- 03 11月, 2017 1 次提交
-
-
由 Dave Martin 提交于
To enable the kernel to use SVE, SVE traps from EL1 to EL2 must be disabled. To take maximum advantage of the hardware, the full available vector length also needs to be enabled for EL1 by programming ZCR_EL2.LEN. (The kernel will program ZCR_EL1.LEN as required, but this cannot override the limit set by ZCR_EL2.) This patch makes the appropriate changes to the EL2 early setup code. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 18 10月, 2017 1 次提交
-
-
由 Will Deacon 提交于
When booting at EL2, ensure that we permit the EL1 host to sample physical addresses and physical counter values using SPE. Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 27 9月, 2017 1 次提交
-
-
由 Marc Zyngier 提交于
When the kernel is entered at EL2 on an ARMv8.0 system, we construct the EL1 pstate and make sure this uses the the EL1 stack pointer (we perform an exception return to EL1h). But if the kernel is either entered at EL1 or stays at EL2 (because we're on a VHE-capable system), we fail to set SPsel, and use whatever stack selection the higher exception level has choosen for us. Let's not take any chance, and make sure that SPsel is set to one before we decide the mode we're going to run in. Cc: <stable@vger.kernel.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 23 8月, 2017 1 次提交
-
-
由 Ard Biesheuvel 提交于
In the KASLR setup routine, we ensure that the early virtual mapping of the kernel image does not cover more than a single table entry at the level above the swapper block level, so that the assembler routines involved in setting up this mapping can remain simple. In this calculation we add the proposed KASLR offset to the values of the _text and _end markers, and reject it if they would end up falling in different swapper table sized windows. However, when taking the addresses of _text and _end, the modulo offset (the physical displacement modulo 2 MB) is already accounted for, and so adding it again results in incorrect results. So disregard the modulo offset from the calculation. Fixes: 08cdac61 ("arm64: relocatable: deal with physically misaligned ...") Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Tested-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 09 8月, 2017 2 次提交
-
-
由 Ard Biesheuvel 提交于
As it turns out, the unwind code is slightly broken, and probably has been for a while. The problem is in the dumping of the exception stack, which is intended to dump the contents of the pt_regs struct at each level in the call stack where an exception was taken and routed to a routine marked as __exception (which means its stack frame is right below the pt_regs struct on the stack). 'Right below the pt_regs struct' is ill defined, though: the unwind code assigns 'frame pointer + 0x10' to the .sp member of the stackframe struct at each level, and dump_backtrace() happily dereferences that as the pt_regs pointer when encountering an __exception routine. However, the actual size of the stack frame created by this routine (which could be one of many __exception routines we have in the kernel) is not known, and so frame.sp is pretty useless to figure out where struct pt_regs really is. So it seems the only way to ensure that we can find our struct pt_regs when walking the stack frames is to put it at a known fixed offset of the stack frame pointer that is passed to such __exception routines. The simplest way to do that is to put it inside pt_regs itself, which is the main change implemented by this patch. As a bonus, doing this allows us to get rid of a fair amount of cruft related to walking from one stack to the other, which is especially nice since we intend to introduce yet another stack for overflow handling once we add support for vmapped stacks. It also fixes an inconsistency where we only add a stack frame pointing to ELR_EL1 if we are executing from the IRQ stack but not when we are executing from the task stack. To consistly identify exceptions regs even in the presence of exceptions taken from entry code, we must check whether the next frame was created by entry text, rather than whether the current frame was crated by exception text. To avoid backtracing using PCs that fall in the idmap, or are controlled by userspace, we must explcitly zero the FP and LR in startup paths, and must ensure that the frame embedded in pt_regs is zeroed upon entry from EL0. To avoid these NULL entries showin in the backtrace, unwind_frame() is updated to avoid them. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> [Mark: compare current frame against .entry.text, avoid bogus PCs] Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will.deacon@arm.com>
-
由 Robin Murphy 提交于
__inval_cache_range() is already the odd one out among our data cache maintenance routines as the only remaining range-based one; as we're going to want an invalidation routine to call from C code for the pmem API, let's tweak the prototype and name to bring it in line with the clean operations, and to make its relationship with __dma_inv_area() neatly mirror that of __clean_dcache_area_poc() and __dma_clean_area(). The loop clearing the early page tables gets mildly massaged in the process for the sake of consistency. Reviewed-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NRobin Murphy <robin.murphy@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 05 4月, 2017 2 次提交
-
-
由 Ard Biesheuvel 提交于
After having split off the PE header, clean up the bits that remain: use .long consistently, merge two adjacent #ifdef CONFIG_EFI blocks, fix the offset of the PE header pointer and remove the redundant .align that follows it. Also, since we will be eliminating all open coded constants from the EFI header in subsequent patches, let's replace the open coded "ARM\x64" magic number with its .ascii equivalent. No changes to the resulting binary image are intended. Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
In preparation of yet another round of modifications to the PE/COFF header, macroize it and move the definition into a separate source file. Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 23 3月, 2017 2 次提交
-
-
由 Mark Rutland 提交于
We only need to initialise sctlr_el1 if we're installing an EL2 stub, so we may as well defer this until we're doing so. Similarly, we can defer intialising CPTR_EL2 until then, as we do not access any trapped functionality as part of el2_setup. This patch modified el2_setup accordingly, allowing us to remove a branch and simplify the code flow. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Mark Rutland 提交于
The early el2_setup code is a little convoluted, with two branches where one would do. This makes the code more painful to read than is necessary. We can remove a branch and simplify the logic by moving the early return in the booted-at-EL1 case earlier in the function. This separates it from all the setup logic that only makes sense for EL2. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 09 3月, 2017 1 次提交
-
-
由 Mark Rutland 提交于
Unlike most sysreg defintiions, the GICv3 definitions don't have a SYS_ prefix, and they don't live in <asm/sysreg.h>. Additionally, some definitions are duplicated elsewhere (e.g. in the KVM save/restore code). For consistency, and to make it possible to share a common definition for these sysregs, this patch moves the definitions to <asm/sysreg.h>, adding a SYS_ prefix, and sorting the registers per their encoding. Existing users of the definitions are fixed up so that this change is not problematic. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will.deacon@arm.com>
-
- 10 2月, 2017 1 次提交
-
-
由 Will Deacon 提交于
The SPE architecture requires each exception level to enable access to the SPE controls for the exception level below it, since additional context-switch logic may be required to handle the buffer safely. This patch allows EL1 (host) access to the SPE controls when entered at EL2. Acked-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 03 2月, 2017 1 次提交
-
-
由 Ard Biesheuvel 提交于
When building with debugging symbols, take the absolute path to the vmlinux binary and add it to the special PE/COFF debug table entry. This allows a debug EFI build to find the vmlinux binary, which is very helpful in debugging, given that the offset where the Image is first loaded by EFI is highly unpredictable. On implementations of UEFI that choose to implement it, this information is exposed via the EFI debug support table, which is a UEFI configuration table that is accessible both by the firmware at boot time and by the OS at runtime, and lists all PE/COFF images loaded by the system. The format of the NB10 Codeview entry is based on the definition used by EDK2, which is our primary reference when it comes to the use of PE/COFF in the context of UEFI firmware. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> [will: use realpath instead of shell invocation, as discussed on list] Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 18 1月, 2017 1 次提交
-
-
由 Mark Rutland 提交于
Some places in the kernel open-code sequences using ADRP for a symbol another instruction using a :lo12: relocation for that same symbol. These sequences are easy to get wrong, and more painful to read than is necessary. For these reasons, it is preferable to use the {adr,ldr,str}_l macros for these cases. This patch makes use of adr_l these in head.S, removing an open-coded sequence using adrp. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 10 1月, 2017 1 次提交
-
-
由 Mark Rutland 提交于
In commit 23c8a500 ("arm64: kernel: use ordinary return/argument register for el2_setup()"), we stopped using w20 as a global stash of the boot mode flag, and instead pass this around in w0 as a function parameter. Unfortunately, we missed a couple of comments, which still refer to the old convention of using w20/x20. This patch fixes up the comments to describe the code as it currently works. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 29 11月, 2016 1 次提交
-
-
由 Jintack 提交于
Bit positions of CNTHCTL_EL2 are changing depending on HCR_EL2.E2H bit. EL1PCEN and EL1PCTEN are 1st and 0th bits when E2H is not set, but they are 11th and 10th bits respectively when E2H is set. Current code is unintentionally setting wrong bits to CNTHCTL_EL2 with E2H set. In fact, we don't need to set those two bits, which allow EL1 and EL0 to access physical timer and counter respectively, if E2H and TGE are set for the host kernel. They will be configured later as necessary. First, we don't need to configure those bits for EL1, since the host kernel runs in EL2. It is a hypervisor's responsibility to configure them before entering a VM, which runs in EL0 and EL1. Second, EL0 accesses are configured in the later stage of boot process. Signed-off-by: NJintack Lim <jintack@cs.columbia.edu> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 22 11月, 2016 1 次提交
-
-
由 Catalin Marinas 提交于
This patch adds the uaccess macros/functions to disable access to user space by setting TTBR0_EL1 to a reserved zeroed page. Since the value written to TTBR0_EL1 must be a physical address, for simplicity this patch introduces a reserved_ttbr0 page at a constant offset from swapper_pg_dir. The uaccess_disable code uses the ttbr1_el1 value adjusted by the reserved_ttbr0 offset. Enabling access to user is done by restoring TTBR0_EL1 with the value from the struct thread_info ttbr0 variable. Interrupts must be disabled during the uaccess_ttbr0_enable code to ensure the atomicity of the thread_info.ttbr0 read and TTBR0_EL1 write. This patch also moves the get_thread_info asm macro from entry.S to assembler.h for reuse in the uaccess_ttbr0_* macros. Cc: Will Deacon <will.deacon@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 12 11月, 2016 1 次提交
-
-
由 Mark Rutland 提交于
This patch moves arm64's struct thread_info from the task stack into task_struct. This protects thread_info from corruption in the case of stack overflows, and makes its address harder to determine if stack addresses are leaked, making a number of attacks more difficult. Precise detection and handling of overflow is left for subsequent patches. Largely, this involves changing code to store the task_struct in sp_el0, and acquire the thread_info from the task struct. Core code now implements current_thread_info(), and as noted in <linux/sched.h> this relies on offsetof(task_struct, thread_info) == 0, enforced by core code. This change means that the 'tsk' register used in entry.S now points to a task_struct, rather than a thread_info as it used to. To make this clear, the TI_* field offsets are renamed to TSK_TI_*, with asm-offsets appropriately updated to account for the structural change. Userspace clobbers sp_el0, and we can no longer restore this from the stack. Instead, the current task is cached in a per-cpu variable that we can safely access from early assembly as interrupts are disabled (and we are thus not preemptible). Both secondary entry and idle are updated to stash the sp and task pointer separately. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: James Morse <james.morse@arm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 17 10月, 2016 1 次提交
-
-
由 Marc Zyngier 提交于
Commit f436b2ac ("arm64: kernel: fix architected PMU registers unconditional access") made sure we wouldn't access unimplemented PMU registers, but also left MDCR_EL2 uninitialized in that case, leading to trap bits being potentially left set. Make sure we always write something in that register. Fixes: f436b2ac ("arm64: kernel: fix architected PMU registers unconditional access") Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 02 9月, 2016 6 次提交
-
-
由 Ard Biesheuvel 提交于
Now that the only remaining occurrences of the use of callee saved registers are on the primary boot path, add a comment to the code which register is used for what. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
Instead of stashing the value of the link register in x28 before setting up the stack and calling into C code, create an ordinary PCS compatible stack frame so that we can push the return address onto the stack. Since exception handlers require a stack as well, assign the stack pointer register before installing the vector table. Note that this accounts for the difference between THREAD_START_SP and THREAD_SIZE, given that the stack pointer is always decremented before calling into any C code. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
Keeping __PHYS_OFFSET in x24 is actually less clear than simply taking the value of __PHYS_OFFSET using an adrp instruction in the three places that we need it. So change that. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
Using x27 for passing to __enable_mmu what is essentially the return address makes the code look more complicated than it needs to be. So switch to x30/lr, and update the secondary and cpu_resume call sites to simply call __enable_mmu as an ordinary function, with a bl instruction. This requires the callers to be covered by .idmap.text. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
The KASLR processing is only used by the primary boot path, and complements the processing that takes place in __primary_switch(). Move the two parts together, to make the code easier to understand. Also, fix up a minor whitespace issue. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> [will: fixed conflict with -rc3 due to lack of fd363bd4] Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
The function el2_setup() passes its return value in register w20, and in the two cases where the caller actually cares about this return value, it is passed into set_cpu_boot_mode_flag() [almost] directly, which expects its input in w20 as well. So there is no reason to use a 'special' callee saved register here, but we can simply follow the PCS for return value and first argument, respectively. Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 26 8月, 2016 1 次提交
-
-
由 James Morse 提交于
Resume from hibernate needs to clean any text executed by the kernel with the MMU off to the PoC. Collect these functions together into the .idmap.text section as all this code is tightly coupled and also needs the same cleaning after resume. Data is more complicated, secondary_holding_pen_release is written with the MMU on, clean and invalidated, then read with the MMU off. In contrast __boot_cpu_mode is written with the MMU off, the corresponding cache line is invalidated, so when we read it with the MMU on we don't get stale data. These cache maintenance operations conflict with each other if the values are within a Cache Writeback Granule (CWG) of each other. Collect the data into two sections .mmuoff.data.read and .mmuoff.data.write, the linker script ensures mmuoff.data.write section is aligned to the architectural maximum CWG of 2KB. Signed-off-by: NJames Morse <james.morse@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 25 8月, 2016 1 次提交
-
-
由 Mark Rutland 提交于
When CONFIG_RANDOMIZE_BASE is selected, we modify the page tables to remap the kernel at a newly-chosen VA range. We do this with the MMU disabled, but do not invalidate TLBs prior to re-enabling the MMU with the new tables. Thus the old mappings entries may still live in TLBs, and we risk violating Break-Before-Make requirements, leading to TLB conflicts and/or other issues. We invalidate TLBs when we uninsall the idmap in early setup code, but prior to this we are subject to issues relating to the Break-Before-Make violation. Avoid these issues by invalidating the TLBs before the new mappings can be used by the hardware. Fixes: f80fb3a3 ("arm64: add support for kernel ASLR") Cc: <stable@vger.kernel.org> # 4.6+ Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 22 8月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
Currently, x25 and x26 hold the physical addresses of idmap_pg_dir and swapper_pg_dir, respectively, when running early boot code. But having registers with 'global' scope in files that contain different sections with different lifetimes, and that are called by different CPUs at different times is a bit messy, especially since stashing the values does not buy us anything in terms of code size or clarity. So simply replace each reference to x25 or x26 with an adrp instruction referring to idmap_pg_dir or swapper_pg_dir directly. Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 29 7月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
The linker routines that we rely on to produce a relocatable PIE binary treat it as a shared ELF object in some ways, i.e., it emits symbol based R_AARCH64_ABS64 relocations into the final binary since doing so would be appropriate when linking a shared library that is subject to symbol preemption. (This means that an executable can override certain symbols that are exported by a shared library it is linked with, and that the shared library *must* update all its internal references as well, and point them to the version provided by the executable.) Symbol preemption does not occur for OS hosted PIE executables, let alone for vmlinux, and so we would prefer to get rid of these symbol based relocations. This would allow us to simplify the relocation routines, and to strip the .dynsym, .dynstr and .hash sections from the binary. (Note that these are tiny, and are placed in the .init segment, but they clutter up the vmlinux binary.) Note that these R_AARCH64_ABS64 relocations are only emitted for absolute references to symbols defined in the linker script, all other relocatable quantities are covered by anonymous R_AARCH64_RELATIVE relocations that simply list the offsets to all 64-bit values in the binary that need to be fixed up based on the offset between the link time and run time addresses. Fortunately, GNU ld has a -Bsymbolic option, which is intended for shared libraries to allow them to ignore symbol preemption, and unconditionally bind all internal symbol references to its own definitions. So set it for our PIE binary as well, and get rid of the asoociated sections and the relocation code that processes them. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> [will: fixed conflict with __dynsym_offset linker script entry] Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 28 4月, 2016 2 次提交
-
-
由 James Morse 提交于
KERNEL_START and KERNEL_END are useful outside head.S, move them to a header file. Signed-off-by: NJames Morse <james.morse@arm.com> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 James Morse 提交于
By enabling the MMU early in cpu_resume(), the sleep_save_sp and stack can be accessed by VA, which avoids the need to convert-addresses and clean to PoC on the suspend path. MMU setup is shared with the boot path, meaning the swapper_pg_dir is restored directly: ttbr1_el1 is no longer saved/restored. struct sleep_save_sp is removed, replacing it with a single array of pointers. cpu_do_{suspend,resume} could be further reduced to not restore: cpacr_el1, mdscr_el1, tcr_el1, vbar_el1 and sctlr_el1, all of which are set by __cpu_setup(). However these values all contain res0 bits that may be used to enable future features. Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NLorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 26 4月, 2016 6 次提交
-
-
由 Ard Biesheuvel 提交于
When booting a relocatable kernel image, there is no practical reason to refuse an image whose load address is not exactly TEXT_OFFSET bytes above a 2 MB aligned base address, as long as the physical and virtual misalignment with respect to the swapper block size are equal, and are both aligned to THREAD_SIZE. Since the virtual misalignment is under our control when we first enter the kernel proper, we can simply choose its value to be equal to the physical misalignment. So treat the misalignment of the physical load address as the initial KASLR offset, and fix up the remaining code to deal with that. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
For historical reasons, the kernel Image must be loaded into physical memory at a 512 KB offset above a 2 MB aligned base address. The region between the base address and the start of the kernel Image has no significance to the kernel itself, but it is currently mapped explicitly into the early kernel VMA range for all translation granules. In some cases (i.e., 4 KB granule), this is unavoidable, due to the 2 MB granularity of the early kernel mappings. However, in other cases, e.g., when running with larger page sizes, or in the future, with more granular KASLR, there is no reason to map it explicitly like we do currently. So update the logic so that the region is mapped only if that happens as a side effect of rounding the start address of the kernel to swapper block size, and leave it unmapped otherwise. Since the symbol kernel_img_size now simply resolves to the memory footprint of the kernel Image, we can drop its definition from image.h and opencode its calculation. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
When building a relocatable kernel, we currently rely on the fact that early 64-bit literal loads need to be deferred to after the relocation has been performed only if they involve symbol references, and not if they involve assemble time constants. While this is not an unreasonable assumption to make, it is better to switch to movk/movz sequences, since these are guaranteed to be resolved at link time, simply because there are no dynamic relocation types to describe them. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
Refactor the relocation processing so that the code executes from the ID map while accessing the relocation tables via the virtual mapping. This way, we can use literals containing virtual addresses as before, instead of having to use convoluted absolute expressions. For symmetry with the secondary code path, the relocation code and the subsequent jump to the virtual entry point are implemented in a function called __primary_switch(), and __mmap_switched() is renamed to __primary_switched(). Also, the call sequence in stext() is aligned with the one in secondary_startup(), by replacing the awkward 'adr_l lr' and 'b cpu_setup' sequence with a simple branch and link. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
We can simply use a relocated 64-bit literal to store the address of __secondary_switched(), and the relocation code will ensure that it holds the correct value at secondary entry time, as long as we make sure that the literal is not dereferenced until after we have enabled the MMU. So jump via a small __secondary_switch() function covered by the ID map that performs the literal load and branch-to-register. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
This unexports some symbols from head.S that are only used locally. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 22 4月, 2016 1 次提交
-
-
由 Dave Martin 提交于
When using the Virtualisation Host Extensions, EL1 is not used in the host and requires no separate configuration. In addition, with VHE enabled, non-hyp-specific EL2 configuration that does not need to be done early will be done anyway in __cpu_setup via the _EL1 system register aliases. In particular, the layout and definition of CPTR_EL2 are changed by enabling VHE so that they resemble CPACR_EL1, so existing code to initialise CPTR_EL2 becomes architecturally wrong in this case. This patch simply skips the affected initialisation code in the non-VHE case. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 18 4月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
In head.S, the str_l macro, which takes a source register, a symbol name and a temp register, is used to store a status value to the variable __early_cpu_boot_status. Subsequently, the value of the temp register is reused to invalidate any cachelines covering this variable. However, since str_l resolves to adrp \tmp, \sym str \src, [\tmp, :lo12:\sym] the temp register never actually holds the address of the variable but only of the 4 KB window that covers it, and reusing it leads to the wrong cacheline being invalidated. So instead, take the address explicitly before doing the store, and reuse that value to perform the cache invalidation. Fixes: bb905274 ("arm64: Handle early CPU boot failures") Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NSuzuki K Poulose <Suzuki.Poulose@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 15 4月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
Apart from the arm64/linux and EFI header data structures, there is nothing in the .head.text section that must reside at the beginning of the Image. So let's move it to the .init section where it belongs. Note that this involves some minor tweaking of the EFI header, primarily because the address of 'stext' no longer coincides with the start of the .text section. It also requires a couple of relocated symbol references to be slightly rewritten or their definition moved to the linker script. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-