1. 19 5月, 2012 3 次提交
    • S
      USB: Add support to enable/disable USB3 link states. · 1ea7e0e8
      Sarah Sharp 提交于
      There are various functions within the USB core that will need to
      disable USB 3.0 link power states.  For example, when a USB device
      driver is being bound to an interface, we need to disable USB 3.0 LPM
      until we know if the driver will allow hub-initiated LPM transitions.
      Another example is when the USB core is switching alternate interface
      settings.  The USB 3.0 timeout values are dependent on what endpoints
      are enabled, so we want to ensure that LPM is disabled until the new alt
      setting is fully installed.
      
      Multiple functions need to disable LPM, and those functions can even be
      nested.  For example, usb_bind_interface() could disable LPM, and then
      call into the driver probe function, which may attempt to switch to a
      different alt setting.  Therefore, we need to keep a count of the number
      of functions that require LPM to be disabled at any point in time.
      
      Introduce two new USB core API calls, usb_disable_lpm() and
      usb_enable_lpm().  These functions increment and decrement a new
      variable in the usb_device, lpm_disable_count.  If usb_disable_lpm()
      fails, it will call usb_enable_lpm() in order to balance the
      lpm_disable_count.
      
      These two new functions must be called with the bandwidth_mutex locked.
      If the bandwidth_mutex is not already held by the caller, it should
      instead call usb_unlocked_disable_lpm() and usb_enable_lpm(), which take
      the bandwidth_mutex before calling usb_disable_lpm() and
      usb_enable_lpm(), respectively.
      
      Introduce a new variable (timeout) in the usb3_lpm_params structure to
      keep track of the currently enabled U1/U2 timeout values.  When
      usb_disable_lpm() is called, and the USB device has the U1 or U2
      timeouts set to a non-zero value (meaning either device-initiated or
      hub-initiated LPM is enabled), attempt to disable LPM, regardless of the
      state of the lpm_disable_count.  We want to ensure that all callers can
      be guaranteed that LPM is disabled if usb_disable_lpm() returns zero.
      
      Otherwise the following scenario could occur:
      
      1. Driver A is being bound to interface 1.  usb_probe_interface()
      disables LPM.  Driver A doesn't care if hub-initiated LPM is enabled, so
      even though usb_disable_lpm() fails, the probe of the driver continues,
      and the bandwidth mutex is dropped.
      
      2. Meanwhile, Driver B is being bound to interface 2.
      usb_probe_interface() grabs the bandwidth mutex and calls
      usb_disable_lpm().  That call should attempt to disable LPM, even
      though the lpm_disable_count is set to 1 by Driver A.
      
      For usb_enable_lpm(), we attempt to enable LPM only when the
      lpm_disable_count is zero.  If some step in enabling LPM fails, it will
      only have a minimal impact on power consumption, and all USB device
      drivers should still work properly.  Therefore don't bother to return
      any error codes.
      
      Don't enable device-initiated LPM if the device is unconfigured.  The
      USB device will only accept the U1/U2_ENABLE control transfers in the
      configured state.  Do enable hub-initiated LPM in that case, since
      devices are allowed to accept the LGO_Ux link commands in any state.
      
      Don't enable or disable LPM if the device is marked as not being LPM
      capable.  This can happen if:
       - the USB device doesn't have a SS BOS descriptor,
       - the device's parent hub has a zeroed bHeaderDecodeLatency value, or
       - the xHCI host doesn't support LPM.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Cc: Andiry Xu <andiry.xu@amd.com>
      Cc: Alan Stern <stern@rowland.harvard.edu>
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      1ea7e0e8
    • S
      USB: Allow drivers to disable hub-initiated LPM. · 8afa408c
      Sarah Sharp 提交于
      USB 3.0 Link Power Management (LPM) is designed to allow individual
      links in the bus to go into lower power states.  There are two ways a
      link can enter a lower power state:
      
      1. Device-initiated LPM.  When a USB device decides it can go into a
      lower power link state, it sends a message to the parent hub, telling it
      to go into either U1 or U2.  Device-initiated LPM is good for devices
      that send data to the host, like communications devices.
      
      2. Hub-initiated LPM.  After the link has been idle for a specific
      amount of time, the parent hub will request that the child go into a
      lower power state.  The child can refuse that request.  For example, a
      USB modem may want to refuse the LPM request if it is in the middle of
      receiving a text message.  Hub-initiated LPM is good for devices where
      only the host initiates the data transfer, like USB printers or USB mass
      storage devices.
      
      Links will be automatically placed into higher power states by the USB
      hubs and roothubs whenever the host starts a USB transmission.
      
      Introduce a new usb_driver flag, disable_hub_initiated_lpm, that allows
      drivers to disable hub-initiated LPM.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Cc: Marcel Holtmann <marcel@holtmann.org>
      Cc: Gustavo Padovan <gustavo@padovan.org>
      Cc: Johan Hedberg <johan.hedberg@gmail.com>
      Cc: Hansjoerg Lipp <hjlipp@web.de>
      Cc: Tilman Schmidt <tilman@imap.cc>
      Cc: Karsten Keil <isdn@linux-pingi.de>
      Cc: Oliver Neukum <oliver@neukum.name>
      Cc: Peter Korsgaard <jacmet@sunsite.dk>
      Cc: Jan Dumon <j.dumon@option.com>
      Cc: Petko Manolov <petkan@users.sourceforge.net>
      Cc: Steve Glendinning <steve.glendinning@smsc.com>
      Cc: "John W. Linville" <linville@tuxdriver.com>
      Cc: Kalle Valo <kvalo@qca.qualcomm.com>
      Cc: "Luis R. Rodriguez" <mcgrof@qca.qualcomm.com>
      Cc: Jouni Malinen <jouni@qca.qualcomm.com>
      Cc: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com>
      Cc: Senthil Balasubramanian <senthilb@qca.qualcomm.com>
      Cc: Christian Lamparter <chunkeey@googlemail.com>
      Cc: Brett Rudley <brudley@broadcom.com>
      Cc: Roland Vossen <rvossen@broadcom.com>
      Cc: Arend van Spriel <arend@broadcom.com>
      Cc: "Franky (Zhenhui) Lin" <frankyl@broadcom.com>
      Cc: Kan Yan <kanyan@broadcom.com>
      Cc: Dan Williams <dcbw@redhat.com>
      Cc: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
      Cc: Ivo van Doorn <IvDoorn@gmail.com>
      Cc: Gertjan van Wingerde <gwingerde@gmail.com>
      Cc: Helmut Schaa <helmut.schaa@googlemail.com>
      Cc: Herton Ronaldo Krzesinski <herton@canonical.com>
      Cc: Hin-Tak Leung <htl10@users.sourceforge.net>
      Cc: Larry Finger <Larry.Finger@lwfinger.net>
      Cc: Chaoming Li <chaoming_li@realsil.com.cn>
      Cc: Daniel Drake <dsd@gentoo.org>
      Cc: Ulrich Kunitz <kune@deine-taler.de>
      Cc: linux-bluetooth@vger.kernel.org
      Cc: gigaset307x-common@lists.sourceforge.net
      Cc: netdev@vger.kernel.org
      Cc: linux-usb@vger.kernel.org
      Cc: linux-wireless@vger.kernel.org
      Cc: ath9k-devel@lists.ath9k.org
      Cc: libertas-dev@lists.infradead.org
      Cc: users@rt2x00.serialmonkey.com
      8afa408c
    • S
      USB: Calculate USB 3.0 exit latencies for LPM. · 51e0a012
      Sarah Sharp 提交于
      There are several different exit latencies associated with coming out of
      the U1 or U2 lower power link state.
      
      Device Exit Latency (DEL) is the maximum time it takes for the USB
      device to bring its upstream link into U0.  That can be found in the
      SuperSpeed Extended Capabilities BOS descriptor for the device.  The
      time it takes for a particular link in the tree to exit to U0 is the
      maximum of either the parent hub's U1/U2 DEL, or the child's U1/U2 DEL.
      
      Hubs introduce a further delay that effects how long it takes a child
      device to transition to U0.  When a USB 3.0 hub receives a header
      packet, it takes some time to decode that header and figure out which
      downstream port the packet was destined for.  If the port is not in U0,
      this hub header decode latency will cause an additional delay for
      bringing the child device to U0.  This Hub Header Decode Latency is
      found in the USB 3.0 hub descriptor.
      
      We can use DEL and the header decode latency, along with additional
      latencies imposed by each additional hub tier, to figure out the exit
      latencies for both host-initiated and device-initiated exit to U0.
      
      The Max Exit Latency (MEL) is the worst-case time it will take for a
      host-initiated exit to U0, based on whether U1 or U2 link states are
      enabled.  The ping or packet must traverse the path to the device, and
      each hub along the way incurs the hub header decode latency in order to
      figure out which device the transfer was bound for.  We say worst-case,
      because some hubs may not be in the lowest link state that is enabled.
      See the examples in section C.2.2.1.
      
      Note that "HSD" is a "host specific delay" that the power appendix
      architect has not been able to tell me how to calculate.  There's no way
      to get HSD from the xHCI registers either, so I'm simply ignoring it.
      
      The Path Exit Latency (PEL) is the worst-case time it will take for a
      device-initiate exit to U0 to place all the links from the device to the
      host into U0.
      
      The System Exit Latency (SEL) is another device-initiated exit latency.
      SEL is useful for USB 3.0 devices that need to send data to the host at
      specific intervals.  The device may send an NRDY to indicate it isn't
      ready to send data, then put its link into a lower power state.  If it
      needs to have that data transmitted at a specific time, it can use SEL
      to back calculate when it will need to bring the link back into U0 to
      meet its deadlines.
      
      SEL is the worst-case time from the device-initiated exit to U0, to when
      the device will receive a packet from the host controller.  It includes
      PEL, the time it takes for an ERDY to get to the host, a host-specific
      delay for the host to process that ERDY, and the time it takes for the
      packet to traverse the path to the device.  See Figure C-2 in the USB
      3.0 bus specification.
      
      Note: I have not been able to get good answers about what the
      host-specific delay to process the ERDY should be.  The Intel HW
      developers say it will be specific to the platform the xHCI host is
      integrated into, and they say it's negligible.  Ignore this too.
      
      Separate from these four exit latencies are the U1/U2 timeout values we
      program into the parent hubs.  These timeouts tell the hub to attempt to
      place the device into a lower power link state after the link has been
      idle for that amount of time.
      
      Create two arrays (one for U1 and one for U2) to store mel, pel, sel,
      and the timeout values.  Store the exit latency values in nanosecond
      units, since that's the smallest units used (DEL is in us, but the Hub
      Header Decode Latency is in ns).
      
      If a USB 3.0 device doesn't have a SuperSpeed Extended Capabilities BOS
      descriptor, it's highly unlikely it will be able to handle LPM requests
      properly.  So it's best to disable LPM for devices that don't have this
      descriptor, and any children beneath it, if it's a USB 3.0 hub.  Warn
      users when that happens, since it means they have a non-compliant USB
      3.0 device or hub.
      
      This patch assumes a simplified design where links deep in the tree will
      not have U1 or U2 enabled unless all their parent links have the
      corresponding LPM state enabled.  Eventually, we might want to allow a
      different policy, and we can revisit this patch when that happens.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Cc: Alan Stern <stern@rowland.harvard.edu>
      51e0a012
  2. 15 5月, 2012 2 次提交
  3. 12 5月, 2012 1 次提交
  4. 02 5月, 2012 1 次提交
  5. 30 4月, 2012 2 次提交
  6. 26 4月, 2012 1 次提交
    • G
      USB: remove err() macro · af4e1ee0
      Greg Kroah-Hartman 提交于
      I thought this had been removed years ago.  All in-kernel users of this
      call have now been cleaned up and converted over to use dev_err()
      instead, which is the correct thing to do.  Now that there are no users,
      the macro can be removed so no one else accidentally starts to use it.
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      af4e1ee0
  7. 19 4月, 2012 1 次提交
  8. 14 3月, 2012 1 次提交
  9. 10 2月, 2012 1 次提交
  10. 25 1月, 2012 1 次提交
  11. 24 1月, 2012 1 次提交
  12. 04 1月, 2012 1 次提交
  13. 10 12月, 2011 1 次提交
    • C
      usb: fix number of mapped SG DMA entries · bc677d5b
      Clemens Ladisch 提交于
      Add a new field num_mapped_sgs to struct urb so that we have a place to
      store the number of mapped entries and can also retain the original
      value of entries in num_sgs.  Previously, usb_hcd_map_urb_for_dma()
      would overwrite this with the number of mapped entries, which would
      break dma_unmap_sg() because it requires the original number of entries.
      
      This fixes warnings like the following when using USB storage devices:
       ------------[ cut here ]------------
       WARNING: at lib/dma-debug.c:902 check_unmap+0x4e4/0x695()
       ehci_hcd 0000:00:12.2: DMA-API: device driver frees DMA sg list with different entry count [map count=4] [unmap count=1]
       Modules linked in: ohci_hcd ehci_hcd
       Pid: 0, comm: kworker/0:1 Not tainted 3.2.0-rc2+ #319
       Call Trace:
        <IRQ>  [<ffffffff81036d3b>] warn_slowpath_common+0x80/0x98
        [<ffffffff81036de7>] warn_slowpath_fmt+0x41/0x43
        [<ffffffff811fa5ae>] check_unmap+0x4e4/0x695
        [<ffffffff8105e92c>] ? trace_hardirqs_off+0xd/0xf
        [<ffffffff8147208b>] ? _raw_spin_unlock_irqrestore+0x33/0x50
        [<ffffffff811fa84a>] debug_dma_unmap_sg+0xeb/0x117
        [<ffffffff8137b02f>] usb_hcd_unmap_urb_for_dma+0x71/0x188
        [<ffffffff8137b166>] unmap_urb_for_dma+0x20/0x22
        [<ffffffff8137b1c5>] usb_hcd_giveback_urb+0x5d/0xc0
        [<ffffffffa0000d02>] ehci_urb_done+0xf7/0x10c [ehci_hcd]
        [<ffffffffa0001140>] qh_completions+0x429/0x4bd [ehci_hcd]
        [<ffffffffa000340a>] ehci_work+0x95/0x9c0 [ehci_hcd]
        ...
       ---[ end trace f29ac88a5a48c580 ]---
       Mapped at:
        [<ffffffff811faac4>] debug_dma_map_sg+0x45/0x139
        [<ffffffff8137bc0b>] usb_hcd_map_urb_for_dma+0x22e/0x478
        [<ffffffff8137c494>] usb_hcd_submit_urb+0x63f/0x6fa
        [<ffffffff8137d01c>] usb_submit_urb+0x2c7/0x2de
        [<ffffffff8137dcd4>] usb_sg_wait+0x55/0x161
      Signed-off-by: NClemens Ladisch <clemens@ladisch.de>
      Cc: stable <stable@vger.kernel.org>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      bc677d5b
  14. 18 11月, 2011 1 次提交
    • G
      USB: Add helper macro for usb_driver boilerplate · f3a6a4b6
      Greg Kroah-Hartman 提交于
      This patch introduces the module_usb_driver macro which is a convenience
      macro for USB driver modules similar to module_platform_driver. It is
      intended to be used by drivers which init/exit section does nothing but
      register/unregister the USB driver. By using this macro it is possible
      to eliminate a few lines of boilerplate code per USB driver.
      
      Based on work done by Lars-Peter Clausen <lars@metafoo.de> for other
      busses (i2c and spi).
      
      Cc: Lars-Peter Clausen <lars@metafoo.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      f3a6a4b6
  15. 16 11月, 2011 1 次提交
  16. 01 11月, 2011 1 次提交
    • P
      include: convert various register fcns to macros to avoid include chaining · eb5589a8
      Paul Gortmaker 提交于
      The original implementations reference THIS_MODULE in an inline.
      We could include <linux/export.h>, but it is better to avoid chaining.
      
      Fortunately someone else already thought of this, and made a similar
      inline into a #define in <linux/device.h> for device_schedule_callback(),
      [see commit 523ded71] so follow that precedent here.
      
      Also bubble up any __must_check that were used on the prev. wrapper inline
      functions up one to the real __register functions, to preserve any prev.
      sanity checks that were used in those instances.
      Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
      eb5589a8
  17. 27 9月, 2011 3 次提交
  18. 24 8月, 2011 1 次提交
    • K
      USB: use usb_endpoint_maxp() instead of le16_to_cpu() · 29cc8897
      Kuninori Morimoto 提交于
      Now ${LINUX}/drivers/usb/* can use usb_endpoint_maxp(desc) to get maximum packet size
      instead of le16_to_cpu(desc->wMaxPacketSize).
      This patch fix it up
      
      Cc: Armin Fuerst <fuerst@in.tum.de>
      Cc: Pavel Machek <pavel@ucw.cz>
      Cc: Johannes Erdfelt <johannes@erdfelt.com>
      Cc: Vojtech Pavlik <vojtech@suse.cz>
      Cc: Oliver Neukum <oliver@neukum.name>
      Cc: David Kubicek <dave@awk.cz>
      Cc: Johan Hovold <jhovold@gmail.com>
      Cc: Brad Hards <bhards@bigpond.net.au>
      Acked-by: NFelipe Balbi <balbi@ti.com>
      Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
      Cc: Thomas Dahlmann <dahlmann.thomas@arcor.de>
      Cc: David Brownell <david-b@pacbell.net>
      Cc: David Lopo <dlopo@chipidea.mips.com>
      Cc: Alan Stern <stern@rowland.harvard.edu>
      Cc: Michal Nazarewicz <m.nazarewicz@samsung.com>
      Cc: Xie Xiaobo <X.Xie@freescale.com>
      Cc: Li Yang <leoli@freescale.com>
      Cc: Jiang Bo <tanya.jiang@freescale.com>
      Cc: Yuan-hsin Chen <yhchen@faraday-tech.com>
      Cc: Darius Augulis <augulis.darius@gmail.com>
      Cc: Xiaochen Shen <xiaochen.shen@intel.com>
      Cc: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com>
      Cc: OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>
      Cc: Robert Jarzmik <robert.jarzmik@free.fr>
      Cc: Ben Dooks <ben@simtec.co.uk>
      Cc: Thomas Abraham <thomas.ab@samsung.com>
      Cc: Herbert Pötzl <herbert@13thfloor.at>
      Cc: Arnaud Patard <arnaud.patard@rtp-net.org>
      Cc: Roman Weissgaerber <weissg@vienna.at>
      Acked-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Cc: Tony Olech <tony.olech@elandigitalsystems.com>
      Cc: Florian Floe Echtler <echtler@fs.tum.de>
      Cc: Christian Lucht <lucht@codemercs.com>
      Cc: Juergen Stuber <starblue@sourceforge.net>
      Cc: Georges Toth <g.toth@e-biz.lu>
      Cc: Bill Ryder <bryder@sgi.com>
      Cc: Kuba Ober <kuba@mareimbrium.org>
      Cc: Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
      Signed-off-by: NKuninori Morimoto <kuninori.morimoto.gx@renesas.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      29cc8897
  19. 30 4月, 2011 1 次提交
  20. 31 3月, 2011 1 次提交
  21. 05 2月, 2011 1 次提交
    • R
      USB: HCD: Add driver hooks for (un)?map_urb_for_dma · 2694a48d
      Robert Morell 提交于
      Provide optional hooks for the host controller driver to override the
      default DMA mapping and unmapping routines.  In general, these shouldn't
      be necessary unless the host controller has special DMA requirements,
      such as alignment contraints.  If these are not specified, the
      general usb_hcd_(un)?map_urb_for_dma functions will be used instead.
      Also, pass the status to unmap_urb_for_dma so it can know whether the
      DMA buffer has been overwritten.
      
      Finally, add a flag to be used by these implementations if they
      allocated a temporary buffer so it can be freed properly when unmapping.
      Signed-off-by: NRobert Morell <rmorell@nvidia.com>
      Acked-by: NAlan Stern <stern@rowland.harvard.edu>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      2694a48d
  22. 22 11月, 2010 1 次提交
    • A
      usb: musb: do not use dma for control transfers · 07a8cdd2
      Anand Gadiyar 提交于
      The Inventra DMA engine used with the MUSB controller in many
      SoCs cannot use DMA for control transfers on EP0, but can use
      DMA for all other transfers.
      
      The USB core maps urbs for DMA if hcd->self.uses_dma is true.
      (hcd->self.uses_dma is true for MUSB as well).
      
      Split the uses_dma flag into two - one that says if the
      controller needs to use PIO for control transfers, and
      another which says if the controller uses DMA (for all
      other transfers).
      
      Also, populate this flag for all MUSB by default.
      
      (Tested on OMAP3 and OMAP4 boards, with EHCI and MUSB HCDs
      simultaneously in use).
      Signed-off-by: NMaulik Mankad <x0082077@ti.com>
      Signed-off-by: NSantosh Shilimkar <santosh.shilimkar@ti.com>
      Signed-off-by: NAnand Gadiyar <gadiyar@ti.com>
      Cc: Oliver Neukum <oliver@neukum.org>
      Cc: Alan Stern <stern@rowland.harvard.edu>
      Cc: Praveena NADAHALLY <praveen.nadahally@stericsson.com>
      Cc: Ajay Kumar Gupta <ajay.gupta@ti.com>
      Signed-off-by: NFelipe Balbi <balbi@ti.com>
      07a8cdd2
  23. 17 11月, 2010 2 次提交
  24. 09 11月, 2010 1 次提交
  25. 11 8月, 2010 2 次提交
  26. 21 5月, 2010 7 次提交