- 03 11月, 2015 1 次提交
-
-
由 Dave Chinner 提交于
To enable DAX to do atomic allocation of zeroed extents, we need to drive the block zeroing deep into the allocator. Because xfs_bmapi_write() can return merged extents on allocation that were only partially allocated (i.e. requested range spans allocated and hole regions, allocation into the hole was contiguous), we cannot zero the extent returned from xfs_bmapi_write() as that can overwrite existing data with zeros. Hence we have to drive the extent zeroing into the allocation code, prior to where we merge the extents into the BMBT and return the resultant map. This means we need to propagate this need down to the xfs_alloc_vextent() and issue the block zeroing at this point. While this functionality is being introduced for DAX, there is no reason why it is specific to DAX - we can per-zero blocks during the allocation transaction on any type of device. It's just slow (and usually slower than unwritten allocation and conversion) on traditional block devices so doesn't tend to get used. We can, however, hook hardware zeroing optimisations via sb_issue_zeroout() to this operation, so it may be useful in future and hence the "allocate zeroed blocks" API needs to be implementation neutral. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 12 10月, 2015 2 次提交
-
-
由 Bill O'Donnell 提交于
This patch modifies the stats counting macros and the callers to those macros to properly increment, decrement, and add-to the xfs stats counts. The counts for global and per-fs stats are correctly advanced, and cleared by writing a "1" to the corresponding clear file. global counts: /sys/fs/xfs/stats/stats per-fs counts: /sys/fs/xfs/sda*/stats/stats global clear: /sys/fs/xfs/stats/stats_clear per-fs clear: /sys/fs/xfs/sda*/stats/stats_clear [dchinner: cleaned up macro variables, removed CONFIG_FS_PROC around stats structures and macros. ] Signed-off-by: NBill O'Donnell <billodo@redhat.com> Reviewed-by: NEric Sandeen <sandeen@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Brian Foster 提交于
Since the onset of v5 superblocks, the LSN of the last modification has been included in a variety of on-disk data structures. This LSN is used to provide log recovery ordering guarantees (e.g., to ensure an older log recovery item is not replayed over a newer target data structure). While this works correctly from the point a filesystem is formatted and mounted, userspace tools have some problematic behaviors that defeat this mechanism. For example, xfs_repair historically zeroes out the log unconditionally (regardless of whether corruption is detected). If this occurs, the LSN of the filesystem is reset and the log is now in a problematic state with respect to on-disk metadata structures that might have a larger LSN. Until either the log catches up to the highest previously used metadata LSN or each affected data structure is modified and written out without incident (which resets the metadata LSN), log recovery is susceptible to filesystem corruption. This problem is ultimately addressed and repaired in the associated userspace tools. The kernel is still responsible to detect the problem and notify the user that something is wrong. Check the superblock LSN at mount time and fail the mount if it is invalid. From that point on, trigger verifier failure on any metadata I/O where an invalid LSN is detected. This results in a filesystem shutdown and guarantees that we do not log metadata changes with invalid LSNs on disk. Since this is a known issue with a known recovery path, present a warning to instruct the user how to recover. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 25 8月, 2015 1 次提交
-
-
由 Jan Kara 提交于
xfs_alloc_fix_freelist() can sometimes jump to out_agbp_relse without ever setting value of 'error' variable which is then returned. This can happen e.g. when pag->pagf_init is set but AG is for metadata and we want to allocate user data. Fix the problem by initializing 'error' to 0, which is the desired return value when we decide to skip this group. CC: xfs@oss.sgi.com Coverity-id: 1309714 Signed-off-by: NJan Kara <jack@suse.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 29 7月, 2015 1 次提交
-
-
由 Eric Sandeen 提交于
This adds a new superblock field, sb_meta_uuid. If set, along with a new incompat flag, the code will use that field on a V5 filesystem to compare to metadata UUIDs, which allows us to change the user- visible UUID at will. Userspace handles the setting and clearing of the incompat flag as appropriate, as the UUID gets changed; i.e. setting the user-visible UUID back to the original UUID (as stored in the new field) will remove the incompatible feature flag. If the incompat flag is not set, this copies the user-visible UUID into into the meta_uuid slot in memory when the superblock is read from disk; the meta_uuid field is not written back to disk in this case. The remainder of this patch simply switches verifiers, initializers, etc to use the new sb_meta_uuid field. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 22 6月, 2015 4 次提交
-
-
由 Dave Chinner 提交于
We no longer calculate the minimum freelist size from the on-disk AGF, so we don't need the macros used for this. That means the nested macros can be cleaned up, and turn this into an actual function so the logic is clear and concise. This will make it much easier to add support for the rmap btree when the time comes. This also gets rid of the XFS_AG_MAXLEVELS macro used by these freelist macros as it is simply a wrapper around a single variable. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
The error handling is currently an inconsistent mess as every error condition handles return values and releasing buffers individually. Clean this up by using gotos and a sane error label stack. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
The longest extent length checks in xfs_alloc_fix_freelist() are now essentially identical. Factor them out into a helper function, so we know they are checking exactly the same thing before and after we lock the AGF. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
At the moment, xfs_alloc_fix_freelist() uses a mix of per-ag based access and agf buffer based access to freelist and space usage information. However, once the AGF buffer is locked inside this function, it is guaranteed that both the in-memory and on-disk values are identical. xfs_alloc_fix_freelist() doesn't modify the values in the structures directly, so it is a read-only user of the infomration, and hence can use the per-ag structure exclusively for determining what it should do. This opens up an avenue for cleaning up a lot of duplicated logic whose only difference is the structure it gets the data from, and in doing so removes a lot of needless byte swapping overhead when fixing up the free list. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 29 5月, 2015 1 次提交
-
-
由 Brian Foster 提交于
The block allocator supports various arguments to tweak block allocation behavior and set allocation requirements. The sparse inode chunk feature introduces a new requirement not supported by the current arguments. Sparse inode allocations must convert or merge into an inode record that describes a fixed length chunk (64 inodes x inodesize). Full inode chunk allocations by definition always result in valid inode records. Sparse chunk allocations are smaller and the associated records can refer to blocks not owned by the inode chunk. This model can result in invalid inode records in certain cases. For example, if a sparse allocation occurs near the start of an AG, the aligned inode record for that chunk might refer to agbno 0. If an allocation occurs towards the end of the AG and the AG size is not aligned, the inode record could refer to blocks beyond the end of the AG. While neither of these scenarios directly result in corruption, they both insert invalid inode records and at minimum cause repair to complain, are unlikely to merge into full chunks over time and set land mines for other areas of code. To guarantee sparse inode chunk allocation creates valid inode records, support the ability to specify an agbno range limit for XFS_ALLOCTYPE_NEAR_BNO block allocations. The min/max agbno's are specified in the allocation arguments and limit the block allocation algorithms to that range. The starting 'agbno' hint is clamped to the range if the specified agbno is out of range. If no sufficient extent is available within the range, the allocation fails. For backwards compatibility, the min/max fields can be initialized to 0 to disable range limiting (e.g., equivalent to min=0,max=agsize). Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 24 2月, 2015 1 次提交
-
-
由 Dave Chinner 提交于
Test generic/224 is failing with a corruption being detected on one of Michael's test boxes. Debug that Michael added is indicating that the minleft trimming is resulting in an underflow: ..... before fixup: rlen 1 args->len 0 after xfs_alloc_fix_len : rlen 1 args->len 1 before goto out_nominleft: rlen 1 args->len 0 before fixup: rlen 1 args->len 0 after xfs_alloc_fix_len : rlen 1 args->len 1 after fixup: rlen 1 args->len 1 before fixup: rlen 1 args->len 0 after xfs_alloc_fix_len : rlen 1 args->len 1 after fixup: rlen 4294967295 args->len 4294967295 XFS: Assertion failed: fs_is_ok, file: fs/xfs/libxfs/xfs_alloc.c, line: 1424 The "goto out_nominleft:" indicates that we are getting close to ENOSPC in the AG, and a couple of allocations later we underflow and the corruption check fires in xfs_alloc_ag_vextent_size(). The issue is that the extent length fixups comaprisons are done with variables of xfs_extlen_t types. These are unsigned so an underflow looks like a really big value and hence is not detected as being smaller than the minimum length allowed for the extent. Hence the corruption check fires as it is noticing that the returned length is longer than the original extent length passed in. This can be easily fixed by ensuring we do the underflow test on signed values, the same way xfs_alloc_fix_len() prevents underflow. So we realise in future that these casts prevent underflows from going undetected, add comments to the code indicating this. Reported-by: NMichael L. Semon <mlsemon35@gmail.com> Tested-by: NMichael L. Semon <mlsemon35@gmail.com> Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 23 2月, 2015 2 次提交
-
-
由 Eric Sandeen 提交于
Today, if we hit an XFS_WANT_CORRUPTED_RETURN we don't print any information about which filesystem hit it. Passing in the mp allows us to print the filesystem (device) name, which is a pretty critical piece of information. Tested by running fsfuzzer 'til I hit some. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Eric Sandeen 提交于
Today, if we hit an XFS_WANT_CORRUPTED_GOTO we don't print any information about which filesystem hit it. Passing in the mp allows us to print the filesystem (device) name, which is a pretty critical piece of information. Tested by running fsfuzzer 'til I hit some. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 28 11月, 2014 1 次提交
-
-
由 Christoph Hellwig 提交于
More on-disk format consolidation. A few declarations that weren't on-disk format related move into better suitable spots. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 09 9月, 2014 1 次提交
-
-
由 Eric Sandeen 提交于
These were exposed by fsfuzzer runs; without them we fail in various exciting and sometimes convoluted ways when we encounter disk corruption. Without the MAXLEVELS tests we tend to walk off the end of an array in a loop like this: for (i = 0; i < cur->bc_nlevels; i++) { if (cur->bc_bufs[i]) Without the dirblklog test we try to allocate more memory than we could possibly hope for and loop forever: xfs_dabuf_map() nfsb = mp->m_dir_geo->fsbcount; irecs = kmem_zalloc(sizeof(irec) * nfsb, KM_SLEEP... As for the logbsize check, that's the convoluted one. If logbsize is specified at mount time, it's sanitized in xfs_parseargs; in particular it makes sure that it's not > XLOG_MAX_RECORD_BSIZE. If not specified at mount time, it comes from the superblock via sb_logsunit; this is limited to 256k at mkfs time as well; it's copied into m_logbsize in xfs_finish_flags(). However, if for some reason the on-disk value is corrupt and too large, nothing catches it. It's a circuitous path, but that size eventually finds its way to places that make the kernel very unhappy, leading to oopses in xlog_pack_data() because we use the size as an index into iclog->ic_data, but the array is not necessarily that big. Anyway - bounds checking when we read from disk is a good thing! Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 25 6月, 2014 2 次提交
-
-
由 Dave Chinner 提交于
Convert all the errors the core XFs code to negative error signs like the rest of the kernel and remove all the sign conversion we do in the interface layers. Errors for conversion (and comparison) found via searches like: $ git grep " E" fs/xfs $ git grep "return E" fs/xfs $ git grep " E[A-Z].*;$" fs/xfs Negation points found via searches like: $ git grep "= -[a-z,A-Z]" fs/xfs $ git grep "return -[a-z,A-D,F-Z]" fs/xfs $ git grep " -[a-z].*;" fs/xfs [ with some bits I missed from Brian Foster ] Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
Move all the source files that are shared with userspace into libxfs/. This is done as one big chunk simpy to get it done quickly Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 06 6月, 2014 2 次提交
-
-
由 Jan Kara 提交于
Rounding in xfs_alloc_fix_len() is wrong. As the comment states, the result should be a number of a form (k*prod+mod) however due to sign mistake the result is different. As a result allocations on raid arrays could be misaligned in some cases. This also seems to fix occasional assertion failure: XFS_WANT_CORRUPTED_GOTO(rlen <= flen, error0) in xfs_alloc_ag_vextent_size(). Also add an assertion that the result of xfs_alloc_fix_len() is of expected form. Signed-off-by: NJan Kara <jack@suse.cz> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
Most of the callers are just calling ASSERT(!xfs_buf_geterror()) which means they are checking for bp->b_error == 0. If bp is null in this case, we will assert fail, and hence it's no different in result to oopsing because of a null bp. In some cases, errors have already been checked for or the function returning the buffer can't return a buffer with an error, so it's just a redundant assert. Either way, the assert can either be removed. The other two non-assert callers can just test for a buffer and error properly. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 27 2月, 2014 4 次提交
-
-
由 Eric Sandeen 提交于
Modify all read & write verifiers to differentiate between CRC errors and other inconsistencies. This sets the appropriate error number on bp->b_error, and then calls xfs_verifier_error() if something went wrong. That function will issue the appropriate message to the user. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Eric Sandeen 提交于
Many/most callers of xfs_update_cksum() pass bp->b_addr and BBTOB(bp->b_length) as the first 2 args. Add a helper which can just accept the bp and the crc offset, and work it out on its own, for brevity. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Eric Sandeen 提交于
Many/most callers of xfs_verify_cksum() pass bp->b_addr and BBTOB(bp->b_length) as the first 2 args. Add a helper which can just accept the bp and the crc offset, and work it out on its own, for brevity. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Eric Sandeen 提交于
Some calls to crc functions used useful #defines, others used awkward offsetof() constructs. Switch them all to #define to make things a bit cleaner. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 07 11月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
To help track down AGI/AGF lock ordering issues, I added these tracepoints to tell us when an AGI or AGF is read and locked. With these we can now determine if the lock ordering goes wrong from tracing captures. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 24 10月, 2013 3 次提交
-
-
由 Dave Chinner 提交于
Currently the xfs_inode.h header has a dependency on the definition of the BMAP btree records as the inode fork includes an array of xfs_bmbt_rec_host_t objects in it's definition. Move all the btree format definitions from xfs_btree.h, xfs_bmap_btree.h, xfs_alloc_btree.h and xfs_ialloc_btree.h to xfs_format.h to continue the process of centralising the on-disk format definitions. With this done, the xfs inode definitions are no longer dependent on btree header files. The enables a massive culling of unnecessary includes, with close to 200 #include directives removed from the XFS kernel code base. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
xfs_trans.h has a dependency on xfs_log.h for a couple of structures. Most code that does transactions doesn't need to know anything about the log, but this dependency means that they have to include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header files and clean up the includes to be in dependency order. In doing this, remove the direct include of xfs_trans_reserve.h from xfs_trans.h so that we remove the dependency between xfs_trans.h and xfs_mount.h. Hence the xfs_trans.h include can be moved to the indicate the actual dependencies other header files have on it. Note that these are kernel only header files, so this does not translate to any userspace changes at all. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
All of the buffer operations structures are needed to be exported for xfs_db, so move them all to a common location rather than spreading them all over the place. They are verifying the on-disk format, so while xfs_format.h might be a good place, it is not part of the on disk format. Hence we need to create a new header file that we centralise these related definitions. Start by moving the bffer operations structures, and then also move all the other definitions that have crept into xfs_log_format.h and xfs_format.h as there was no other shared header file to put them in. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 13 8月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
Userspace running debug builds is relatively rare, so there's need to special case the allocation algorithm code coverage debug switch. As it is, userspace defines random numbers to 0, so invert the logic of the switch so it is effectively a no-op in userspace. This kills another couple of __KERNEL__ users. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 21 5月, 2013 1 次提交
-
-
由 Jan Kara 提交于
Writing a large file using direct IO in 16 MB chunks sometimes results in a pathological allocation pattern where 16 MB chunks of large free extent are allocated to a file in a reversed order. So extents of a file look for example as: ext logical physical expected length flags 0 0 13 4550656 1 4550656 188136807 4550668 12562432 2 17113088 200699240 200699238 622592 3 17735680 182046055 201321831 4096 4 17739776 182041959 182050150 4096 5 17743872 182037863 182046054 4096 6 17747968 182033767 182041958 4096 7 17752064 182029671 182037862 4096 ... 6757 45400064 154381644 154389835 4096 6758 45404160 154377548 154385739 4096 6759 45408256 252951571 154381643 73728 eof This happens because XFS_ALLOCTYPE_THIS_BNO allocation fails (the last extent in the file cannot be further extended) so we fall back to XFS_ALLOCTYPE_NEAR_BNO allocation which picks end of a large free extent as the best place to continue the file. Since the chunk at the end of the free extent again cannot be further extended, this behavior repeats until the whole free extent is consumed in a reversed order. For data allocations this backward allocation isn't beneficial so make xfs_alloc_compute_diff() pick start of a free extent instead of its end for them. That avoids the backward allocation pattern. See thread at http://oss.sgi.com/archives/xfs/2013-03/msg00144.html for more details about the reproduction case and why this solution was chosen. Based on idea by Dave Chinner <dchinner@redhat.com>. CC: Dave Chinner <dchinner@redhat.com> Signed-off-by: NJan Kara <jack@suse.cz> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 28 4月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
The buffer type passed to log recvoery in the buffer log item overruns the blf_flags field. I had assumed that flags field was a 32 bit value, and it turns out it is a unisgned short. Therefore having 19 flags doesn't really work. Convert the buffer type field to numeric value, and use the top 5 bits of the flags field for it. We currently have 17 types of buffers, so using 5 bits gives us plenty of room for expansion in future.... Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 22 4月, 2013 2 次提交
-
-
由 Christoph Hellwig 提交于
Add CRC checks, location information and a magic number to the AGFL. Previously the AGFL was just a block containing nothing but the free block pointers. The new AGFL has a real header with the usual boilerplate instead, so that we can verify it's not corrupted and written into the right place. [dchinner@redhat.com] Added LSN field, reworked significantly to fit into new verifier structure and growfs structure, enabled full verifier functionality now there is a header to verify and we can guarantee an initialised AGFL. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
The AGF already has some self identifying fields (e.g. the sequence number) so we only need to add the uuid to it to identify the filesystem it belongs to. The location is fixed based on the sequence number, so there's no need to add a block number, either. Hence the only additional fields are the CRC and LSN fields. These are unlogged, so place some space between the end of the logged fields and them so that future expansion of the AGF for logged fields can be placed adjacent to the existing logged fields and hence not complicate the field-derived range based logging we currently have. Based originally on a patch from myself, modified further by Christoph Hellwig and then modified again to fit into the verifier structure with additional fields by myself. The multiple signed-off-by tags indicate the age and history of this patch. Signed-off-by: NDave Chinner <dgc@sgi.com> Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 08 3月, 2013 1 次提交
-
-
由 Akinobu Mita 提交于
Use more preferable function name which implies using a pseudo-random number generator. Signed-off-by: NAkinobu Mita <akinobu.mita@gmail.com> Acked-by: <bpm@sgi.com> Cc: Ben Myers <bpm@sgi.com> Cc: Alex Elder <elder@kernel.org> Cc: xfs@oss.sgi.com Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 04 1月, 2013 1 次提交
-
-
由 Eric Sandeen 提交于
Commit 408cc4e9 added memset(0, ...) to allocation args structures, so there is no need to explicitly set any of the fields to 0 after that. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 16 11月, 2012 6 次提交
-
-
由 Dave Chinner 提交于
To separate the verifiers from iodone functions and associate read and write verifiers at the same time, introduce a buffer verifier operations structure to the xfs_buf. This avoids the need for assigning the write verifier, clearing the iodone function and re-running ioend processing in the read verifier, and gets rid of the nasty "b_pre_io" name for the write verifier function pointer. If we ever need to, it will also be easier to add further content specific callbacks to a buffer with an ops structure in place. We also avoid needing to export verifier functions, instead we can simply export the ops structures for those that are needed outside the function they are defined in. This patch also fixes a directory block readahead verifier issue it exposed. This patch also adds ops callbacks to the inode/alloc btree blocks initialised by growfs. These will need more work before they will work with CRCs. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NPhil White <pwhite@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Metadata buffers that are read from disk have write verifiers already attached to them, but newly allocated buffers do not. Add appropriate write verifiers to all new metadata buffers. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
These verifiers are essentially the same code as the read verifiers, but do not require ioend processing. Hence factor the read verifier functions and add a new write verifier wrapper that is used as the callback. This is done as one large patch for all verifiers rather than one patch per verifier as the change is largely mechanical. This includes hooking up the write verifier via the read verifier function. Hooking up the write verifier for buffers obtained via xfs_trans_get_buf() will be done in a separate patch as that touches code in many different places rather than just the verifier functions. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Add an AGFL block verify callback function and pass it into the buffer read functions. While this commit adds verification code to the AGFL, it cannot be used reliably until the CRC format change comes along as mkfs does not initialise the full AGFL. Hence it can be full of garbage at the first mount and will fail verification right now. CRC enabled filesystems won't have this problem, so leave the code that has already been written ifdef'd out until the proper time. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NPhil White <pwhite@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Add an AGF block verify callback function and pass it into the buffer read functions. This replaces the existing verification that is done after the read completes. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Dave Chinner 提交于
Add a verifier function callback capability to the buffer read interfaces. This will be used by the callers to supply a function that verifies the contents of the buffer when it is read from disk. This patch does not provide callback functions, but simply modifies the interfaces to allow them to be called. The reason for adding this to the read interfaces is that it is very difficult to tell fom the outside is a buffer was just read from disk or whether we just pulled it out of cache. Supplying a callbck allows the buffer cache to use it's internal knowledge of the buffer to execute it only when the buffer is read from disk. It is intended that the verifier functions will mark the buffer with an EFSCORRUPTED error when verification fails. This allows the reading context to distinguish a verification error from an IO error, and potentially take further actions on the buffer (e.g. attempt repair) based on the error reported. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NPhil White <pwhite@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-