 6月, 2017 1 次提交
-
-
由 David Daney 提交于
Some Cavium Thunder CPUs suffer a problem where a KVM guest may inadvertently cause the host kernel to quit receiving interrupts. Use the Group-0/1 trapping in order to deal with it. [maz]: Adapted patch to the Group-0/1 trapping, reworked commit log Tested-by: NAlexander Graf <agraf@suse.de> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NDavid Daney <david.daney@cavium.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
- 07 4月, 2017 2 次提交
-
-
由 Marc Zyngier 提交于
In order to work around Cortex-A73 erratum 858921 in a subsequent patch, add the required capability that advertise the erratum. As the configuration option it depends on is not present yet, this has no immediate effect. Acked-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Some minor erratum may not be fixed in further revisions of a core, leading to a situation where the workaround needs to be updated each time an updated core is released. Introduce a MIDR_ALL_VERSIONS match helper that will work for all versions of that MIDR, once and for all. Acked-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 10 2月, 2017 1 次提交
-
-
由 Christopher Covington 提交于
The Qualcomm Datacenter Technologies Falkor v1 CPU may allocate TLB entries using an incorrect ASID when TTBRx_EL1 is being updated. When the erratum is triggered, page table entries using the new translation table base address (BADDR) will be allocated into the TLB using the old ASID. All circumstances leading to the incorrect ASID being cached in the TLB arise when software writes TTBRx_EL1[ASID] and TTBRx_EL1[BADDR], a memory operation is in the process of performing a translation using the specific TTBRx_EL1 being written, and the memory operation uses a translation table descriptor designated as non-global. EL2 and EL3 code changing the EL1&0 ASID is not subject to this erratum because hardware is prohibited from performing translations from an out-of-context translation regime. Consider the following pseudo code. write new BADDR and ASID values to TTBRx_EL1 Replacing the above sequence with the one below will ensure that no TLB entries with an incorrect ASID are used by software. write reserved value to TTBRx_EL1[ASID] ISB write new value to TTBRx_EL1[BADDR] ISB write new value to TTBRx_EL1[ASID] ISB When the above sequence is used, page table entries using the new BADDR value may still be incorrectly allocated into the TLB using the reserved ASID. Yet this will not reduce functionality, since TLB entries incorrectly tagged with the reserved ASID will never be hit by a later instruction. Based on work by Shanker Donthineni <shankerd@codeaurora.org> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NChristopher Covington <cov@codeaurora.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 01 2月, 2017 1 次提交
-
-
由 Christopher Covington 提交于
During a TLB invalidate sequence targeting the inner shareable domain, Falkor may prematurely complete the DSB before all loads and stores using the old translation are observed. Instruction fetches are not subject to the conditions of this erratum. If the original code sequence includes multiple TLB invalidate instructions followed by a single DSB, onle one of the TLB instructions needs to be repeated to work around this erratum. While the erratum only applies to cases in which the TLBI specifies the inner-shareable domain (*IS form of TLBI) and the DSB is ISH form or stronger (OSH, SYS), this changes applies the workaround overabundantly-- to local TLBI, DSB NSH sequences as well--for simplicity. Based on work by Shanker Donthineni <shankerd@codeaurora.org> Signed-off-by: NChristopher Covington <cov@codeaurora.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 13 1月, 2017 1 次提交
-
-
由 Robert Richter 提交于
Definition of cpu ranges are hard to read if the cpu variant is not zero. Provide MIDR_CPU_VAR_REV() macro to describe the full hardware revision of a cpu including variant and (minor) revision. Signed-off-by: NRobert Richter <rrichter@cavium.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 20 10月, 2016 1 次提交
-
-
由 James Morse 提交于
The enable() call for a cpufeature/errata is called using on_each_cpu(). This issues a cross-call IPI to get the work done. Implicitly, this stashes the running PSTATE in SPSR when the CPU receives the IPI, and restores it when we return. This means an enable() call can never modify PSTATE. To allow PAN to do this, change the on_each_cpu() call to use stop_machine(). This schedules the work on each CPU which allows us to modify PSTATE. This involves changing the protype of all the enable() functions. enable_cpu_capabilities() is called during boot and enables the feature on all online CPUs. This path now uses stop_machine(). CPU features for hotplug'd CPUs are enabled by verify_local_cpu_features() which only acts on the local CPU, and can already modify the running PSTATE as it is called from secondary_start_kernel(). Reported-by: NTony Thompson <anthony.thompson@arm.com> Reported-by: NVladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: NJames Morse <james.morse@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 09 9月, 2016 2 次提交
-
-
由 Suzuki K Poulose 提交于
Systems with differing CPU i-cache/d-cache line sizes can cause problems with the cache management by software when the execution is migrated from one to another. Usually, the application reads the cache size on a CPU and then uses that length to perform cache operations. However, if it gets migrated to another CPU with a smaller cache line size, things could go completely wrong. To prevent such cases, always use the smallest cache line size among the CPUs. The kernel CPU feature infrastructure already keeps track of the safe value for all CPUID registers including CTR. This patch works around the problem by : For kernel, dynamically patch the kernel to read the cache size from the system wide copy of CTR_EL0. For applications, trap read accesses to CTR_EL0 (by clearing the SCTLR.UCT) and emulate the mrs instruction to return the system wide safe value of CTR_EL0. For faster access (i.e, avoiding to lookup the system wide value of CTR_EL0 via read_system_reg), we keep track of the pointer to table entry for CTR_EL0 in the CPU feature infrastructure. Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andre Przywara <andre.przywara@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Suzuki K Poulose 提交于
This is a cosmetic change to rename the functions dealing with the errata work arounds to be more consistent with their naming. 1) check_local_cpu_errata() => update_cpu_errata_workarounds() check_local_cpu_errata() actually updates the system's errata work arounds. So rename it to reflect the same. 2) verify_local_cpu_errata() => verify_local_cpu_errata_workarounds() Use errata_workarounds instead of _errata. Cc: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Acked-by: NAndre Przywara <andre.przywara@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 08 7月, 2016 1 次提交
-
-
由 Ganapatrao Kulkarni 提交于
Cavium erratum 27456 commit 104a0c02 ("arm64: Add workaround for Cavium erratum 27456") is applicable for thunderx-81xx pass1.0 SoC as well. Adding code to enable to 81xx. Signed-off-by: NGanapatrao Kulkarni <gkulkarni@cavium.com> Reviewed-by: NAndrew Pinski <apinski@cavium.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 01 7月, 2016 1 次提交
-
-
由 Andre Przywara 提交于
The ARM errata 819472, 826319, 827319 and 824069 for affected Cortex-A53 cores demand to promote "dc cvau" instructions to "dc civac". Since we allow userspace to also emit those instructions, we should make sure that "dc cvau" gets promoted there too. So lets grasp the nettle here and actually trap every userland cache maintenance instruction once we detect at least one affected core in the system. We then emulate the instruction by executing it on behalf of userland, promoting "dc cvau" to "dc civac" on the way and injecting access fault back into userspace. Signed-off-by: NAndre Przywara <andre.przywara@arm.com> [catalin.marinas@arm.com: s/set_segfault/arm64_notify_segfault/] Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-