- 22 2月, 2013 2 次提交
-
-
由 Mauro Carvalho Chehab 提交于
That allows APEI GHES driver to report errors directly, using the EDAC error report API. Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
The number of variables at the stack is too big. Reduces the stack usage by using a pre-allocated error buffer. Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
- 21 2月, 2013 2 次提交
-
-
由 Mauro Carvalho Chehab 提交于
APEI GHES and i7core_edac/sb_edac currently can be loaded at the same time, but those are Highlander modules: "There can be only one". There are two reasons for that: 1) Each driver assumes that it is the only one registering at the EDAC core, as it is driver's responsibility to number the memory controllers, and all of them start from 0; 2) If BIOS is handling the memory errors, the OS can't also be doing it, as one will mangle with the other. So, we need to add an module owner's lock at the EDAC core, in order to avoid having two different modules handling memory errors at the same time. The best way for doing this lock seems to use the driver's name, as this is unique, and won't require changes on every driver. Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
There are some cases where the memory controller layout is completely hidden. This is the case of firmware-driven error code, like the one provided by GHES. Add a new layer to be used on such memory error report mechanisms. Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
- 30 1月, 2013 1 次提交
-
-
由 Joe Perches 提交于
First number, then size. Signed-off-by: NJoe Perches <joe@perches.com> Cc: <stable@vger.kernel.org> Signed-off-by: NBorislav Petkov <bp@suse.de>
-
- 21 12月, 2012 1 次提交
-
-
由 Shaun Ruffell 提交于
There are no more embedded kobjects in struct mem_ctl_info. Remove a header and a comment that does not reflect the code anymore. Signed-off-by: NShaun Ruffell <sruffell@digium.com> Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
- 28 11月, 2012 2 次提交
-
-
由 Borislav Petkov 提交于
A reported error could look like this [ 226.178315] EDAC MC0: 1 CE on mc#0csrow#0channel#0 (csrow:0 channel:0 page:0x427c0d offset:0xde0 grain:0 syndrome:0x1c6) with two spaces back-to-back due to the msg argument of edac_mc_handle_error being passed on empty by the specific drivers. Handle that. Signed-off-by: NBorislav Petkov <borislav.petkov@amd.com>
-
由 Borislav Petkov 提交于
The tracepoint decodes the error type later anyway so remove a useless assignment to the temporary p which gets overwritten later anyway. Signed-off-by: NBorislav Petkov <borislav.petkov@amd.com>
-
- 25 10月, 2012 1 次提交
-
-
由 Mauro Carvalho Chehab 提交于
The driver is currently filling data in a wrong way, on drivers for csrows-based memory controller, when the first layer is a csrow. This is not easily to notice, as, in general, memories are filed in dual, interleaved, symetric mode, as very few memory controllers support asymetric modes. While digging into a bug for i82795_edac driver, the asymetric mode there is now working, allowing us to fill the machine with 4x1GB ranks at channel 0, and 2x512GB at channel 1: Channel 0 ranks: EDAC DEBUG: i82975x_init_csrows: DIMM A0: from page 0x00000000 to 0x0003ffff (size: 0x00040000 pages) EDAC DEBUG: i82975x_init_csrows: DIMM A1: from page 0x00040000 to 0x0007ffff (size: 0x00040000 pages) EDAC DEBUG: i82975x_init_csrows: DIMM A2: from page 0x00080000 to 0x000bffff (size: 0x00040000 pages) EDAC DEBUG: i82975x_init_csrows: DIMM A3: from page 0x000c0000 to 0x000fffff (size: 0x00040000 pages) Channel 1 ranks: EDAC DEBUG: i82975x_init_csrows: DIMM B0: from page 0x00100000 to 0x0011ffff (size: 0x00020000 pages) EDAC DEBUG: i82975x_init_csrows: DIMM B1: from page 0x00120000 to 0x0013ffff (size: 0x00020000 pages) Instead of properly showing the memories as such, before this patch, it shows the memory layout as: +-----------------------------------+ | mc0 | | csrow0 | csrow1 | csrow2 | ----------+-----------------------------------+ channel1: | 1024 MB | 1024 MB | 512 MB | channel0: | 1024 MB | 1024 MB | 512 MB | ----------+-----------------------------------+ as if both channels were symetric, grouping the DIMMs on a wrong layout. After this patch, the memory is correctly represented. So, for csrows at layers[0], it shows: +-----------------------------------------------+ | mc0 | | csrow0 | csrow1 | csrow2 | csrow3 | ----------+-----------------------------------------------+ channel1: | 512 MB | 512 MB | 0 MB | 0 MB | channel0: | 1024 MB | 1024 MB | 1024 MB | 1024 MB | ----------+-----------------------------------------------+ For csrows at layers[1], it shows: +-----------------------+ | mc0 | | channel0 | channel1 | --------+-----------------------+ csrow3: | 1024 MB | 0 MB | csrow2: | 1024 MB | 0 MB | --------+-----------------------+ csrow1: | 1024 MB | 512 MB | csrow0: | 1024 MB | 512 MB | --------+-----------------------+ So, no matter of what comes first, the information between channel and csrow will be properly represented. Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
- 24 9月, 2012 2 次提交
-
-
由 Shaun Ruffell 提交于
Fix potential NULL pointer dereference in edac_unregister_sysfs() on system boot introduced in 3.6-rc1. Since commit 7a623c03 ("edac: rewrite the sysfs code to use struct device") edac_mc_alloc() no longer initializes embedded kobjects in struct mem_ctl_info. Therefore edac_mc_free() can no longer simply decrement a kobject reference count to free the allocated memory unless the memory controller driver module had also called edac_mc_add_mc(). Now edac_mc_free() will check if the newly embedded struct device has been registered with sysfs before using either the standard device release functions or freeing the data structures itself with logic pulled out of the error path of edac_mc_alloc(). The BUG this patch resolves for me: BUG: unable to handle kernel NULL pointer dereference at (null) EIP is at __wake_up_common+0x1a/0x6a Process modprobe (pid: 933, ti=f3dc6000 task=f3db9520 task.ti=f3dc6000) Call Trace: complete_all+0x3f/0x50 device_pm_remove+0x23/0xa2 device_del+0x34/0x142 edac_unregister_sysfs+0x3b/0x5c [edac_core] edac_mc_free+0x29/0x2f [edac_core] e7xxx_probe1+0x268/0x311 [e7xxx_edac] e7xxx_init_one+0x56/0x61 [e7xxx_edac] local_pci_probe+0x13/0x15 ... Cc: Mauro Carvalho Chehab <mchehab@redhat.com> Cc: Shaohui Xie <Shaohui.Xie@freescale.com> Signed-off-by: NShaun Ruffell <sruffell@digium.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Fengguang Wu 提交于
coccinelle warns about: + drivers/edac/edac_mc.c:429:9-23: ERROR: reference preceded by free on line 429 421 if (mci->csrows) { > 422 for (chn = 0; chn < tot_channels; chn++) { 423 csr = mci->csrows[chn]; 424 if (csr) { > 425 for (chn = 0; chn < tot_channels; chn++) 426 kfree(csr->channels[chn]); 427 kfree(csr); 428 } > 429 kfree(mci->csrows[i]); 430 } 431 kfree(mci->csrows); 432 } and that code block seem to mess things up in several ways (double free, memory leak, out-of-bound reads etc.): L422: The iterator "chn" and bound "tot_channels" are totally wrong. Should be "row" and "tot_csrows" respectively. Which means either memory leak, or out-of-bound reads (which if does not trigger an immediate page fault error, will further lead to kfree() on random addresses). L425: The inner loop is reusing the same iterator "chn" as the outer loop, which could lead to premature end of the outer loop, and hence memory leak. L429: The array index 'i' in mci->csrows[i] is a temporary value used in previous loops, and won't change at all in the current loop. Which means either out-of-bound read and possibly kfree(random number), or the same mci->csrows[i] get freed once and again, and possibly double free for the kfree(csr) in L427. L426/L427: a kfree(csr->channels) is needed in between to avoid leaking the memory. The buggy code was introduced by commit de3910eb ("edac: change the mem allocation scheme to make Documentation/kobject.txt happy") in the 3.6-rc1 merge window. Fix it by freeing up resources in this order: free csrows[i]->channels[j] free csrows[i]->channels free csrows[i] free csrows CC: Mauro Carvalho Chehab <mchehab@redhat.com> CC: Shaun Ruffell <sruffell@digium.com> Signed-off-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 8月, 2012 1 次提交
-
-
由 Tejun Heo 提交于
Convert delayed_work users doing cancel_delayed_work() followed by queue_delayed_work() to mod_delayed_work(). Most conversions are straight-forward. Ones worth mentioning are, * drivers/edac/edac_mc.c: edac_mc_workq_setup() converted to always use mod_delayed_work() and cancel loop in edac_mc_reset_delay_period() is dropped. * drivers/platform/x86/thinkpad_acpi.c: No need to remember whether watchdog is active or not. @fan_watchdog_active and related code dropped. * drivers/power/charger-manager.c: Seemingly a lot of delayed_work_pending() abuse going on here. [delayed_]work_pending() are unsynchronized and racy when used like this. I converted one instance in fullbatt_handler(). Please conver the rest so that it invokes workqueue APIs for the intended target state rather than trying to game work item pending state transitions. e.g. if timer should be modified - call mod_delayed_work(), canceled - call cancel_delayed_work[_sync](). * drivers/thermal/thermal_sys.c: thermal_zone_device_set_polling() simplified. Note that round_jiffies() calls in this function are meaningless. round_jiffies() work on absolute jiffies not delta delay used by delayed_work. v2: Tomi pointed out that __cancel_delayed_work() users can't be safely converted to mod_delayed_work(). They could be calling it from irq context and if that happens while delayed_work_timer_fn() is running, it could deadlock. __cancel_delayed_work() users are dropped. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NHenrique de Moraes Holschuh <hmh@hmh.eng.br> Acked-by: NDmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: NAnton Vorontsov <cbouatmailru@gmail.com> Acked-by: NDavid Howells <dhowells@redhat.com> Cc: Tomi Valkeinen <tomi.valkeinen@ti.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Doug Thompson <dougthompson@xmission.com> Cc: David Airlie <airlied@linux.ie> Cc: Roland Dreier <roland@kernel.org> Cc: "John W. Linville" <linville@tuxdriver.com> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Len Brown <len.brown@intel.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Johannes Berg <johannes@sipsolutions.net>
-
- 12 6月, 2012 9 次提交
-
-
由 Mauro Carvalho Chehab 提交于
In order to avoid loosing error events, it is desirable to group error events together and generate a single trace for several identical errors. The trace API already allows reporting multiple errors. Change the handle_error function to also allow that. The changes at the drivers were made by this small script: $file .=$_ while (<>); $file =~ s/(edac_mc_handle_error)\s*\(([^\,]+)\,([^\,]+)\,/$1($2,$3, 1,/g; print $file; Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
Remove the arch-dependent parameter, as it were not used, as the MCE tracepoint weren't implemented. It probably doesn't make sense to have an MCE-specific tracepoint, as this will cost more bytes at the tracepoint, and tracepoint is not free. The changes at the EDAC drivers were done by this small perl script: $file .=$_ while (<>); $file =~ s/(edac_mc_handle_error)\s*\(([^\;]+)\,([^\,\)]+)\s*\)/$1($2)/g; print $file; Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Dan Carpenter 提交于
Add a check here for if kzalloc() failed. Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
The edac_mc_alloc() routine allocates one dimm_info device for all possible memories, including the non-filled ones. The debug messages there are somewhat confusing. So, cleans them, by moving the code that prints the memory location to edac_mc, and using it on both edac_mc_sysfs and edac_mc. Also, only dumps information when DIMM/ranks are actually filled. After this patch, a dimm-based memory controller will print the debug info as: [ 1011.380027] EDAC DEBUG: edac_mc_dump_csrow: csrow->csrow_idx = 0 [ 1011.380029] EDAC DEBUG: edac_mc_dump_csrow: csrow = ffff8801169be000 [ 1011.380031] EDAC DEBUG: edac_mc_dump_csrow: csrow->first_page = 0x0 [ 1011.380032] EDAC DEBUG: edac_mc_dump_csrow: csrow->last_page = 0x0 [ 1011.380034] EDAC DEBUG: edac_mc_dump_csrow: csrow->page_mask = 0x0 [ 1011.380035] EDAC DEBUG: edac_mc_dump_csrow: csrow->nr_channels = 3 [ 1011.380037] EDAC DEBUG: edac_mc_dump_csrow: csrow->channels = ffff8801149c2840 [ 1011.380039] EDAC DEBUG: edac_mc_dump_csrow: csrow->mci = ffff880117426000 [ 1011.380041] EDAC DEBUG: edac_mc_dump_channel: channel->chan_idx = 0 [ 1011.380042] EDAC DEBUG: edac_mc_dump_channel: channel = ffff8801149c2860 [ 1011.380044] EDAC DEBUG: edac_mc_dump_channel: channel->csrow = ffff8801169be000 [ 1011.380046] EDAC DEBUG: edac_mc_dump_channel: channel->dimm = ffff88010fe90400 ... [ 1011.380095] EDAC DEBUG: edac_mc_dump_dimm: dimm0: channel 0 slot 0 mapped as virtual row 0, chan 0 [ 1011.380097] EDAC DEBUG: edac_mc_dump_dimm: dimm = ffff88010fe90400 [ 1011.380099] EDAC DEBUG: edac_mc_dump_dimm: dimm->label = 'CPU#0Channel#0_DIMM#0' [ 1011.380101] EDAC DEBUG: edac_mc_dump_dimm: dimm->nr_pages = 0x40000 [ 1011.380103] EDAC DEBUG: edac_mc_dump_dimm: dimm->grain = 8 [ 1011.380104] EDAC DEBUG: edac_mc_dump_dimm: dimm->nr_pages = 0x40000 ... (a rank-based memory controller would print, instead of "dimm?", "rank?" on the above debug info) Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Joe Perches 提交于
Use a more common debugging style. Remove __FILE__ uses, add missing newlines, coalesce formats and align arguments. Signed-off-by: NJoe Perches <joe@perches.com> Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
The debug macro already adds that. Most of the work here was made by this small script: $f .=$_ while (<>); $f =~ s/(debugf[0-9]\s*\(\s*)__FILE__\s*": /\1"/g; $f =~ s/(debugf[0-9]\s*\(\s*)__FILE__\s*/\1/g; $f =~ s/(debugf[0-9]\s*\(\s*)__FILE__\s*"MC: /\1"/g; $f =~ s/(debugf[0-9]\s*\(\")\%s[\:\,\(\)]*\s*([^\"]*\s*[^\)]+)__func__\s*\,\s*/\1\2/g; $f =~ s/(debugf[0-9]\s*\(\")\%s[\:\,\(\)]*\s*([^\"]*\s*[^\)]+),\s*__func__\s*\)/\1\2)/g; $f =~ s/(debugf[0-9]\s*\(\"MC\:\s*)\%s[\:\,\(\)]*\s*([^\"]*\s*[^\)]+)__func__\s*\,\s*/\1\2/g; $f =~ s/(debugf[0-9]\s*\(\"MC\:\s*)\%s[\:\,\(\)]*\s*([^\"]*\s*[^\)]+),\s*__func__\s*\)/\1\2)/g; $f =~ s/\"MC\: \\n\"/"MC:\\n"/g; print $f; After running the script, manual cleanups were done to fix it the remaining places. While here, removed the __LINE__ on most places, as it doesn't actually give useful info on most places. Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
Kernel kobjects have rigid rules: each container object should be dynamically allocated, and can't be allocated into a single kmalloc. EDAC never obeyed this rule: it has a single malloc function that allocates all needed data into a single kzalloc. As this is not accepted anymore, change the allocation schema of the EDAC *_info structs to enforce this Kernel standard. Acked-by: NChris Metcalf <cmetcalf@tilera.com> Cc: Aristeu Rozanski <arozansk@redhat.com> Cc: Doug Thompson <norsk5@yahoo.com> Cc: Greg K H <gregkh@linuxfoundation.org> Cc: Borislav Petkov <borislav.petkov@amd.com> Cc: Mark Gross <mark.gross@intel.com> Cc: Tim Small <tim@buttersideup.com> Cc: Ranganathan Desikan <ravi@jetztechnologies.com> Cc: "Arvind R." <arvino55@gmail.com> Cc: Olof Johansson <olof@lixom.net> Cc: Egor Martovetsky <egor@pasemi.com> Cc: Michal Marek <mmarek@suse.cz> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Hitoshi Mitake <h.mitake@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Shaohui Xie <Shaohui.Xie@freescale.com> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
Now that al users for the old kobj raw access are gone, we can get rid of the legacy kobj-based structures and data. Reviewed-by: NAristeu Rozanski <arozansk@redhat.com> Cc: Doug Thompson <norsk5@yahoo.com> Cc: Michal Marek <mmarek@suse.cz> Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
The EDAC subsystem uses the old struct sysdev approach, creating all nodes using the raw sysfs API. This is bad, as the API is deprecated. As we'll be changing the EDAC API, let's first port the existing code to struct device. There's one drawback on this patch: driver-specific sysfs nodes, used by mpc85xx_edac, amd64_edac and i7core_edac won't be created anymore. While it would be possible to also port the device-specific code, that would mix kobj with struct device, with is not recommended. Also, it is easier and nicer to move the code to the drivers, instead, as the core can get rid of some complex logic that just emulates what the device_add() and device_create_file() already does. The next patches will convert the driver-specific code to use the device-specific calls. Then, the remaining bits of the old sysfs API will be removed. NOTE: a per-MC bus is required, otherwise devices with more than one memory controller will hit a bug like the one below: [ 819.094946] EDAC DEBUG: find_mci_by_dev: find_mci_by_dev() [ 819.094948] EDAC DEBUG: edac_create_sysfs_mci_device: edac_create_sysfs_mci_device() idx=1 [ 819.094952] EDAC DEBUG: edac_create_sysfs_mci_device: edac_create_sysfs_mci_device(): creating device mc1 [ 819.094967] EDAC DEBUG: edac_create_sysfs_mci_device: edac_create_sysfs_mci_device creating dimm0, located at channel 0 slot 0 [ 819.094984] ------------[ cut here ]------------ [ 819.100142] WARNING: at fs/sysfs/dir.c:481 sysfs_add_one+0xc1/0xf0() [ 819.107282] Hardware name: S2600CP [ 819.111078] sysfs: cannot create duplicate filename '/bus/edac/devices/dimm0' [ 819.119062] Modules linked in: sb_edac(+) edac_core ip6table_filter ip6_tables ebtable_nat ebtables ipt_MASQUERADE iptable_nat nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 xt_state nf_conntrack ipt_REJECT xt_CHECKSUM iptable_mangle iptable_filter ip_tables bridge stp llc sunrpc binfmt_misc dm_mirror dm_region_hash dm_log vhost_net macvtap macvlan tun kvm microcode pcspkr iTCO_wdt iTCO_vendor_support igb i2c_i801 i2c_core sg ioatdma dca sr_mod cdrom sd_mod crc_t10dif ahci libahci isci libsas libata scsi_transport_sas scsi_mod wmi dm_mod [last unloaded: scsi_wait_scan] [ 819.175748] Pid: 10902, comm: modprobe Not tainted 3.3.0-0.11.el7.v12.2.x86_64 #1 [ 819.184113] Call Trace: [ 819.186868] [<ffffffff8105adaf>] warn_slowpath_common+0x7f/0xc0 [ 819.193573] [<ffffffff8105aea6>] warn_slowpath_fmt+0x46/0x50 [ 819.200000] [<ffffffff811f53d1>] sysfs_add_one+0xc1/0xf0 [ 819.206025] [<ffffffff811f5cf5>] sysfs_do_create_link+0x135/0x220 [ 819.212944] [<ffffffff811f7023>] ? sysfs_create_group+0x13/0x20 [ 819.219656] [<ffffffff811f5df3>] sysfs_create_link+0x13/0x20 [ 819.226109] [<ffffffff813b04f6>] bus_add_device+0xe6/0x1b0 [ 819.232350] [<ffffffff813ae7cb>] device_add+0x2db/0x460 [ 819.238300] [<ffffffffa0325634>] edac_create_dimm_object+0x84/0xf0 [edac_core] [ 819.246460] [<ffffffffa0325e18>] edac_create_sysfs_mci_device+0xe8/0x290 [edac_core] [ 819.255215] [<ffffffffa0322e2a>] edac_mc_add_mc+0x5a/0x2c0 [edac_core] [ 819.262611] [<ffffffffa03412df>] sbridge_register_mci+0x1bc/0x279 [sb_edac] [ 819.270493] [<ffffffffa03417a3>] sbridge_probe+0xef/0x175 [sb_edac] [ 819.277630] [<ffffffff813ba4e8>] ? pm_runtime_enable+0x58/0x90 [ 819.284268] [<ffffffff812f430c>] local_pci_probe+0x5c/0xd0 [ 819.290508] [<ffffffff812f5ba1>] __pci_device_probe+0xf1/0x100 [ 819.297117] [<ffffffff812f5bea>] pci_device_probe+0x3a/0x60 [ 819.303457] [<ffffffff813b1003>] really_probe+0x73/0x270 [ 819.309496] [<ffffffff813b138e>] driver_probe_device+0x4e/0xb0 [ 819.316104] [<ffffffff813b149b>] __driver_attach+0xab/0xb0 [ 819.322337] [<ffffffff813b13f0>] ? driver_probe_device+0xb0/0xb0 [ 819.329151] [<ffffffff813af5d6>] bus_for_each_dev+0x56/0x90 [ 819.335489] [<ffffffff813b0d7e>] driver_attach+0x1e/0x20 [ 819.341534] [<ffffffff813b0980>] bus_add_driver+0x1b0/0x2a0 [ 819.347884] [<ffffffffa0347000>] ? 0xffffffffa0346fff [ 819.353641] [<ffffffff813b19f6>] driver_register+0x76/0x140 [ 819.359980] [<ffffffff8159f18b>] ? printk+0x51/0x53 [ 819.365524] [<ffffffffa0347000>] ? 0xffffffffa0346fff [ 819.371291] [<ffffffff812f5896>] __pci_register_driver+0x56/0xd0 [ 819.378096] [<ffffffffa0347054>] sbridge_init+0x54/0x1000 [sb_edac] [ 819.385231] [<ffffffff8100203f>] do_one_initcall+0x3f/0x170 [ 819.391577] [<ffffffff810bcd2e>] sys_init_module+0xbe/0x230 [ 819.397926] [<ffffffff815bb529>] system_call_fastpath+0x16/0x1b [ 819.404633] ---[ end trace 1654fdd39556689f ]--- This happens because the bus is not being properly initialized. Instead of putting the memory sub-devices inside the memory controller, it is putting everything under the same directory: $ tree /sys/bus/edac/ /sys/bus/edac/ ├── devices │ ├── all_channel_counts -> ../../../devices/system/edac/mc/mc0/all_channel_counts │ ├── csrow0 -> ../../../devices/system/edac/mc/mc0/csrow0 │ ├── csrow1 -> ../../../devices/system/edac/mc/mc0/csrow1 │ ├── csrow2 -> ../../../devices/system/edac/mc/mc0/csrow2 │ ├── dimm0 -> ../../../devices/system/edac/mc/mc0/dimm0 │ ├── dimm1 -> ../../../devices/system/edac/mc/mc0/dimm1 │ ├── dimm3 -> ../../../devices/system/edac/mc/mc0/dimm3 │ ├── dimm6 -> ../../../devices/system/edac/mc/mc0/dimm6 │ ├── inject_addrmatch -> ../../../devices/system/edac/mc/mc0/inject_addrmatch │ ├── mc -> ../../../devices/system/edac/mc │ └── mc0 -> ../../../devices/system/edac/mc/mc0 ├── drivers ├── drivers_autoprobe ├── drivers_probe └── uevent On a multi-memory controller system, the names "csrow%d" and "dimm%d" should be under "mc%d", and not at the main hierarchy level. So, we need to create a per-MC bus, in order to have its own namespace. Reviewed-by: NAristeu Rozanski <arozansk@redhat.com> Cc: Doug Thompson <norsk5@yahoo.com> Cc: Greg K H <gregkh@linuxfoundation.org> Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
- 11 6月, 2012 3 次提交
-
-
由 Chris Metcalf 提交于
The logic was checking the sizeof the structure being allocated to determine whether an alignment fixup was required. This isn't right; what we actually care about is the alignment of the actual pointer that's about to be returned. This became an issue recently because struct edac_mc_layer has a size that is not zero modulo eight, so we were taking the correctly-aligned pointer and forcing it to be misaligned. On Tile this caused an alignment exception. Signed-off-by: NChris Metcalf <cmetcalf@tilera.com> Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
As EDAC doesn't use struct device itself, it created a parent dev pointer called as "pdev". Now that we'll be converting it to use struct device, instead of struct devsys, this needs to be fixed. No functional changes. Reviewed-by: NAristeu Rozanski <arozansk@redhat.com> Acked-by: NChris Metcalf <cmetcalf@tilera.com> Cc: Doug Thompson <norsk5@yahoo.com> Cc: Borislav Petkov <borislav.petkov@amd.com> Cc: Mark Gross <mark.gross@intel.com> Cc: Jason Uhlenkott <juhlenko@akamai.com> Cc: Tim Small <tim@buttersideup.com> Cc: Ranganathan Desikan <ravi@jetztechnologies.com> Cc: "Arvind R." <arvino55@gmail.com> Cc: Olof Johansson <olof@lixom.net> Cc: Egor Martovetsky <egor@pasemi.com> Cc: Michal Marek <mmarek@suse.cz> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Hitoshi Mitake <h.mitake@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com> Cc: Shaohui Xie <Shaohui.Xie@freescale.com> Cc: Josh Boyer <jwboyer@gmail.com> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
Add a new tracepoint-based hardware events report method for reporting Memory Controller events. Part of the description bellow is shamelessly copied from Tony Luck's notes about the Hardware Error BoF during LPC 2010 [1]. Tony, thanks for your notes and discussions to generate the h/w error reporting requirements. [1] http://lwn.net/Articles/416669/ We have several subsystems & methods for reporting hardware errors: 1) EDAC ("Error Detection and Correction"). In its original form this consisted of a platform specific driver that read topology information and error counts from chipset registers and reported the results via a sysfs interface. 2) mcelog - x86 specific decoding of machine check bank registers reporting in binary form via /dev/mcelog. Recent additions make use of the APEI extensions that were documented in version 4.0a of the ACPI specification to acquire more information about errors without having to rely reading chipset registers directly. A user level programs decodes into somewhat human readable format. 3) drivers/edac/mce_amd.c - this driver hooks into the mcelog path and decodes errors reported via machine check bank registers in AMD processors to the console log using printk(); Each of these mechanisms has a band of followers ... and none of them appear to meet all the needs of all users. As part of a RAS subsystem, let's encapsulate the memory error hardware events into a trace facility. The tracepoint printk will be displayed like: mc_event: [quant] (Corrected|Uncorrected|Fatal) error:[error msg] on [label] ([location] [edac_mc detail] [driver_detail] Where: [quant] is the quantity of errors [error msg] is the driver-specific error message (e. g. "memory read", "bus error", ...); [location] is the location in terms of memory controller and branch/channel/slot, channel/slot or csrow/channel; [label] is the memory stick label; [edac_mc detail] describes the address location of the error and the syndrome; [driver detail] is driver-specifig error message details, when needed/provided (e. g. "area:DMA", ...) For example: mc_event: 1 Corrected error:memory read on memory stick DIMM_1A (mc:0 location:0:0:0 page:0x586b6e offset:0xa66 grain:32 syndrome:0x0 area:DMA) Of course, any userspace tools meant to handle errors should not parse the above data. They should, instead, use the binary fields provided by the tracepoint, mapping them directly into their Management Information Base. NOTE: The original patch was providing an additional mechanism for MCA-based trace events that also contained MCA error register data. However, as no agreement was reached so far for the MCA-based trace events, for now, let's add events only for memory errors. A latter patch is planned to change the tracepoint, for those types of event. Cc: Aristeu Rozanski <arozansk@redhat.com> Cc: Doug Thompson <norsk5@yahoo.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
- 29 5月, 2012 7 次提交
-
-
由 Mauro Carvalho Chehab 提交于
While userspace doesn't fill the dimm labels, add there the dimm location, as described by the used memory model. This could eventually match what is described at the dmidecode, making easier for people to identify the memory. For example, on an Intel motherboard where the DMI table is reliable, the first memory stick is described as: Memory Device Array Handle: 0x0029 Error Information Handle: Not Provided Total Width: 64 bits Data Width: 64 bits Size: 2048 MB Form Factor: DIMM Set: 1 Locator: A1_DIMM0 Bank Locator: A1_Node0_Channel0_Dimm0 Type: <OUT OF SPEC> Type Detail: Synchronous Speed: 800 MHz Manufacturer: A1_Manufacturer0 Serial Number: A1_SerNum0 Asset Tag: A1_AssetTagNum0 Part Number: A1_PartNum0 The memory named as "A1_DIMM0" is physically located at the first memory controller (node 0), at channel 0, dimm slot 0. After this patch, the memory label will be filled with: /sys/devices/system/edac/mc/csrow0/ch0_dimm_label:mc#0channel#0slot#0 And (after the new EDAC API patches) as: /sys/devices/system/edac/mc/mc0/dimm0/dimm_label:mc#0channel#0slot#0 So, even if the memory label is not initialized on userspace, an useful information with the error location is filled there, expecially since several systems/motherboards are provided with enough info to map from channel/slot (or branch/channel/slot) into the DIMM label. So, letting the EDAC core fill it by default is a good thing. It should noticed that, as the label filling happens at the edac_mc_alloc(), drivers can override it to better describe the memories (and some actually do it). Cc: Aristeu Rozanski <arozansk@redhat.com> Cc: Doug Thompson <norsk5@yahoo.com> Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
Now that all drivers got converted to use the new ABI, we can drop the old one. Acked-by: NChris Metcalf <cmetcalf@tilera.com> Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
Change the EDAC internal representation to work with non-csrow based memory controllers. There are lots of those memory controllers nowadays, and more are coming. So, the EDAC internal representation needs to be changed, in order to work with those memory controllers, while preserving backward compatibility with the old ones. The edac core was written with the idea that memory controllers are able to directly access csrows. This is not true for FB-DIMM and RAMBUS memory controllers. Also, some recent advanced memory controllers don't present a per-csrows view. Instead, they view memories as DIMMs, instead of ranks. So, change the allocation and error report routines to allow them to work with all types of architectures. This will allow the removal of several hacks with FB-DIMM and RAMBUS memory controllers. Also, several tests were done on different platforms using different x86 drivers. TODO: a multi-rank DIMMs are currently represented by multiple DIMM entries in struct dimm_info. That means that changing a label for one rank won't change the same label for the other ranks at the same DIMM. This bug is present since the beginning of the EDAC, so it is not a big deal. However, on several drivers, it is possible to fix this issue, but it should be a per-driver fix, as the csrow => DIMM arrangement may not be equal for all. So, don't try to fix it here yet. I tried to make this patch as short as possible, preceding it with several other patches that simplified the logic here. Yet, as the internal API changes, all drivers need changes. The changes are generally bigger in the drivers for FB-DIMMs. Cc: Aristeu Rozanski <arozansk@redhat.com> Cc: Doug Thompson <norsk5@yahoo.com> Cc: Borislav Petkov <borislav.petkov@amd.com> Cc: Mark Gross <mark.gross@intel.com> Cc: Jason Uhlenkott <juhlenko@akamai.com> Cc: Tim Small <tim@buttersideup.com> Cc: Ranganathan Desikan <ravi@jetztechnologies.com> Cc: "Arvind R." <arvino55@gmail.com> Cc: Olof Johansson <olof@lixom.net> Cc: Egor Martovetsky <egor@pasemi.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Michal Marek <mmarek@suse.cz> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Hitoshi Mitake <h.mitake@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com> Cc: Shaohui Xie <Shaohui.Xie@freescale.com> Cc: Josh Boyer <jwboyer@gmail.com> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
The edac_align_ptr() function is used to prepare data for a single memory allocation kzalloc() call. It counts how many bytes are needed by some data structure. Using it as-is is not that trivial, as the quantity of memory elements reserved is not there, but, instead, it is on a next call. In order to avoid mistakes when using it, move the number of allocated elements into it, making easier to use it. Reviewed-by: NBorislav Petkov <bp@amd64.org> Cc: Aristeu Rozanski <arozansk@redhat.com> Cc: Doug Thompson <norsk5@yahoo.com> Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
The number of pages is a dimm property. Move it to the dimm struct. After this change, it is possible to add sysfs nodes for the DIMM's that will properly represent the DIMM stick properties, including its size. A TODO fix here is to properly represent dual-rank/quad-rank DIMMs when the memory controller represents the memory via chip select rows. Reviewed-by: NAristeu Rozanski <arozansk@redhat.com> Acked-by: NBorislav Petkov <borislav.petkov@amd.com> Acked-by: NChris Metcalf <cmetcalf@tilera.com> Cc: Doug Thompson <norsk5@yahoo.com> Cc: Mark Gross <mark.gross@intel.com> Cc: Jason Uhlenkott <juhlenko@akamai.com> Cc: Tim Small <tim@buttersideup.com> Cc: Ranganathan Desikan <ravi@jetztechnologies.com> Cc: "Arvind R." <arvino55@gmail.com> Cc: Olof Johansson <olof@lixom.net> Cc: Egor Martovetsky <egor@pasemi.com> Cc: Michal Marek <mmarek@suse.cz> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Hitoshi Mitake <h.mitake@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com> Cc: Shaohui Xie <Shaohui.Xie@freescale.com> Cc: Josh Boyer <jwboyer@gmail.com> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
On systems based on chip select rows, all channels need to use memories with the same properties, otherwise the memories on channels A and B won't be recognized. However, such assumption is not true for all types of memory controllers. Controllers for FB-DIMM's don't have such requirements. Also, modern Intel controllers seem to be capable of handling such differences. So, we need to get rid of storing the DIMM information into a per-csrow data, storing it, instead at the right place. The first step is to move grain, mtype, dtype and edac_mode to the per-dimm struct. Reviewed-by: NAristeu Rozanski <arozansk@redhat.com> Reviewed-by: NBorislav Petkov <borislav.petkov@amd.com> Acked-by: NChris Metcalf <cmetcalf@tilera.com> Cc: Doug Thompson <norsk5@yahoo.com> Cc: Borislav Petkov <borislav.petkov@amd.com> Cc: Mark Gross <mark.gross@intel.com> Cc: Jason Uhlenkott <juhlenko@akamai.com> Cc: Tim Small <tim@buttersideup.com> Cc: Ranganathan Desikan <ravi@jetztechnologies.com> Cc: "Arvind R." <arvino55@gmail.com> Cc: Olof Johansson <olof@lixom.net> Cc: Egor Martovetsky <egor@pasemi.com> Cc: Michal Marek <mmarek@suse.cz> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Hitoshi Mitake <h.mitake@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: James Bottomley <James.Bottomley@parallels.com> Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com> Cc: Shaohui Xie <Shaohui.Xie@freescale.com> Cc: Josh Boyer <jwboyer@gmail.com> Cc: Mike Williams <mike@mikebwilliams.com> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
The way a DIMM is currently represented implies that they're linked into a per-csrow struct. However, some drivers don't see csrows, as they're ridden behind some chip like the AMB's on FBDIMM's, for example. This forced drivers to fake^Wvirtualize a csrow struct, and to create a mess under csrow/channel original's concept. Move the DIMM labels into a per-DIMM struct, and add there the real location of the socket, in terms of csrow/channel. Latter patches will modify the location to properly represent the memory architecture. All other drivers will use a per-csrow type of location. Some of those drivers will require a latter conversion, as they also fake the csrows internally. TODO: While this patch doesn't change the existing behavior, on csrows-based memory controllers, a csrow/channel pair points to a memory rank. There's a known bug at the EDAC core that allows having different labels for the same DIMM, if it has more than one rank. A latter patch is need to merge the several ranks for a DIMM into the same dimm_info struct, in order to avoid having different labels for the same DIMM. The edac_mc_alloc() will now contain a per-dimm initialization loop that will be changed by latter patches in order to match other types of memory architectures. Reviewed-by: NAristeu Rozanski <arozansk@redhat.com> Reviewed-by: NBorislav Petkov <borislav.petkov@amd.com> Cc: Doug Thompson <norsk5@yahoo.com> Cc: Ranganathan Desikan <ravi@jetztechnologies.com> Cc: "Arvind R." <arvino55@gmail.com> Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com> Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
- 22 3月, 2012 1 次提交
-
-
由 Mauro Carvalho Chehab 提交于
What it is pointed by a csrow/channel vector is a rank information, and not a channel information. On a traditional architecture, the memory controller directly access the memory ranks, via chip select rows. Different ranks at the same DIMM is selected via different chip select rows. So, typically, one csrow/channel pair means one different DIMM. On FB-DIMMs, there's a microcontroller chip at the DIMM, called Advanced Memory Buffer (AMB) that serves as the interface between the memory controller and the memory chips. The AMB selection is via the DIMM slot, and not via a csrow. It is up to the AMB to talk with the csrows of the DRAM chips. So, the FB-DIMM memory controllers see the DIMM slot, and not the DIMM rank. RAMBUS is similar. Newer memory controllers, like the ones found on Intel Sandy Bridge and Nehalem, even working with normal DDR3 DIMM's, don't use the usual channel A/channel B interleaving schema to provide 128 bits data access. Instead, they have more channels (3 or 4 channels), and they can use several interleaving schemas. Such memory controllers see the DIMMs directly on their registers, instead of the ranks, which is better for the driver, as its main usageis to point to a broken DIMM stick (the Field Repleceable Unit), and not to point to a broken DRAM chip. The drivers that support such such newer memory architecture models currently need to fake information and to abuse on EDAC structures, as the subsystem was conceived with the idea that the csrow would always be visible by the CPU. To make things a little worse, those drivers don't currently fake csrows/channels on a consistent way, as the concepts there don't apply to the memory controllers they're talking with. So, each driver author interpreted the concepts using a different logic. In order to fix it, let's rename the data structure that points into a DIMM rank to "rank_info", in order to be clearer about what's stored there. Latter patches will provide a better way to represent the memory hierarchy for the other types of memory controller. Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
- 20 3月, 2012 1 次提交
-
-
由 Cong Wang 提交于
Signed-off-by: NCong Wang <amwang@redhat.com>
-
- 15 12月, 2011 1 次提交
-
-
由 Kay Sievers 提交于
After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Cc: Doug Thompson <dougthompson@xmission.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Lucas De Marchi <lucas.demarchi@profusion.mobi> Cc: Borislav Petkov <borislav.petkov@amd.com> Signed-off-by: NKay Sievers <kay.sievers@vrfy.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
- 27 5月, 2011 1 次提交
-
-
由 Lai Jiangshan 提交于
synchronize_rcu() does the stuff as needed. Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Cc: Doug Thompson <dougthompson@xmission.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 31 3月, 2011 1 次提交
-
-
由 Lucas De Marchi 提交于
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: NLucas De Marchi <lucas.demarchi@profusion.mobi>
-
- 07 1月, 2011 1 次提交
-
-
由 Borislav Petkov 提交于
Add a macro per printk level, shorten up error messages. Add relevant information to KERN_INFO level. No functional change. Signed-off-by: NBorislav Petkov <borislav.petkov@amd.com>
-
- 09 12月, 2010 1 次提交
-
-
由 Borislav Petkov 提交于
00740c58 changed edac_core to un-/register a workqueue item only if a lowlevel driver supplies a polling routine. Normally, when we remove a polling low-level driver, we go and cancel all the queued work. However, the workqueue unreg happens based on the ->op_state setting, and edac_mc_del_mc() sets this to OP_OFFLINE _before_ we cancel the work item, leading to NULL ptr oops on the workqueue list. Fix it by putting the unreg stuff in proper order. Cc: <stable@kernel.org> #36.x Reported-and-tested-by: NTobias Karnat <tobias.karnat@googlemail.com> LKML-Reference: <1291201307.3029.21.camel@Tobias-Karnat> Signed-off-by: NBorislav Petkov <borislav.petkov@amd.com>
-
- 24 10月, 2010 2 次提交
-
-
由 Mauro Carvalho Chehab 提交于
This is a nasty bug. Since kobject count will be reduced by zero by edac_mc_del_mc(), and this triggers the kobj release method, the mci memory will be freed automatically. So, all we have left is ctl_name, as shown by enabling debug: [ 80.822186] EDAC DEBUG: in drivers/edac/edac_mc_sysfs.c, line at 1020: edac_remove_sysfs_mci_device() remove_link [ 80.832590] EDAC DEBUG: in drivers/edac/edac_mc_sysfs.c, line at 1024: edac_remove_sysfs_mci_device() remove_mci_instance [ 80.843776] EDAC DEBUG: in drivers/edac/edac_mc_sysfs.c, line at 640: edac_mci_control_release() mci instance idx=0 releasing [ 80.855163] EDAC MC: Removed device 0 for i7core_edac.c i7 core #0: DEV 0000:3f:03.0 [ 80.862936] EDAC DEBUG: in drivers/edac/i7core_edac.c, line at 2089: (null): free structs [ 80.871134] EDAC DEBUG: in drivers/edac/edac_mc.c, line at 238: edac_mc_free() [ 80.878379] EDAC DEBUG: in drivers/edac/edac_mc_sysfs.c, line at 726: edac_mc_unregister_sysfs_main_kobj() [ 80.888043] EDAC DEBUG: in drivers/edac/i7core_edac.c, line at 1232: drivers/edac/i7core_edac.c: i7core_put_devices() Also, kfree(mci) shouldn't happen at the kobj.release, as it happens when edac_remove_sysfs_mci_device() is called, but the logic is: edac_remove_sysfs_mci_device(mci); edac_printk(KERN_INFO, EDAC_MC, "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, mci->mod_name, mci->ctl_name, edac_dev_name(mci)); So, as the edac_printk() needs the mci struct, this generates an OOPS. Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-
由 Mauro Carvalho Chehab 提交于
This is important to track a nasty bug at the free logic. Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
-