1. 09 5月, 2018 2 次提交
  2. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  3. 01 3月, 2017 1 次提交
    • D
      x86/pkeys: Check against max pkey to avoid overflows · 58ab9a08
      Dave Hansen 提交于
      Kirill reported a warning from UBSAN about undefined behavior when using
      protection keys.  He is running on hardware that actually has support for
      it, which is not widely available.
      
      The warning triggers because of very large shifts of integers when doing a
      pkey_free() of a large, invalid value. This happens because we never check
      that the pkey "fits" into the mm_pkey_allocation_map().
      
      I do not believe there is any danger here of anything bad happening
      other than some aliasing issues where somebody could do:
      
      	pkey_free(35);
      
      and the kernel would effectively execute:
      
      	pkey_free(8);
      
      While this might be confusing to an app that was doing something stupid, it
      has to do something stupid and the effects are limited to the app shooting
      itself in the foot.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Cc: stable@vger.kernel.org
      Cc: linux-kselftest@vger.kernel.org
      Cc: shuah@kernel.org
      Cc: kirill.shutemov@linux.intel.com
      Link: http://lkml.kernel.org/r/20170223222603.A022ED65@viggo.jf.intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      58ab9a08
  4. 09 9月, 2016 4 次提交
    • D
      x86/pkeys: Default to a restrictive init PKRU · acd547b2
      Dave Hansen 提交于
      PKRU is the register that lets you disallow writes or all access to a given
      protection key.
      
      The XSAVE hardware defines an "init state" of 0 for PKRU: its most
      permissive state, allowing access/writes to everything.  Since we start off
      all new processes with the init state, we start all processes off with the
      most permissive possible PKRU.
      
      This is unfortunate.  If a thread is clone()'d [1] before a program has
      time to set PKRU to a restrictive value, that thread will be able to write
      to all data, no matter what pkey is set on it.  This weakens any integrity
      guarantees that we want pkeys to provide.
      
      To fix this, we define a very restrictive PKRU to override the
      XSAVE-provided value when we create a new FPU context.  We choose a value
      that only allows access to pkey 0, which is as restrictive as we can
      practically make it.
      
      This does not cause any practical problems with applications using
      protection keys because we require them to specify initial permissions for
      each key when it is allocated, which override the restrictive default.
      
      In the end, this ensures that threads which do not know how to manage their
      own pkey rights can not do damage to data which is pkey-protected.
      
      I would have thought this was a pretty contrived scenario, except that I
      heard a bug report from an MPX user who was creating threads in some very
      early code before main().  It may be crazy, but folks evidently _do_ it.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Cc: linux-arch@vger.kernel.org
      Cc: Dave Hansen <dave@sr71.net>
      Cc: mgorman@techsingularity.net
      Cc: arnd@arndb.de
      Cc: linux-api@vger.kernel.org
      Cc: linux-mm@kvack.org
      Cc: luto@kernel.org
      Cc: akpm@linux-foundation.org
      Cc: torvalds@linux-foundation.org
      Link: http://lkml.kernel.org/r/20160729163021.F3C25D4A@viggo.jf.intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      acd547b2
    • D
      x86/pkeys: Allocation/free syscalls · e8c24d3a
      Dave Hansen 提交于
      This patch adds two new system calls:
      
      	int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
      	int pkey_free(int pkey);
      
      These implement an "allocator" for the protection keys
      themselves, which can be thought of as analogous to the allocator
      that the kernel has for file descriptors.  The kernel tracks
      which numbers are in use, and only allows operations on keys that
      are valid.  A key which was not obtained by pkey_alloc() may not,
      for instance, be passed to pkey_mprotect().
      
      These system calls are also very important given the kernel's use
      of pkeys to implement execute-only support.  These help ensure
      that userspace can never assume that it has control of a key
      unless it first asks the kernel.  The kernel does not promise to
      preserve PKRU (right register) contents except for allocated
      pkeys.
      
      The 'init_access_rights' argument to pkey_alloc() specifies the
      rights that will be established for the returned pkey.  For
      instance:
      
      	pkey = pkey_alloc(flags, PKEY_DENY_WRITE);
      
      will allocate 'pkey', but also sets the bits in PKRU[1] such that
      writing to 'pkey' is already denied.
      
      The kernel does not prevent pkey_free() from successfully freeing
      in-use pkeys (those still assigned to a memory range by
      pkey_mprotect()).  It would be expensive to implement the checks
      for this, so we instead say, "Just don't do it" since sane
      software will never do it anyway.
      
      Any piece of userspace calling pkey_alloc() needs to be prepared
      for it to fail.  Why?  pkey_alloc() returns the same error code
      (ENOSPC) when there are no pkeys and when pkeys are unsupported.
      They can be unsupported for a whole host of reasons, so apps must
      be prepared for this.  Also, libraries or LD_PRELOADs might steal
      keys before an application gets access to them.
      
      This allocation mechanism could be implemented in userspace.
      Even if we did it in userspace, we would still need additional
      user/kernel interfaces to tell userspace which keys are being
      used by the kernel internally (such as for execute-only
      mappings).  Having the kernel provide this facility completely
      removes the need for these additional interfaces, or having an
      implementation of this in userspace at all.
      
      Note that we have to make changes to all of the architectures
      that do not use mman-common.h because we use the new
      PKEY_DENY_ACCESS/WRITE macros in arch-independent code.
      
      1. PKRU is the Protection Key Rights User register.  It is a
         usermode-accessible register that controls whether writes
         and/or access to each individual pkey is allowed or denied.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Acked-by: NMel Gorman <mgorman@techsingularity.net>
      Cc: linux-arch@vger.kernel.org
      Cc: Dave Hansen <dave@sr71.net>
      Cc: arnd@arndb.de
      Cc: linux-api@vger.kernel.org
      Cc: linux-mm@kvack.org
      Cc: luto@kernel.org
      Cc: akpm@linux-foundation.org
      Cc: torvalds@linux-foundation.org
      Link: http://lkml.kernel.org/r/20160729163015.444FE75F@viggo.jf.intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      e8c24d3a
    • D
      x86/pkeys: Make mprotect_key() mask off additional vm_flags · a8502b67
      Dave Hansen 提交于
      Today, mprotect() takes 4 bits of data: PROT_READ/WRITE/EXEC/NONE.
      Three of those bits: READ/WRITE/EXEC get translated directly in to
      vma->vm_flags by calc_vm_prot_bits().  If a bit is unset in
      mprotect()'s 'prot' argument then it must be cleared in vma->vm_flags
      during the mprotect() call.
      
      We do this clearing today by first calculating the VMA flags we
      want set, then clearing the ones we do not want to inherit from
      the original VMA:
      
      	vm_flags = calc_vm_prot_bits(prot, key);
      	...
      	newflags = vm_flags;
      	newflags |= (vma->vm_flags & ~(VM_READ | VM_WRITE | VM_EXEC));
      
      However, we *also* want to mask off the original VMA's vm_flags in
      which we store the protection key.
      
      To do that, this patch adds a new macro:
      
      	ARCH_VM_PKEY_FLAGS
      
      which allows the architecture to specify additional bits that it would
      like cleared.  We use that to ensure that the VM_PKEY_BIT* bits get
      cleared.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Acked-by: NMel Gorman <mgorman@techsingularity.net>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: linux-arch@vger.kernel.org
      Cc: Dave Hansen <dave@sr71.net>
      Cc: arnd@arndb.de
      Cc: linux-api@vger.kernel.org
      Cc: linux-mm@kvack.org
      Cc: luto@kernel.org
      Cc: akpm@linux-foundation.org
      Cc: torvalds@linux-foundation.org
      Link: http://lkml.kernel.org/r/20160729163013.E48D6981@viggo.jf.intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      a8502b67
    • D
      mm: Implement new pkey_mprotect() system call · 7d06d9c9
      Dave Hansen 提交于
      pkey_mprotect() is just like mprotect, except it also takes a
      protection key as an argument.  On systems that do not support
      protection keys, it still works, but requires that key=0.
      Otherwise it does exactly what mprotect does.
      
      I expect it to get used like this, if you want to guarantee that
      any mapping you create can *never* be accessed without the right
      protection keys set up.
      
      	int real_prot = PROT_READ|PROT_WRITE;
      	pkey = pkey_alloc(0, PKEY_DENY_ACCESS);
      	ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
      	ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey);
      
      This way, there is *no* window where the mapping is accessible
      since it was always either PROT_NONE or had a protection key set
      that denied all access.
      
      We settled on 'unsigned long' for the type of the key here.  We
      only need 4 bits on x86 today, but I figured that other
      architectures might need some more space.
      
      Semantically, we have a bit of a problem if we combine this
      syscall with our previously-introduced execute-only support:
      What do we do when we mix execute-only pkey use with
      pkey_mprotect() use?  For instance:
      
      	pkey_mprotect(ptr, PAGE_SIZE, PROT_WRITE, 6); // set pkey=6
      	mprotect(ptr, PAGE_SIZE, PROT_EXEC);  // set pkey=X_ONLY_PKEY?
      	mprotect(ptr, PAGE_SIZE, PROT_WRITE); // is pkey=6 again?
      
      To solve that, we make the plain-mprotect()-initiated execute-only
      support only apply to VMAs that have the default protection key (0)
      set on them.
      
      Proposed semantics:
      1. protection key 0 is special and represents the default,
         "unassigned" protection key.  It is always allocated.
      2. mprotect() never affects a mapping's pkey_mprotect()-assigned
         protection key. A protection key of 0 (even if set explicitly)
         represents an unassigned protection key.
         2a. mprotect(PROT_EXEC) on a mapping with an assigned protection
             key may or may not result in a mapping with execute-only
             properties.  pkey_mprotect() plus pkey_set() on all threads
             should be used to _guarantee_ execute-only semantics if this
             is not a strong enough semantic.
      3. mprotect(PROT_EXEC) may result in an "execute-only" mapping. The
         kernel will internally attempt to allocate and dedicate a
         protection key for the purpose of execute-only mappings.  This
         may not be possible in cases where there are no free protection
         keys available.  It can also happen, of course, in situations
         where there is no hardware support for protection keys.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Acked-by: NMel Gorman <mgorman@techsingularity.net>
      Cc: linux-arch@vger.kernel.org
      Cc: Dave Hansen <dave@sr71.net>
      Cc: arnd@arndb.de
      Cc: linux-api@vger.kernel.org
      Cc: linux-mm@kvack.org
      Cc: luto@kernel.org
      Cc: akpm@linux-foundation.org
      Cc: torvalds@linux-foundation.org
      Link: http://lkml.kernel.org/r/20160729163012.3DDD36C4@viggo.jf.intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      7d06d9c9
  5. 19 2月, 2016 3 次提交
    • D
      mm/core, x86/mm/pkeys: Add execute-only protection keys support · 62b5f7d0
      Dave Hansen 提交于
      Protection keys provide new page-based protection in hardware.
      But, they have an interesting attribute: they only affect data
      accesses and never affect instruction fetches.  That means that
      if we set up some memory which is set as "access-disabled" via
      protection keys, we can still execute from it.
      
      This patch uses protection keys to set up mappings to do just that.
      If a user calls:
      
      	mmap(..., PROT_EXEC);
      or
      	mprotect(ptr, sz, PROT_EXEC);
      
      (note PROT_EXEC-only without PROT_READ/WRITE), the kernel will
      notice this, and set a special protection key on the memory.  It
      also sets the appropriate bits in the Protection Keys User Rights
      (PKRU) register so that the memory becomes unreadable and
      unwritable.
      
      I haven't found any userspace that does this today.  With this
      facility in place, we expect userspace to move to use it
      eventually.  Userspace _could_ start doing this today.  Any
      PROT_EXEC calls get converted to PROT_READ inside the kernel, and
      would transparently be upgraded to "true" PROT_EXEC with this
      code.  IOW, userspace never has to do any PROT_EXEC runtime
      detection.
      
      This feature provides enhanced protection against leaking
      executable memory contents.  This helps thwart attacks which are
      attempting to find ROP gadgets on the fly.
      
      But, the security provided by this approach is not comprehensive.
      The PKRU register which controls access permissions is a normal
      user register writable from unprivileged userspace.  An attacker
      who can execute the 'wrpkru' instruction can easily disable the
      protection provided by this feature.
      
      The protection key that is used for execute-only support is
      permanently dedicated at compile time.  This is fine for now
      because there is currently no API to set a protection key other
      than this one.
      
      Despite there being a constant PKRU value across the entire
      system, we do not set it unless this feature is in use in a
      process.  That is to preserve the PKRU XSAVE 'init state',
      which can lead to faster context switches.
      
      PKRU *is* a user register and the kernel is modifying it.  That
      means that code doing:
      
      	pkru = rdpkru()
      	pkru |= 0x100;
      	mmap(..., PROT_EXEC);
      	wrpkru(pkru);
      
      could lose the bits in PKRU that enforce execute-only
      permissions.  To avoid this, we suggest avoiding ever calling
      mmap() or mprotect() when the PKRU value is expected to be
      unstable.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Borislav Petkov <bp@suse.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Chen Gang <gang.chen.5i5j@gmail.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Dave Hansen <dave@sr71.net>
      Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Kees Cook <keescook@chromium.org>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Piotr Kwapulinski <kwapulinski.piotr@gmail.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Stephen Smalley <sds@tycho.nsa.gov>
      Cc: Vladimir Murzin <vladimir.murzin@arm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: keescook@google.com
      Cc: linux-kernel@vger.kernel.org
      Cc: linux-mm@kvack.org
      Link: http://lkml.kernel.org/r/20160212210240.CB4BB5CA@viggo.jf.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      62b5f7d0
    • D
      x86/mm/pkeys: Allow kernel to modify user pkey rights register · 84594296
      Dave Hansen 提交于
      The Protection Key Rights for User memory (PKRU) is a 32-bit
      user-accessible register.  It contains two bits for each
      protection key: one to write-disable (WD) access to memory
      covered by the key and another to access-disable (AD).
      
      Userspace can read/write the register with the RDPKRU and WRPKRU
      instructions.  But, the register is saved and restored with the
      XSAVE family of instructions, which means we have to treat it
      like a floating point register.
      
      The kernel needs to write to the register if it wants to
      implement execute-only memory or if it implements a system call
      to change PKRU.
      
      To do this, we need to create a 'pkru_state' buffer, read the old
      contents in to it, modify it, and then tell the FPU code that
      there is modified data in there so it can (possibly) move the
      buffer back in to the registers.
      
      This uses the fpu__xfeature_set_state() function that we defined
      in the previous patch.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dave Hansen <dave@sr71.net>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: linux-mm@kvack.org
      Link: http://lkml.kernel.org/r/20160212210236.0BE13217@viggo.jf.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      84594296
    • D
      mm/core, x86/mm/pkeys: Add arch_validate_pkey() · 66d37570
      Dave Hansen 提交于
      The syscall-level code is passed a protection key and need to
      return an appropriate error code if the protection key is bogus.
      We will be using this in subsequent patches.
      
      Note that this also begins a series of arch-specific calls that
      we need to expose in otherwise arch-independent code.  We create
      a linux/pkeys.h header where we will put *all* the stubs for
      these functions.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dave Hansen <dave@sr71.net>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: linux-mm@kvack.org
      Link: http://lkml.kernel.org/r/20160212210232.774EEAAB@viggo.jf.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      66d37570