1. 24 9月, 2013 1 次提交
  2. 12 9月, 2013 2 次提交
  3. 03 9月, 2013 1 次提交
    • L
      lockref: implement lockless reference count updates using cmpxchg() · bc08b449
      Linus Torvalds 提交于
      Instead of taking the spinlock, the lockless versions atomically check
      that the lock is not taken, and do the reference count update using a
      cmpxchg() loop.  This is semantically identical to doing the reference
      count update protected by the lock, but avoids the "wait for lock"
      contention that you get when accesses to the reference count are
      contended.
      
      Note that a "lockref" is absolutely _not_ equivalent to an atomic_t.
      Even when the lockref reference counts are updated atomically with
      cmpxchg, the fact that they also verify the state of the spinlock means
      that the lockless updates can never happen while somebody else holds the
      spinlock.
      
      So while "lockref_put_or_lock()" looks a lot like just another name for
      "atomic_dec_and_lock()", and both optimize to lockless updates, they are
      fundamentally different: the decrement done by atomic_dec_and_lock() is
      truly independent of any lock (as long as it doesn't decrement to zero),
      so a locked region can still see the count change.
      
      The lockref structure, in contrast, really is a *locked* reference
      count.  If you hold the spinlock, the reference count will be stable and
      you can modify the reference count without using atomics, because even
      the lockless updates will see and respect the state of the lock.
      
      In order to enable the cmpxchg lockless code, the architecture needs to
      do three things:
      
       (1) Make sure that the "arch_spinlock_t" and an "unsigned int" can fit
           in an aligned u64, and have a "cmpxchg()" implementation that works
           on such a u64 data type.
      
       (2) define a helper function to test for a spinlock being unlocked
           ("arch_spin_value_unlocked()")
      
       (3) select the "ARCH_USE_CMPXCHG_LOCKREF" config variable in its
           Kconfig file.
      
      This enables it for x86-64 (but not 32-bit, we'd need to make sure
      cmpxchg() turns into the proper cmpxchg8b in order to enable it for
      32-bit mode).
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bc08b449
  4. 02 9月, 2013 1 次提交
  5. 30 8月, 2013 3 次提交
  6. 27 8月, 2013 1 次提交
  7. 26 8月, 2013 1 次提交
  8. 21 8月, 2013 1 次提交
  9. 20 8月, 2013 1 次提交
    • Y
      x86/ioapic/kcrash: Prevent crash_kexec() from deadlocking on ioapic_lock · 17405453
      Yoshihiro YUNOMAE 提交于
      Prevent crash_kexec() from deadlocking on ioapic_lock. When
      crash_kexec() is executed on a CPU, the CPU will take ioapic_lock
      in disable_IO_APIC(). So if the cpu gets an NMI while locking
      ioapic_lock, a deadlock will happen.
      
      In this patch, ioapic_lock is zapped/initialized before disable_IO_APIC().
      
      You can reproduce this deadlock the following way:
      
      1. Add mdelay(1000) after raw_spin_lock_irqsave() in
         native_ioapic_set_affinity()@arch/x86/kernel/apic/io_apic.c
      
         Although the deadlock can occur without this modification, it will increase
         the potential of the deadlock problem.
      
      2. Build and install the kernel
      
      3. Set up the OS which will run panic() and kexec when NMI is injected
          # echo "kernel.unknown_nmi_panic=1" >> /etc/sysctl.conf
          # vim /etc/default/grub
            add "nmi_watchdog=0 crashkernel=256M" in GRUB_CMDLINE_LINUX line
          # grub2-mkconfig
      
      4. Reboot the OS
      
      5. Run following command for each vcpu on the guest
          # while true; do echo <CPU num> > /proc/irq/<IO-APIC-edge or IO-APIC-fasteoi>/smp_affinitity; done;
         By running this command, cpus will get ioapic_lock for setting affinity.
      
      6. Inject NMI (push a dump button or execute 'virsh inject-nmi <domain>' if you
         use VM). After injecting NMI, panic() is called in an nmi-handler context.
         Then, kexec will normally run in panic(), but the operation will be stopped
         by deadlock on ioapic_lock in crash_kexec()->machine_crash_shutdown()->
         native_machine_crash_shutdown()->disable_IO_APIC()->clear_IO_APIC()->
         clear_IO_APIC_pin()->ioapic_read_entry().
      Signed-off-by: NYoshihiro YUNOMAE <yoshihiro.yunomae.ez@hitachi.com>
      Cc: Andi Kleen <ak@linux.intel.com>
      Cc: Gleb Natapov <gleb@redhat.com>
      Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Cc: Joerg Roedel <joro@8bytes.org>
      Cc: Marcelo Tosatti <mtosatti@redhat.com>
      Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
      Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
      Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
      Cc: Eric W. Biederman <ebiederm@xmission.com>
      Cc: yrl.pp-manager.tt@hitachi.com
      Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
      Cc: Seiji Aguchi <seiji.aguchi@hds.com>
      Link: http://lkml.kernel.org/r/20130820070107.28245.83806.stgit@yunodevelSigned-off-by: NIngo Molnar <mingo@kernel.org>
      17405453
  10. 14 8月, 2013 4 次提交
  11. 13 8月, 2013 2 次提交
    • O
      sched: fix the theoretical signal_wake_up() vs schedule() race · e0acd0a6
      Oleg Nesterov 提交于
      This is only theoretical, but after try_to_wake_up(p) was changed
      to check p->state under p->pi_lock the code like
      
      	__set_current_state(TASK_INTERRUPTIBLE);
      	schedule();
      
      can miss a signal. This is the special case of wait-for-condition,
      it relies on try_to_wake_up/schedule interaction and thus it does
      not need mb() between __set_current_state() and if(signal_pending).
      
      However, this __set_current_state() can move into the critical
      section protected by rq->lock, now that try_to_wake_up() takes
      another lock we need to ensure that it can't be reordered with
      "if (signal_pending(current))" check inside that section.
      
      The patch is actually one-liner, it simply adds smp_wmb() before
      spin_lock_irq(rq->lock). This is what try_to_wake_up() already
      does by the same reason.
      
      We turn this wmb() into the new helper, smp_mb__before_spinlock(),
      for better documentation and to allow the architectures to change
      the default implementation.
      
      While at it, kill smp_mb__after_lock(), it has no callers.
      
      Perhaps we can also add smp_mb__before/after_spinunlock() for
      prepare_to_wait().
      Signed-off-by: NOleg Nesterov <oleg@redhat.com>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e0acd0a6
    • T
      x86, microcode, AMD: Fix early microcode loading · 84516098
      Torsten Kaiser 提交于
      load_microcode_amd() (and the helper it is using) should not have an
      cpu parameter. The microcode loading does not depend on the CPU wrt the
      patches loaded since they will end up in a global list for all CPUs
      anyway.
      
      The change from cpu to x86family in load_microcode_amd()
      now allows to drop the code messing with cpu_data(cpu) from
      collect_cpu_info_amd_early(), which is wrong anyway because at that
      point the per-cpu cpu_info is not yet setup (These values would later be
      overwritten by smp_store_boot_cpu_info() / smp_store_cpu_info()).
      
      Fold the rest of collect_cpu_info_amd_early() into load_ucode_amd_ap(),
      because its only used at one place and without the cpuinfo_x86 accesses
      it was not much left.
      Signed-off-by: NTorsten Kaiser <just.for.lkml@googlemail.com>
      [ Fengguang: build fix ]
      Signed-off-by: NFengguang Wu <fengguang.wu@intel.com>
      [ Boris: adapt it to current tree. ]
      Signed-off-by: NBorislav Petkov <bp@suse.de>
      84516098
  12. 12 8月, 2013 1 次提交
    • T
      PCI: use weak functions for MSI arch-specific functions · 4287d824
      Thomas Petazzoni 提交于
      Until now, the MSI architecture-specific functions could be overloaded
      using a fairly complex set of #define and compile-time
      conditionals. In order to prepare for the introduction of the msi_chip
      infrastructure, it is desirable to switch all those functions to use
      the 'weak' mechanism. This commit converts all the architectures that
      were overidding those MSI functions to use the new strategy.
      
      Note that we keep two separate, non-weak, functions
      default_teardown_msi_irqs() and default_restore_msi_irqs() for the
      default behavior of the arch_teardown_msi_irqs() and
      arch_restore_msi_irqs(), as the default behavior is needed by x86 PCI
      code.
      Signed-off-by: NThomas Petazzoni <thomas.petazzoni@free-electrons.com>
      Acked-by: NBjorn Helgaas <bhelgaas@google.com>
      Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Tested-by: NDaniel Price <daniel.price@gmail.com>
      Tested-by: NThierry Reding <thierry.reding@gmail.com>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: linuxppc-dev@lists.ozlabs.org
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: linux390@de.ibm.com
      Cc: linux-s390@vger.kernel.org
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: x86@kernel.org
      Cc: Russell King <linux@arm.linux.org.uk>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Fenghua Yu <fenghua.yu@intel.com>
      Cc: linux-ia64@vger.kernel.org
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: linux-mips@linux-mips.org
      Cc: David S. Miller <davem@davemloft.net>
      Cc: sparclinux@vger.kernel.org
      Cc: Chris Metcalf <cmetcalf@tilera.com>
      Signed-off-by: NJason Cooper <jason@lakedaemon.net>
      4287d824
  13. 10 8月, 2013 1 次提交
    • D
      x86: Don't clear olpc_ofw_header when sentinel is detected · d55e37bb
      Daniel Drake 提交于
      OpenFirmware wasn't quite following the protocol described in boot.txt
      and the kernel has detected this through use of the sentinel value
      in boot_params. OFW does zero out almost all of the stuff that it should
      do, but not the sentinel.
      
      This causes the kernel to clear olpc_ofw_header, which breaks x86 OLPC
      support.
      
      OpenFirmware has now been fixed. However, it would be nice if we could
      maintain Linux compatibility with old firmware versions. To do that, we just
      have to avoid zeroing out olpc_ofw_header.
      
      OFW does not write to any other parts of the header that are being zapped
      by the sentinel-detection code, and all users of olpc_ofw_header are
      somewhat protected through checking for the OLPC_OFW_SIG magic value
      before using it. So this should not cause any problems for anyone.
      Signed-off-by: NDaniel Drake <dsd@laptop.org>
      Link: http://lkml.kernel.org/r/20130809221420.618E6FAB03@dev.laptop.orgAcked-by: NYinghai Lu <yinghai@kernel.org>
      Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
      Cc: <stable@vger.kernel.org> # v3.9+
      d55e37bb
  14. 09 8月, 2013 6 次提交
  15. 08 8月, 2013 1 次提交
  16. 07 8月, 2013 13 次提交