1. 15 7月, 2013 1 次提交
    • P
      sparc: delete __cpuinit/__CPUINIT usage from all users · 2066aadd
      Paul Gortmaker 提交于
      The __cpuinit type of throwaway sections might have made sense
      some time ago when RAM was more constrained, but now the savings
      do not offset the cost and complications.  For example, the fix in
      commit 5e427ec2 ("x86: Fix bit corruption at CPU resume time")
      is a good example of the nasty type of bugs that can be created
      with improper use of the various __init prefixes.
      
      After a discussion on LKML[1] it was decided that cpuinit should go
      the way of devinit and be phased out.  Once all the users are gone,
      we can then finally remove the macros themselves from linux/init.h.
      
      Note that some harmless section mismatch warnings may result, since
      notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
      are flagged as __cpuinit  -- so if we remove the __cpuinit from
      arch specific callers, we will also get section mismatch warnings.
      As an intermediate step, we intend to turn the linux/init.h cpuinit
      content into no-ops as early as possible, since that will get rid
      of these warnings.  In any case, they are temporary and harmless.
      
      This removes all the arch/sparc uses of the __cpuinit macros from
      C files and removes __CPUINIT from assembly files.  Note that even
      though arch/sparc/kernel/trampoline_64.S has instances of ".previous"
      in it, they are all paired off against explicit ".section" directives,
      and not implicitly paired with __CPUINIT (unlike mips and arm were).
      
      [1] https://lkml.org/lkml/2013/5/20/589
      
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: sparclinux@vger.kernel.org
      Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
      2066aadd
  2. 07 9月, 2012 1 次提交
  3. 01 11月, 2011 2 次提交
  4. 05 8月, 2011 1 次提交
    • D
      sparc: Size mondo queues more sanely. · 961f65fc
      David S. Miller 提交于
      There is currently no upper limit on the mondo queue sizes we'll use,
      which guarentees that we'll eventually his page allocation limits, and
      thus allocation failures, due to MAX_ORDER.
      
      Cap the sizes sanely, current limits are:
      
      CPU  MONDO	2 * max_possible_cpus
      DEV  MONDO	256 (basically NR_IRQS)
      RES  MONDO	128
      NRES MONDO	4
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      961f65fc
  5. 17 5月, 2011 1 次提交
  6. 31 3月, 2011 1 次提交
    • D
      sparc64: Fix section mis-match errors. · 3628aa06
      David S. Miller 提交于
      Fix all of the problems spotted by CONFIG_DEBUG_SECTION_MISMATCH under
      arch/sparc during a 64-bit defconfig build.
      
      They fall into two categorites:
      
      1) of_device_id is marked as __initdata, and we can never do this
         since these objects sit in the device core data structures way
         past boot.  So even if a driver will never be reloaded, we have
         to keep the device ID table around.
      
         Mark such cases const instead.
      
      2) The bootmem alloc/free handling code in mdesc.c was not fully
         marked __init as it should be, thus generating a reference
         to free_bootmem_late() (which is __init) from non-__init code.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      3628aa06
  7. 15 10月, 2010 1 次提交
    • A
      llseek: automatically add .llseek fop · 6038f373
      Arnd Bergmann 提交于
      All file_operations should get a .llseek operation so we can make
      nonseekable_open the default for future file operations without a
      .llseek pointer.
      
      The three cases that we can automatically detect are no_llseek, seq_lseek
      and default_llseek. For cases where we can we can automatically prove that
      the file offset is always ignored, we use noop_llseek, which maintains
      the current behavior of not returning an error from a seek.
      
      New drivers should normally not use noop_llseek but instead use no_llseek
      and call nonseekable_open at open time.  Existing drivers can be converted
      to do the same when the maintainer knows for certain that no user code
      relies on calling seek on the device file.
      
      The generated code is often incorrectly indented and right now contains
      comments that clarify for each added line why a specific variant was
      chosen. In the version that gets submitted upstream, the comments will
      be gone and I will manually fix the indentation, because there does not
      seem to be a way to do that using coccinelle.
      
      Some amount of new code is currently sitting in linux-next that should get
      the same modifications, which I will do at the end of the merge window.
      
      Many thanks to Julia Lawall for helping me learn to write a semantic
      patch that does all this.
      
      ===== begin semantic patch =====
      // This adds an llseek= method to all file operations,
      // as a preparation for making no_llseek the default.
      //
      // The rules are
      // - use no_llseek explicitly if we do nonseekable_open
      // - use seq_lseek for sequential files
      // - use default_llseek if we know we access f_pos
      // - use noop_llseek if we know we don't access f_pos,
      //   but we still want to allow users to call lseek
      //
      @ open1 exists @
      identifier nested_open;
      @@
      nested_open(...)
      {
      <+...
      nonseekable_open(...)
      ...+>
      }
      
      @ open exists@
      identifier open_f;
      identifier i, f;
      identifier open1.nested_open;
      @@
      int open_f(struct inode *i, struct file *f)
      {
      <+...
      (
      nonseekable_open(...)
      |
      nested_open(...)
      )
      ...+>
      }
      
      @ read disable optional_qualifier exists @
      identifier read_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      expression E;
      identifier func;
      @@
      ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
      {
      <+...
      (
         *off = E
      |
         *off += E
      |
         func(..., off, ...)
      |
         E = *off
      )
      ...+>
      }
      
      @ read_no_fpos disable optional_qualifier exists @
      identifier read_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      @@
      ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
      {
      ... when != off
      }
      
      @ write @
      identifier write_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      expression E;
      identifier func;
      @@
      ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
      {
      <+...
      (
        *off = E
      |
        *off += E
      |
        func(..., off, ...)
      |
        E = *off
      )
      ...+>
      }
      
      @ write_no_fpos @
      identifier write_f;
      identifier f, p, s, off;
      type ssize_t, size_t, loff_t;
      @@
      ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
      {
      ... when != off
      }
      
      @ fops0 @
      identifier fops;
      @@
      struct file_operations fops = {
       ...
      };
      
      @ has_llseek depends on fops0 @
      identifier fops0.fops;
      identifier llseek_f;
      @@
      struct file_operations fops = {
      ...
       .llseek = llseek_f,
      ...
      };
      
      @ has_read depends on fops0 @
      identifier fops0.fops;
      identifier read_f;
      @@
      struct file_operations fops = {
      ...
       .read = read_f,
      ...
      };
      
      @ has_write depends on fops0 @
      identifier fops0.fops;
      identifier write_f;
      @@
      struct file_operations fops = {
      ...
       .write = write_f,
      ...
      };
      
      @ has_open depends on fops0 @
      identifier fops0.fops;
      identifier open_f;
      @@
      struct file_operations fops = {
      ...
       .open = open_f,
      ...
      };
      
      // use no_llseek if we call nonseekable_open
      ////////////////////////////////////////////
      @ nonseekable1 depends on !has_llseek && has_open @
      identifier fops0.fops;
      identifier nso ~= "nonseekable_open";
      @@
      struct file_operations fops = {
      ...  .open = nso, ...
      +.llseek = no_llseek, /* nonseekable */
      };
      
      @ nonseekable2 depends on !has_llseek @
      identifier fops0.fops;
      identifier open.open_f;
      @@
      struct file_operations fops = {
      ...  .open = open_f, ...
      +.llseek = no_llseek, /* open uses nonseekable */
      };
      
      // use seq_lseek for sequential files
      /////////////////////////////////////
      @ seq depends on !has_llseek @
      identifier fops0.fops;
      identifier sr ~= "seq_read";
      @@
      struct file_operations fops = {
      ...  .read = sr, ...
      +.llseek = seq_lseek, /* we have seq_read */
      };
      
      // use default_llseek if there is a readdir
      ///////////////////////////////////////////
      @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier readdir_e;
      @@
      // any other fop is used that changes pos
      struct file_operations fops = {
      ... .readdir = readdir_e, ...
      +.llseek = default_llseek, /* readdir is present */
      };
      
      // use default_llseek if at least one of read/write touches f_pos
      /////////////////////////////////////////////////////////////////
      @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read.read_f;
      @@
      // read fops use offset
      struct file_operations fops = {
      ... .read = read_f, ...
      +.llseek = default_llseek, /* read accesses f_pos */
      };
      
      @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier write.write_f;
      @@
      // write fops use offset
      struct file_operations fops = {
      ... .write = write_f, ...
      +	.llseek = default_llseek, /* write accesses f_pos */
      };
      
      // Use noop_llseek if neither read nor write accesses f_pos
      ///////////////////////////////////////////////////////////
      
      @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read_no_fpos.read_f;
      identifier write_no_fpos.write_f;
      @@
      // write fops use offset
      struct file_operations fops = {
      ...
       .write = write_f,
       .read = read_f,
      ...
      +.llseek = noop_llseek, /* read and write both use no f_pos */
      };
      
      @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier write_no_fpos.write_f;
      @@
      struct file_operations fops = {
      ... .write = write_f, ...
      +.llseek = noop_llseek, /* write uses no f_pos */
      };
      
      @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      identifier read_no_fpos.read_f;
      @@
      struct file_operations fops = {
      ... .read = read_f, ...
      +.llseek = noop_llseek, /* read uses no f_pos */
      };
      
      @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
      identifier fops0.fops;
      @@
      struct file_operations fops = {
      ...
      +.llseek = noop_llseek, /* no read or write fn */
      };
      ===== End semantic patch =====
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Cc: Julia Lawall <julia@diku.dk>
      Cc: Christoph Hellwig <hch@infradead.org>
      6038f373
  8. 14 7月, 2010 1 次提交
  9. 11 12月, 2009 1 次提交
  10. 16 6月, 2009 4 次提交
  11. 16 3月, 2009 1 次提交
  12. 07 1月, 2009 1 次提交
    • S
      sparc64: Use unsigned long long for u64. · 90181136
      Sam Ravnborg 提交于
      Andrew Morton wrote:
      
          People keep on doing
      
                  printk("%llu", some_u64);
      
          testing it only on x86_64 and this generates a warning storm on
          powerpc, sparc64, etc.  Because they use `long', not `long long'.
      
          Quite a few 64-bit architectures are using `long' for their
          s64/u64 types.  We should convert them all to `long long'.
      
      Update types.h so we use unsigned long long for u64 and
      fix all warnings in sparc64 code.
      Tested with an allnoconfig, defconfig and allmodconfig builds.
      
      This patch introduces additional warnings in several drivers.
      These will be dealt with in separate patches.
      Signed-off-by: NSam Ravnborg <sam@ravnborg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      90181136
  13. 27 12月, 2008 1 次提交
  14. 05 12月, 2008 1 次提交
    • S
      sparc,sparc64: unify kernel/ · a88b5ba8
      Sam Ravnborg 提交于
      o Move all files from sparc64/kernel/ to sparc/kernel
        - rename as appropriate
      o Update sparc/Makefile to the changes
      o Update sparc/kernel/Makefile to include the sparc64 files
      
      NOTE: This commit changes link order on sparc64!
      
      Link order had to change for either of sparc32 and sparc64.
      And assuming sparc64 see more testing than sparc32 change link
      order on sparc64 where issues will be caught faster.
      Signed-off-by: NSam Ravnborg <sam@ravnborg.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      a88b5ba8
  15. 24 4月, 2008 1 次提交
  16. 25 2月, 2008 1 次提交
    • S
      [SPARC64]: Fix section mismatchs from dr_cpu_data · 7769bd1c
      Sam Ravnborg 提交于
      Fix following warnings:
      WARNING: vmlinux.o(.text+0x4b258): Section mismatch in reference from the function dr_cpu_data() to the function .devinit.text:mdesc_fill_in_cpu_data()
      WARNING: vmlinux.o(.text+0x4b290): Section mismatch in reference from the function dr_cpu_data() to the function .cpuinit.text:cpu_up()
      
      mdesc_fill_in_cpu_data() is only used during early init and for
      cpu hotplug so the __cpuinit annotation is the correct choice.
      We have the call chain:
      dr_cpu_data() => dr_cpu_configure() => mdesc_fill_in_cpu_data()
      
      dr_cpu_data() is used only during early init and for cpu
      hotplug. So annotating them all __cpuinit solves the
      section mismatch and should be correct.
      Signed-off-by: NSam Ravnborg <sam@ravnborg.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      7769bd1c
  17. 17 9月, 2007 1 次提交
  18. 16 8月, 2007 1 次提交
  19. 08 8月, 2007 1 次提交
  20. 21 7月, 2007 1 次提交
  21. 20 7月, 2007 1 次提交
  22. 18 7月, 2007 1 次提交
  23. 17 7月, 2007 1 次提交
  24. 16 7月, 2007 3 次提交
    • D
      [SPARC64]: mdesc.c needs linux/mm.h · 8f3fff20
      David S. Miller 提交于
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      8f3fff20
    • D
      [SPARC64]: Initial LDOM cpu hotplug support. · 4f0234f4
      David S. Miller 提交于
      Only adding cpus is supports at the moment, removal
      will come next.
      
      When new cpus are configured, the machine description is
      updated.  When we get the configure request we pass in a
      cpu mask of to-be-added cpus to the mdesc CPU node parser
      so it only fetches information for those cpus.  That code
      also proceeds to update the SMT/multi-core scheduling bitmaps.
      
      cpu_up() does all the work and we return the status back
      over the DS channel.
      
      CPUs via dr-cpu need to be booted straight out of the
      hypervisor, and this requires:
      
      1) A new trampoline mechanism.  CPUs are booted straight
         out of the hypervisor with MMU disabled and running in
         physical addresses with no mappings installed in the TLB.
      
         The new hvtramp.S code sets up the critical cpu state,
         installs the locked TLB mappings for the kernel, and
         turns the MMU on.  It then proceeds to follow the logic
         of the existing trampoline.S SMP cpu bringup code.
      
      2) All calls into OBP have to be disallowed when domaining
         is enabled.  Since cpus boot straight into the kernel from
         the hypervisor, OBP has no state about that cpu and therefore
         cannot handle being invoked on that cpu.
      
         Luckily it's only a handful of interfaces which can be called
         after the OBP device tree is obtained.  For example, rebooting,
         halting, powering-off, and setting options node variables.
      
      CPU removal support will require some infrastructure changes
      here.  Namely we'll have to process the requests via a true
      kernel thread instead of in a workqueue.  workqueues run on
      a per-cpu thread, but when unconfiguring we might need to
      force the thread to execute on another cpu if the current cpu
      is the one being removed.  Removal of a cpu also causes the kernel
      to destroy that cpu's workqueue running thread.
      
      Another issue on removal is that we may have interrupts still
      pointing to the cpu-to-be-removed.  So new code will be needed
      to walk the active INO list and retarget those cpus as-needed.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      4f0234f4
    • D
      [SPARC64]: Abstract out mdesc accesses for better MD update handling. · 43fdf274
      David S. Miller 提交于
      Since we have to be able to handle MD updates, having an in-tree
      set of data structures representing the MD objects actually makes
      things more painful.
      
      The MD itself is easy to parse, and we can implement the existing
      interfaces using direct parsing of the MD binary image.
      
      The MD is now reference counted, so accesses have to now take the
      form:
      
      	handle = mdesc_grab();
      
      	... operations on MD ...
      
      	mdesc_release(handle);
      
      The only remaining issue are cases where code holds on to references
      to MD property values.  mdesc_get_property() returns a direct pointer
      to the property value, most cases just pull in the information they
      need and discard the pointer, but there are few that use the pointer
      directly over a long lifetime.  Those will be fixed up in a subsequent
      changeset.
      
      A preliminary handler for MD update events from domain services is
      there, it is rudimentry but it works and handles all of the reference
      counting.  It does not check the generation number of the MDs,
      and it does not generate a "add/delete" list for notification to
      interesting parties about MD changes but that will be forthcoming.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      43fdf274
  25. 05 6月, 2007 2 次提交
  26. 29 5月, 2007 1 次提交