1. 19 6月, 2013 5 次提交
    • D
      FS-Cache: The retrieval remaining-pages counter needs to be atomic_t · 1bb4b7f9
      David Howells 提交于
      struct fscache_retrieval contains a count of the number of pages that still
      need some processing (n_pages).  This is decremented as the pages are
      processed.
      
      However, this needs to be atomic as fscache_retrieval_complete() (I think) just
      occasionally may be called from cachefiles_read_backing_file() and
      cachefiles_read_copier() simultaneously.
      
      This happens when an fscache_read_or_alloc_pages() request containing a lot of
      pages (say a couple of hundred) is being processed.  The read on each backing
      page is dispatched individually because we need to insert a monitor into the
      waitqueue to catch when the read completes.  However, under low-memory
      conditions, we might be forced to wait in the allocator - and this gives the
      I/O on the backing page a chance to complete first.
      
      When the I/O completes, fscache_enqueue_retrieval() chucks the retrieval onto
      the workqueue without waiting for the operation to finish the initial I/O
      dispatch (we want to release any pages we can as soon as we can), thus both can
      end up running simultaneously and potentially attempting to partially complete
      the retrieval simultaneously (ENOMEM may occur, backing pages may already be in
      the page cache).
      
      This was demonstrated by parallelling the non-atomic counter with an atomic
      counter and printing both of them when the assertion fails.  At this point, the
      atomic counter has reached zero, but the non-atomic counter has not.
      
      To fix this, make the counter an atomic_t.
      
      This results in the following bug appearing
      
      	FS-Cache: Assertion failed
      	3 == 5 is false
      	------------[ cut here ]------------
      	kernel BUG at fs/fscache/operation.c:421!
      
      or
      
      	FS-Cache: Assertion failed
      	3 == 5 is false
      	------------[ cut here ]------------
      	kernel BUG at fs/fscache/operation.c:414!
      
      With a backtrace like the following:
      
      RIP: 0010:[<ffffffffa0211b1d>] fscache_put_operation+0x1ad/0x240 [fscache]
      Call Trace:
       [<ffffffffa0213185>] fscache_retrieval_work+0x55/0x270 [fscache]
       [<ffffffffa0213130>] ? fscache_retrieval_work+0x0/0x270 [fscache]
       [<ffffffff81090b10>] worker_thread+0x170/0x2a0
       [<ffffffff81096d10>] ? autoremove_wake_function+0x0/0x40
       [<ffffffff810909a0>] ? worker_thread+0x0/0x2a0
       [<ffffffff81096966>] kthread+0x96/0xa0
       [<ffffffff8100c0ca>] child_rip+0xa/0x20
       [<ffffffff810968d0>] ? kthread+0x0/0xa0
       [<ffffffff8100c0c0>] ? child_rip+0x0/0x20
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Reviewed-and-tested-By: NMilosz Tanski <milosz@adfin.com>
      Acked-by: NJeff Layton <jlayton@redhat.com>
      1bb4b7f9
    • D
      FS-Cache: Simplify cookie retention for fscache_objects, fixing oops · 1362729b
      David Howells 提交于
      Simplify the way fscache cache objects retain their cookie.  The way I
      implemented the cookie storage handling made synchronisation a pain (ie. the
      object state machine can't rely on the cookie actually still being there).
      
      Instead of the the object being detached from the cookie and the cookie being
      freed in __fscache_relinquish_cookie(), we defer both operations:
      
       (*) The detachment of the object from the list in the cookie now takes place
           in fscache_drop_object() and is thus governed by the object state machine
           (fscache_detach_from_cookie() has been removed).
      
       (*) The release of the cookie is now in fscache_object_destroy() - which is
           called by the cache backend just before it frees the object.
      
      This means that the fscache_cookie struct is now available to the cache all the
      way through from ->alloc_object() to ->drop_object() and ->put_object() -
      meaning that it's no longer necessary to take object->lock to guarantee access.
      
      However, __fscache_relinquish_cookie() doesn't wait for the object to go all
      the way through to destruction before letting the netfs proceed.  That would
      massively slow down the netfs.  Since __fscache_relinquish_cookie() leaves the
      cookie around, in must therefore break all attachments to the netfs - which
      includes ->def, ->netfs_data and any outstanding page read/writes.
      
      To handle this, struct fscache_cookie now has an n_active counter:
      
       (1) This starts off initialised to 1.
      
       (2) Any time the cache needs to get at the netfs data, it calls
           fscache_use_cookie() to increment it - if it is not zero.  If it was zero,
           then access is not permitted.
      
       (3) When the cache has finished with the data, it calls fscache_unuse_cookie()
           to decrement it.  This does a wake-up on it if it reaches 0.
      
       (4) __fscache_relinquish_cookie() decrements n_active and then waits for it to
           reach 0.  The initialisation to 1 in step (1) ensures that we only get
           wake ups when we're trying to get rid of the cookie.
      
      This leaves __fscache_relinquish_cookie() a lot simpler.
      
      
      ***
      This fixes a problem in the current code whereby if fscache_invalidate() is
      followed sufficiently quickly by fscache_relinquish_cookie() then it is
      possible for __fscache_relinquish_cookie() to have detached the cookie from the
      object and cleared the pointer before a thread is dispatched to process the
      invalidation state in the object state machine.
      
      Since the pending write clearance was deferred to the invalidation state to
      make it asynchronous, we need to either wait in relinquishment for the stores
      tree to be cleared in the invalidation state or we need to handle the clearance
      in relinquishment.
      
      Further, if the relinquishment code does clear the tree, then the invalidation
      state need to make the clearance contingent on still having the cookie to hand
      (since that's where the tree is rooted) and we have to prevent the cookie from
      disappearing for the duration.
      
      This can lead to an oops like the following:
      
      BUG: unable to handle kernel NULL pointer dereference at 000000000000000c
      ...
      RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30
      ...
      CR2: 000000000000000c ...
      ...
      Process kslowd002 (...)
      ....
      Call Trace:
       [<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache]
       [<ffffffff810096f0>] ? __switch_to+0xd0/0x320
       [<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150
       [<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180
       [<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache]
       [<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0
       [<ffffffff8110e233>] slow_work_execute+0x233/0x310
       [<ffffffff8110e515>] slow_work_thread+0x205/0x360
       [<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40
       [<ffffffff8110e310>] ? slow_work_thread+0x0/0x360
       [<ffffffff81096936>] kthread+0x96/0xa0
       [<ffffffff8100c0ca>] child_rip+0xa/0x20
       [<ffffffff810968a0>] ? kthread+0x0/0xa0
       [<ffffffff8100c0c0>] ? child_rip+0x0/0x20
      
      The parameter to fscache_invalidate_writes() was object->cookie which is NULL.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Tested-By: NMilosz Tanski <milosz@adfin.com>
      Acked-by: NJeff Layton <jlayton@redhat.com>
      1362729b
    • D
      FS-Cache: Fix object state machine to have separate work and wait states · caaef690
      David Howells 提交于
      Fix object state machine to have separate work and wait states as that makes
      it easier to envision.
      
      There are now three kinds of state:
      
       (1) Work state.  This is an execution state.  No event processing is performed
           by a work state.  The function attached to a work state returns a pointer
           indicating the next state to which the OSM should transition.  Returning
           NO_TRANSIT repeats the current state, but goes back to the scheduler
           first.
      
       (2) Wait state.  This is an event processing state.  No execution is
           performed by a wait state.  Wait states are just tables of "if event X
           occurs, clear it and transition to state Y".  The dispatcher returns to
           the scheduler if none of the events in which the wait state has an
           interest are currently pending.
      
       (3) Out-of-band state.  This is a special work state.  Transitions to normal
           states can be overridden when an unexpected event occurs (eg. I/O error).
           Instead the dispatcher disables and clears the OOB event and transits to
           the specified work state.  This then acts as an ordinary work state,
           though object->state points to the overridden destination.  Returning
           NO_TRANSIT resumes the overridden transition.
      
      In addition, the states have names in their definitions, so there's no need for
      tables of state names.  Further, the EV_REQUEUE event is no longer necessary as
      that is automatic for work states.
      
      Since the states are now separate structs rather than values in an enum, it's
      not possible to use comparisons other than (non-)equality between them, so use
      some object->flags to indicate what phase an object is in.
      
      The EV_RELEASE, EV_RETIRE and EV_WITHDRAW events have been squished into one
      (EV_KILL).  An object flag now carries the information about retirement.
      
      Similarly, the RELEASING, RECYCLING and WITHDRAWING states have been merged
      into an KILL_OBJECT state and additional states have been added for handling
      waiting dependent objects (JUMPSTART_DEPS and KILL_DEPENDENTS).
      
      A state has also been added for synchronising with parent object initialisation
      (WAIT_FOR_PARENT) and another for initiating look up (PARENT_READY).
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Tested-By: NMilosz Tanski <milosz@adfin.com>
      Acked-by: NJeff Layton <jlayton@redhat.com>
      caaef690
    • D
      FS-Cache: Wrap checks on object state · 493f7bc1
      David Howells 提交于
      Wrap checks on object state (mostly outside of fs/fscache/object.c) with
      inline functions so that the mechanism can be replaced.
      
      Some of the state checks within object.c are left as-is as they will be
      replaced.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Tested-By: NMilosz Tanski <milosz@adfin.com>
      Acked-by: NJeff Layton <jlayton@redhat.com>
      493f7bc1
    • D
      FS-Cache: Uninline fscache_object_init() · 610be24e
      David Howells 提交于
      Uninline fscache_object_init() so as not to expose some of the FS-Cache
      internals to the cache backend.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Tested-By: NMilosz Tanski <milosz@adfin.com>
      Acked-by: NJeff Layton <jlayton@redhat.com>
      610be24e
  2. 21 12月, 2012 6 次提交
    • D
      FS-Cache: Mark cancellation of in-progress operation · 1f372dff
      David Howells 提交于
      Mark as cancelled an operation that is in progress rather than pending at the
      time it is cancelled, and call fscache_complete_op() to cancel an operation so
      that blocked ops can be started.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      1f372dff
    • D
      FS-Cache: Convert the object event ID #defines into an enum · 36a02de5
      David Howells 提交于
      Convert the fscache_object event IDs from #defines into an enum.  Also add an
      extra label to the enum to carry the event count and redefine the event mask
      in terms of that.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      36a02de5
    • D
      FS-Cache: Provide proper invalidation · ef778e7a
      David Howells 提交于
      Provide a proper invalidation method rather than relying on the netfs retiring
      the cookie it has and getting a new one.  The problem with this is that isn't
      easy for the netfs to make sure that it has completed/cancelled all its
      outstanding storage and retrieval operations on the cookie it is retiring.
      
      Instead, have the cache provide an invalidation method that will cancel or wait
      for all currently outstanding operations before invalidating the cache, and
      will cause new operations to queue up behind that.  Whilst invalidation is in
      progress, some requests will be rejected until the cache can stack a barrier on
      the operation queue to cause new operations to be deferred behind it.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      ef778e7a
    • D
      FS-Cache: Fix operation state management and accounting · 9f10523f
      David Howells 提交于
      Fix the state management of internal fscache operations and the accounting of
      what operations are in what states.
      
      This is done by:
      
       (1) Give struct fscache_operation a enum variable that directly represents the
           state it's currently in, rather than spreading this knowledge over a bunch
           of flags, who's processing the operation at the moment and whether it is
           queued or not.
      
           This makes it easier to write assertions to check the state at various
           points and to prevent invalid state transitions.
      
       (2) Add an 'operation complete' state and supply a function to indicate the
           completion of an operation (fscache_op_complete()) and make things call
           it.  The final call to fscache_put_operation() can then check that an op
           in the appropriate state (complete or cancelled).
      
       (3) Adjust the use of object->n_ops, ->n_in_progress, ->n_exclusive to better
           govern the state of an object:
      
      	(a) The ->n_ops is now the number of extant operations on the object
      	    and is now decremented by fscache_put_operation() only.
      
      	(b) The ->n_in_progress is simply the number of objects that have been
      	    taken off of the object's pending queue for the purposes of being
      	    run.  This is decremented by fscache_op_complete() only.
      
      	(c) The ->n_exclusive is the number of exclusive ops that have been
      	    submitted and queued or are in progress.  It is decremented by
      	    fscache_op_complete() and by fscache_cancel_op().
      
           fscache_put_operation() and fscache_operation_gc() now no longer try to
           clean up ->n_exclusive and ->n_in_progress.  That was leading to double
           decrements against fscache_cancel_op().
      
           fscache_cancel_op() now no longer decrements ->n_ops.  That was leading to
           double decrements against fscache_put_operation().
      
           fscache_submit_exclusive_op() now decides whether it has to queue an op
           based on ->n_in_progress being > 0 rather than ->n_ops > 0 as the latter
           will persist in being true even after all preceding operations have been
           cancelled or completed.  Furthermore, if an object is active and there are
           runnable ops against it, there must be at least one op running.
      
       (4) Add a remaining-pages counter (n_pages) to struct fscache_retrieval and
           provide a function to record completion of the pages as they complete.
      
           When n_pages reaches 0, the operation is deemed to be complete and
           fscache_op_complete() is called.
      
           Add calls to fscache_retrieval_complete() anywhere we've finished with a
           page we've been given to read or allocate for.  This includes places where
           we just return pages to the netfs for reading from the server and where
           accessing the cache fails and we discard the proposed netfs page.
      
      The bugs in the unfixed state management manifest themselves as oopses like the
      following where the operation completion gets out of sync with return of the
      cookie by the netfs.  This is possible because the cache unlocks and returns
      all the netfs pages before recording its completion - which means that there's
      nothing to stop the netfs discarding them and returning the cookie.
      
      
      FS-Cache: Cookie 'NFS.fh' still has outstanding reads
      ------------[ cut here ]------------
      kernel BUG at fs/fscache/cookie.c:519!
      invalid opcode: 0000 [#1] SMP
      CPU 1
      Modules linked in: cachefiles nfs fscache auth_rpcgss nfs_acl lockd sunrpc
      
      Pid: 400, comm: kswapd0 Not tainted 3.1.0-rc7-fsdevel+ #1090                  /DG965RY
      RIP: 0010:[<ffffffffa007050a>]  [<ffffffffa007050a>] __fscache_relinquish_cookie+0x170/0x343 [fscache]
      RSP: 0018:ffff8800368cfb00  EFLAGS: 00010282
      RAX: 000000000000003c RBX: ffff880023cc8790 RCX: 0000000000000000
      RDX: 0000000000002f2e RSI: 0000000000000001 RDI: ffffffff813ab86c
      RBP: ffff8800368cfb50 R08: 0000000000000002 R09: 0000000000000000
      R10: ffff88003a1b7890 R11: ffff88001df6e488 R12: ffff880023d8ed98
      R13: ffff880023cc8798 R14: 0000000000000004 R15: ffff88003b8bf370
      FS:  0000000000000000(0000) GS:ffff88003bd00000(0000) knlGS:0000000000000000
      CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
      CR2: 00000000008ba008 CR3: 0000000023d93000 CR4: 00000000000006e0
      DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
      DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
      Process kswapd0 (pid: 400, threadinfo ffff8800368ce000, task ffff88003b8bf040)
      Stack:
       ffff88003b8bf040 ffff88001df6e528 ffff88001df6e528 ffffffffa00b46b0
       ffff88003b8bf040 ffff88001df6e488 ffff88001df6e620 ffffffffa00b46b0
       ffff88001ebd04c8 0000000000000004 ffff8800368cfb70 ffffffffa00b2c91
      Call Trace:
       [<ffffffffa00b2c91>] nfs_fscache_release_inode_cookie+0x3b/0x47 [nfs]
       [<ffffffffa008f25f>] nfs_clear_inode+0x3c/0x41 [nfs]
       [<ffffffffa0090df1>] nfs4_evict_inode+0x2f/0x33 [nfs]
       [<ffffffff810d8d47>] evict+0xa1/0x15c
       [<ffffffff810d8e2e>] dispose_list+0x2c/0x38
       [<ffffffff810d9ebd>] prune_icache_sb+0x28c/0x29b
       [<ffffffff810c56b7>] prune_super+0xd5/0x140
       [<ffffffff8109b615>] shrink_slab+0x102/0x1ab
       [<ffffffff8109d690>] balance_pgdat+0x2f2/0x595
       [<ffffffff8103e009>] ? process_timeout+0xb/0xb
       [<ffffffff8109dba3>] kswapd+0x270/0x289
       [<ffffffff8104c5ea>] ? __init_waitqueue_head+0x46/0x46
       [<ffffffff8109d933>] ? balance_pgdat+0x595/0x595
       [<ffffffff8104bf7a>] kthread+0x7f/0x87
       [<ffffffff813ad6b4>] kernel_thread_helper+0x4/0x10
       [<ffffffff81026b98>] ? finish_task_switch+0x45/0xc0
       [<ffffffff813abcdd>] ? retint_restore_args+0xe/0xe
       [<ffffffff8104befb>] ? __init_kthread_worker+0x53/0x53
       [<ffffffff813ad6b0>] ? gs_change+0xb/0xb
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      9f10523f
    • D
      FS-Cache: Make cookie relinquishment wait for outstanding reads · ef46ed88
      David Howells 提交于
      Make fscache_relinquish_cookie() log a warning and wait if there are any
      outstanding reads left on the cookie it was given.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      ef46ed88
    • D
      CacheFiles: Fix the marking of cached pages · c4d6d8db
      David Howells 提交于
      Under some circumstances CacheFiles defers the marking of pages with PG_fscache
      so that it can take advantage of pagevecs to reduce the number of calls to
      fscache_mark_pages_cached() and the netfs's hook to keep track of this.
      
      There are, however, two problems with this:
      
       (1) It can lead to the PG_fscache mark being applied _after_ the page is set
           PG_uptodate and unlocked (by the call to fscache_end_io()).
      
       (2) CacheFiles's ref on the page is dropped immediately following
           fscache_end_io() - and so may not still be held when the mark is applied.
           This can lead to the page being passed back to the allocator before the
           mark is applied.
      
      Fix this by, where appropriate, marking the page before calling
      fscache_end_io() and releasing the page.  This means that we can't take
      advantage of pagevecs and have to make a separate call for each page to the
      marking routines.
      
      The symptoms of this are Bad Page state errors cropping up under memory
      pressure, for example:
      
      BUG: Bad page state in process tar  pfn:002da
      page:ffffea0000009fb0 count:0 mapcount:0 mapping:          (null) index:0x1447
      page flags: 0x1000(private_2)
      Pid: 4574, comm: tar Tainted: G        W   3.1.0-rc4-fsdevel+ #1064
      Call Trace:
       [<ffffffff8109583c>] ? dump_page+0xb9/0xbe
       [<ffffffff81095916>] bad_page+0xd5/0xea
       [<ffffffff81095d82>] get_page_from_freelist+0x35b/0x46a
       [<ffffffff810961f3>] __alloc_pages_nodemask+0x362/0x662
       [<ffffffff810989da>] __do_page_cache_readahead+0x13a/0x267
       [<ffffffff81098942>] ? __do_page_cache_readahead+0xa2/0x267
       [<ffffffff81098d7b>] ra_submit+0x1c/0x20
       [<ffffffff8109900a>] ondemand_readahead+0x28b/0x29a
       [<ffffffff81098ee2>] ? ondemand_readahead+0x163/0x29a
       [<ffffffff810990ce>] page_cache_sync_readahead+0x38/0x3a
       [<ffffffff81091d8a>] generic_file_aio_read+0x2ab/0x67e
       [<ffffffffa008cfbe>] nfs_file_read+0xa4/0xc9 [nfs]
       [<ffffffff810c22c4>] do_sync_read+0xba/0xfa
       [<ffffffff81177a47>] ? security_file_permission+0x7b/0x84
       [<ffffffff810c25dd>] ? rw_verify_area+0xab/0xc8
       [<ffffffff810c29a4>] vfs_read+0xaa/0x13a
       [<ffffffff810c2a79>] sys_read+0x45/0x6c
       [<ffffffff813ac37b>] system_call_fastpath+0x16/0x1b
      
      As can be seen, PG_private_2 (== PG_fscache) is set in the page flags.
      
      Instrumenting fscache_mark_pages_cached() to verify whether page->mapping was
      set appropriately showed that sometimes it wasn't.  This led to the discovery
      that sometimes the page has apparently been reclaimed by the time the marker
      got to see it.
      Reported-by: NM. Stevens <m@tippett.com>
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Reviewed-by: NJeff Layton <jlayton@redhat.com>
      c4d6d8db
  3. 01 11月, 2011 1 次提交
  4. 25 5月, 2011 1 次提交
  5. 31 3月, 2011 1 次提交
  6. 23 7月, 2010 3 次提交
    • T
      fscache: drop references to slow-work · d098adfb
      Tejun Heo 提交于
      fscache no longer uses slow-work.  Drop references to it.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NDavid Howells <dhowells@redhat.com>
      d098adfb
    • T
      fscache: convert operation to use workqueue instead of slow-work · 8af7c124
      Tejun Heo 提交于
      Make fscache operation to use only workqueue instead of combination of
      workqueue and slow-work.  FSCACHE_OP_SLOW is dropped and
      FSCACHE_OP_FAST is renamed to FSCACHE_OP_ASYNC and uses newly added
      fscache_op_wq workqueue to execute op->processor().
      fscache_operation_init_slow() is dropped and fscache_operation_init()
      now takes @processor argument directly.
      
      * Unbound workqueue is used.
      
      * fscache_retrieval_work() is no longer necessary as OP_ASYNC now does
        the equivalent thing.
      
      * sysctl fscache.operation_max_active added to control concurrency.
        The default value is nr_cpus clamped between 2 and
        WQ_UNBOUND_MAX_ACTIVE.
      
      * debugfs support is dropped for now.  Tracing API based debug
        facility is planned to be added.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NDavid Howells <dhowells@redhat.com>
      8af7c124
    • T
      fscache: convert object to use workqueue instead of slow-work · 8b8edefa
      Tejun Heo 提交于
      Make fscache object state transition callbacks use workqueue instead
      of slow-work.  New dedicated unbound CPU workqueue fscache_object_wq
      is created.  get/put callbacks are renamed and modified to take
      @object and called directly from the enqueue wrapper and the work
      function.  While at it, make all open coded instances of get/put to
      use fscache_get/put_object().
      
      * Unbound workqueue is used.
      
      * work_busy() output is printed instead of slow-work flags in object
        debugging outputs.  They mean basically the same thing bit-for-bit.
      
      * sysctl fscache.object_max_active added to control concurrency.  The
        default value is nr_cpus clamped between 4 and
        WQ_UNBOUND_MAX_ACTIVE.
      
      * slow_work_sleep_till_thread_needed() is replaced with fscache
        private implementation fscache_object_sleep_till_congested() which
        waits on fscache_object_wq congestion.
      
      * debugfs support is dropped for now.  Tracing API based debug
        facility is planned to be added.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Acked-by: NDavid Howells <dhowells@redhat.com>
      8b8edefa
  7. 30 3月, 2010 1 次提交
  8. 20 11月, 2009 7 次提交
    • D
      CacheFiles: Catch an overly long wait for an old active object · fee096de
      David Howells 提交于
      Catch an overly long wait for an old, dying active object when we want to
      replace it with a new one.  The probability is that all the slow-work threads
      are hogged, and the delete can't get a look in.
      
      What we do instead is:
      
       (1) if there's nothing in the slow work queue, we sleep until either the dying
           object has finished dying or there is something in the slow work queue
           behind which we can queue our object.
      
       (2) if there is something in the slow work queue, we return ETIMEDOUT to
           fscache_lookup_object(), which then puts us back on the slow work queue,
           presumably behind the deletion that we're blocked by.  We are then
           deferred for a while until we work our way back through the queue -
           without blocking a slow-work thread unnecessarily.
      
      A backtrace similar to the following may appear in the log without this patch:
      
      	INFO: task kslowd004:5711 blocked for more than 120 seconds.
      	"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
      	kslowd004     D 0000000000000000     0  5711      2 0x00000080
      	 ffff88000340bb80 0000000000000046 ffff88002550d000 0000000000000000
      	 ffff88002550d000 0000000000000007 ffff88000340bfd8 ffff88002550d2a8
      	 000000000000ddf0 00000000000118c0 00000000000118c0 ffff88002550d2a8
      	Call Trace:
      	 [<ffffffff81058e21>] ? trace_hardirqs_on+0xd/0xf
      	 [<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
      	 [<ffffffffa011c4e1>] cachefiles_wait_bit+0x9/0xd [cachefiles]
      	 [<ffffffff81353153>] __wait_on_bit+0x43/0x76
      	 [<ffffffff8111ae39>] ? ext3_xattr_get+0x1ec/0x270
      	 [<ffffffff813531ef>] out_of_line_wait_on_bit+0x69/0x74
      	 [<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
      	 [<ffffffff8104c125>] ? wake_bit_function+0x0/0x2e
      	 [<ffffffffa011bc79>] cachefiles_mark_object_active+0x203/0x23b [cachefiles]
      	 [<ffffffffa011c209>] cachefiles_walk_to_object+0x558/0x827 [cachefiles]
      	 [<ffffffffa011a429>] cachefiles_lookup_object+0xac/0x12a [cachefiles]
      	 [<ffffffffa00aa1e9>] fscache_lookup_object+0x1c7/0x214 [fscache]
      	 [<ffffffffa00aafc5>] fscache_object_state_machine+0xa5/0x52d [fscache]
      	 [<ffffffffa00ab4ac>] fscache_object_slow_work_execute+0x5f/0xa0 [fscache]
      	 [<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
      	 [<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
      	 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
      	 [<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
      	 [<ffffffff8104be91>] kthread+0x7a/0x82
      	 [<ffffffff8100beda>] child_rip+0xa/0x20
      	 [<ffffffff8100b87c>] ? restore_args+0x0/0x30
      	 [<ffffffff8104be17>] ? kthread+0x0/0x82
      	 [<ffffffff8100bed0>] ? child_rip+0x0/0x20
      	1 lock held by kslowd004/5711:
      	 #0:  (&sb->s_type->i_mutex_key#7/1){+.+.+.}, at: [<ffffffffa011be64>] cachefiles_walk_to_object+0x1b3/0x827 [cachefiles]
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      fee096de
    • D
      CacheFiles: Don't write a full page if there's only a partial page to cache · a17754fb
      David Howells 提交于
      cachefiles_write_page() writes a full page to the backing file for the last
      page of the netfs file, even if the netfs file's last page is only a partial
      page.
      
      This causes the EOF on the backing file to be extended beyond the EOF of the
      netfs, and thus the backing file will be truncated by cachefiles_attr_changed()
      called from cachefiles_lookup_object().
      
      So we need to limit the write we make to the backing file on that last page
      such that it doesn't push the EOF too far.
      
      Also, if a backing file that has a partial page at the end is expanded, we
      discard the partial page and refetch it on the basis that we then have a hole
      in the file with invalid data, and should the power go out...  A better way to
      deal with this could be to record a note that the partial page contains invalid
      data until the correct data is written into it.
      
      This isn't a problem for netfs's that discard the whole backing file if the
      file size changes (such as NFS).
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      a17754fb
    • D
      FS-Cache: Start processing an object's operations on that object's death · 60d543ca
      David Howells 提交于
      Start processing an object's operations when that object moves into the DYING
      state as the object cannot be destroyed until all its outstanding operations
      have completed.
      
      Furthermore, make sure that read and allocation operations handle being woken
      up on a dead object.  Such events are recorded in the Allocs.abt and
      Retrvls.abt statistics as viewable through /proc/fs/fscache/stats.
      
      The code for waiting for object activation for the read and allocation
      operations is also extracted into its own function as it is much the same in
      all cases, differing only in the stats incremented.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      60d543ca
    • D
      FS-Cache: Handle pages pending storage that get evicted under OOM conditions · 201a1542
      David Howells 提交于
      Handle netfs pages that the vmscan algorithm wants to evict from the pagecache
      under OOM conditions, but that are waiting for write to the cache.  Under these
      conditions, vmscan calls the releasepage() function of the netfs, asking if a
      page can be discarded.
      
      The problem is typified by the following trace of a stuck process:
      
      	kslowd005     D 0000000000000000     0  4253      2 0x00000080
      	 ffff88001b14f370 0000000000000046 ffff880020d0d000 0000000000000007
      	 0000000000000006 0000000000000001 ffff88001b14ffd8 ffff880020d0d2a8
      	 000000000000ddf0 00000000000118c0 00000000000118c0 ffff880020d0d2a8
      	Call Trace:
      	 [<ffffffffa00782d8>] __fscache_wait_on_page_write+0x8b/0xa7 [fscache]
      	 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
      	 [<ffffffffa0078240>] ? __fscache_check_page_write+0x63/0x70 [fscache]
      	 [<ffffffffa00b671d>] nfs_fscache_release_page+0x4e/0xc4 [nfs]
      	 [<ffffffffa00927f0>] nfs_release_page+0x3c/0x41 [nfs]
      	 [<ffffffff810885d3>] try_to_release_page+0x32/0x3b
      	 [<ffffffff81093203>] shrink_page_list+0x316/0x4ac
      	 [<ffffffff8109372b>] shrink_inactive_list+0x392/0x67c
      	 [<ffffffff813532fa>] ? __mutex_unlock_slowpath+0x100/0x10b
      	 [<ffffffff81058df0>] ? trace_hardirqs_on_caller+0x10c/0x130
      	 [<ffffffff8135330e>] ? mutex_unlock+0x9/0xb
      	 [<ffffffff81093aa2>] shrink_list+0x8d/0x8f
      	 [<ffffffff81093d1c>] shrink_zone+0x278/0x33c
      	 [<ffffffff81052d6c>] ? ktime_get_ts+0xad/0xba
      	 [<ffffffff81094b13>] try_to_free_pages+0x22e/0x392
      	 [<ffffffff81091e24>] ? isolate_pages_global+0x0/0x212
      	 [<ffffffff8108e743>] __alloc_pages_nodemask+0x3dc/0x5cf
      	 [<ffffffff81089529>] grab_cache_page_write_begin+0x65/0xaa
      	 [<ffffffff8110f8c0>] ext3_write_begin+0x78/0x1eb
      	 [<ffffffff81089ec5>] generic_file_buffered_write+0x109/0x28c
      	 [<ffffffff8103cb69>] ? current_fs_time+0x22/0x29
      	 [<ffffffff8108a509>] __generic_file_aio_write+0x350/0x385
      	 [<ffffffff8108a588>] ? generic_file_aio_write+0x4a/0xae
      	 [<ffffffff8108a59e>] generic_file_aio_write+0x60/0xae
      	 [<ffffffff810b2e82>] do_sync_write+0xe3/0x120
      	 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
      	 [<ffffffff810b18e1>] ? __dentry_open+0x1a5/0x2b8
      	 [<ffffffff810b1a76>] ? dentry_open+0x82/0x89
      	 [<ffffffffa00e693c>] cachefiles_write_page+0x298/0x335 [cachefiles]
      	 [<ffffffffa0077147>] fscache_write_op+0x178/0x2c2 [fscache]
      	 [<ffffffffa0075656>] fscache_op_execute+0x7a/0xd1 [fscache]
      	 [<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
      	 [<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
      	 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
      	 [<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
      	 [<ffffffff8104be91>] kthread+0x7a/0x82
      	 [<ffffffff8100beda>] child_rip+0xa/0x20
      	 [<ffffffff8100b87c>] ? restore_args+0x0/0x30
      	 [<ffffffff8102ef83>] ? tg_shares_up+0x171/0x227
      	 [<ffffffff8104be17>] ? kthread+0x0/0x82
      	 [<ffffffff8100bed0>] ? child_rip+0x0/0x20
      
      In the above backtrace, the following is happening:
      
       (1) A page storage operation is being executed by a slow-work thread
           (fscache_write_op()).
      
       (2) FS-Cache farms the operation out to the cache to perform
           (cachefiles_write_page()).
      
       (3) CacheFiles is then calling Ext3 to perform the actual write, using Ext3's
           standard write (do_sync_write()) under KERNEL_DS directly from the netfs
           page.
      
       (4) However, for Ext3 to perform the write, it must allocate some memory, in
           particular, it must allocate at least one page cache page into which it
           can copy the data from the netfs page.
      
       (5) Under OOM conditions, the memory allocator can't immediately come up with
           a page, so it uses vmscan to find something to discard
           (try_to_free_pages()).
      
       (6) vmscan finds a clean netfs page it might be able to discard (possibly the
           one it's trying to write out).
      
       (7) The netfs is called to throw the page away (nfs_release_page()) - but it's
           called with __GFP_WAIT, so the netfs decides to wait for the store to
           complete (__fscache_wait_on_page_write()).
      
       (8) This blocks a slow-work processing thread - possibly against itself.
      
      The system ends up stuck because it can't write out any netfs pages to the
      cache without allocating more memory.
      
      To avoid this, we make FS-Cache cancel some writes that aren't in the middle of
      actually being performed.  This means that some data won't make it into the
      cache this time.  To support this, a new FS-Cache function is added
      fscache_maybe_release_page() that replaces what the netfs releasepage()
      functions used to do with respect to the cache.
      
      The decisions fscache_maybe_release_page() makes are counted and displayed
      through /proc/fs/fscache/stats on a line labelled "VmScan".  There are four
      counters provided: "nos=N" - pages that weren't pending storage; "gon=N" -
      pages that were pending storage when we first looked, but weren't by the time
      we got the object lock; "bsy=N" - pages that we ignored as they were actively
      being written when we looked; and "can=N" - pages that we cancelled the storage
      of.
      
      What I'd really like to do is alter the behaviour of the cancellation
      heuristics, depending on how necessary it is to expel pages.  If there are
      plenty of other pages that aren't waiting to be written to the cache that
      could be ejected first, then it would be nice to hold up on immediate
      cancellation of cache writes - but I don't see a way of doing that.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      201a1542
    • D
      FS-Cache: Fix lock misorder in fscache_write_op() · 1bccf513
      David Howells 提交于
      FS-Cache has two structs internally for keeping track of the internal state of
      a cached file: the fscache_cookie struct, which represents the netfs's state,
      and fscache_object struct, which represents the cache's state.  Each has a
      pointer that points to the other (when both are in existence), and each has a
      spinlock for pointer maintenance.
      
      Since netfs operations approach these structures from the cookie side, they get
      the cookie lock first, then the object lock.  Cache operations, on the other
      hand, approach from the object side, and get the object lock first.  It is not
      then permitted for a cache operation to get the cookie lock whilst it is
      holding the object lock lest deadlock occur; instead, it must do one of two
      things:
      
       (1) increment the cookie usage counter, drop the object lock and then get both
           locks in order, or
      
       (2) simply hold the object lock as certain parts of the cookie may not be
           altered whilst the object lock is held.
      
      It is also not permitted to follow either pointer without holding the lock at
      the end you start with.  To break the pointers between the cookie and the
      object, both locks must be held.
      
      fscache_write_op(), however, violates the locking rules: It attempts to get the
      cookie lock without (a) checking that the cookie pointer is a valid pointer,
      and (b) holding the object lock to protect the cookie pointer whilst it follows
      it.  This is so that it can access the pending page store tree without
      interference from __fscache_write_page().
      
      This is fixed by splitting the cookie lock, such that the page store tracking
      tree is protected by its own lock, and checking that the cookie pointer is
      non-NULL before we attempt to follow it whilst holding the object lock.
      
      The new lock is subordinate to both the cookie lock and the object lock, and so
      should be taken after those.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      1bccf513
    • D
      FS-Cache: Allow the current state of all objects to be dumped · 4fbf4291
      David Howells 提交于
      Allow the current state of all fscache objects to be dumped by doing:
      
      	cat /proc/fs/fscache/objects
      
      By default, all objects and all fields will be shown.  This can be restricted
      by adding a suitable key to one of the caller's keyrings (such as the session
      keyring):
      
      	keyctl add user fscache:objlist "<restrictions>" @s
      
      The <restrictions> are:
      
      	K	Show hexdump of object key (don't show if not given)
      	A	Show hexdump of object aux data (don't show if not given)
      
      And paired restrictions:
      
      	C	Show objects that have a cookie
      	c	Show objects that don't have a cookie
      	B	Show objects that are busy
      	b	Show objects that aren't busy
      	W	Show objects that have pending writes
      	w	Show objects that don't have pending writes
      	R	Show objects that have outstanding reads
      	r	Show objects that don't have outstanding reads
      	S	Show objects that have slow work queued
      	s	Show objects that don't have slow work queued
      
      If neither side of a restriction pair is given, then both are implied.  For
      example:
      
      	keyctl add user fscache:objlist KB @s
      
      shows objects that are busy, and lists their object keys, but does not dump
      their auxiliary data.  It also implies "CcWwRrSs", but as 'B' is given, 'b' is
      not implied.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      4fbf4291
    • D
      FS-Cache: Annotate slow-work runqueue proc lines for FS-Cache work items · 440f0aff
      David Howells 提交于
      Annotate slow-work runqueue proc lines for FS-Cache work items.  Objects
      include the object ID and the state.  Operations include the object ID, the
      operation ID and the operation type and state.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      440f0aff
  9. 03 4月, 2009 2 次提交