- 04 7月, 2013 4 次提交
-
-
由 Oleg Nesterov 提交于
copy_process() does a lot of "chaotic" initializations and checks CLONE_THREAD twice before it takes tasklist. In particular it sets "p->group_leader = p" and then changes it again under tasklist if !thread_group_leader(p). This looks a bit confusing, lets create a single "if (CLONE_THREAD)" block which initializes ->exit_signal, ->group_leader, and ->tgid. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Sergey Dyasly <dserrg@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
copy_process() adds the new child to thread_group/init_task.tasks list and then does attach_pid(child, PIDTYPE_PID). This means that the lockless next_thread() or next_task() can see this thread with the wrong pid. Say, "ls /proc/pid/task" can list the same inode twice. We could move attach_pid(child, PIDTYPE_PID) up, but in this case find_task_by_vpid() can find the new thread before it was fully initialized. And this is already true for PIDTYPE_PGID/PIDTYPE_SID, With this patch copy_process() initializes child->pids[*].pid first, then calls attach_pid() to insert the task into the pid->tasks list. attach_pid() no longer need the "struct pid*" argument, it is always called after pid_link->pid was already set. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Sergey Dyasly <dserrg@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
Cleanup and preparation for the next changes. Move the "if (clone_flags & CLONE_THREAD)" code down under "if (likely(p->pid))" and turn it into into the "else" branch. This makes the process/thread initialization more symmetrical and removes one check. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Sergey Dyasly <dserrg@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Eric Paris 提交于
When a task is attempting to violate the RLIMIT_NPROC limit we have a check to see if the task is sufficiently priviledged. The check first looks at CAP_SYS_ADMIN, then CAP_SYS_RESOURCE, then if the task is uid=0. A result is that tasks which are allowed by the uid=0 check are first checked against the security subsystem. This results in the security subsystem auditting a denial for sys_admin and sys_resource and then the task passing the uid=0 check. This patch rearranges the code to first check uid=0, since if we pass that we shouldn't hit the security system at all. We then check sys_resource, since it is the smallest capability which will solve the problem. Lastly we check the fallback everything cap_sysadmin. We don't want to give this capability many places since it is so powerful. This will eliminate many of the false positive/needless denial messages we get when a root task tries to violate the nproc limit. (note that kthreads count against root, so on a sufficiently large machine we can actually get past the default limits before any userspace tasks are launched.) Signed-off-by: NEric Paris <eparis@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 5月, 2013 1 次提交
-
-
由 Kent Overstreet 提交于
Faster kernel compiles by way of fewer unnecessary includes. [akpm@linux-foundation.org: fix fallout] [akpm@linux-foundation.org: fix build] Signed-off-by: NKent Overstreet <koverstreet@google.com> Cc: Zach Brown <zab@redhat.com> Cc: Felipe Balbi <balbi@ti.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Jens Axboe <axboe@kernel.dk> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Benjamin LaHaise <bcrl@kvack.org> Reviewed-by: N"Theodore Ts'o" <tytso@mit.edu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 3月, 2013 1 次提交
-
-
由 Kent Overstreet 提交于
Does writethrough and writeback caching, handles unclean shutdown, and has a bunch of other nifty features motivated by real world usage. See the wiki at http://bcache.evilpiepirate.org for more. Signed-off-by: NKent Overstreet <koverstreet@google.com>
-
- 14 3月, 2013 1 次提交
-
-
由 Eric W. Biederman 提交于
Don't allowing sharing the root directory with processes in a different user namespace. There doesn't seem to be any point, and to allow it would require the overhead of putting a user namespace reference in fs_struct (for permission checks) and incrementing that reference count on practically every call to fork. So just perform the inexpensive test of forbidding sharing fs_struct acrosss processes in different user namespaces. We already disallow other forms of threading when unsharing a user namespace so this should be no real burden in practice. This updates setns, clone, and unshare to disallow multiple user namespaces sharing an fs_struct. Cc: stable@vger.kernel.org Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 3月, 2013 1 次提交
-
-
由 Frederic Weisbecker 提交于
The full dynticks cputime accounting is able to account either using the tick or the context tracking subsystem. This way the housekeeping CPU can keep the low overhead tick based solution. This latter mode has a low jiffies resolution granularity and need to be scaled against CFS precise runtime accounting to improve its result. We are doing this for CONFIG_TICK_CPU_ACCOUNTING, now we also need to expand it to full dynticks accounting dynamic off-case as well. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Kevin Hilman <khilman@linaro.org> Cc: Mats Liljegren <mats.liljegren@enea.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 04 3月, 2013 1 次提交
-
-
由 Al Viro 提交于
... and switch i386 to HAVE_SYSCALL_WRAPPERS, killing open-coded uses of asmlinkage_protect() in a bunch of syscalls. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 28 2月, 2013 1 次提交
-
-
由 Alan Cox 提交于
If new_nsproxy is set we will always call switch_task_namespaces and then set new_nsproxy back to NULL so the reassignment and fall through check are redundant Signed-off-by: NAlan Cox <alan@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 2月, 2013 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 28 1月, 2013 1 次提交
-
-
由 Frederic Weisbecker 提交于
While remotely reading the cputime of a task running in a full dynticks CPU, the values stored in utime/stime fields of struct task_struct may be stale. Its values may be those of the last kernel <-> user transition time snapshot and we need to add the tickless time spent since this snapshot. To fix this, flush the cputime of the dynticks CPUs on kernel <-> user transition and record the time / context where we did this. Then on top of this snapshot and the current time, perform the fixup on the reader side from task_times() accessors. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> [fixed kvm module related build errors] Signed-off-by: NSedat Dilek <sedat.dilek@gmail.com>
-
- 20 1月, 2013 1 次提交
-
-
由 Al Viro 提交于
Cc: stable@vger.kernel.org Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 25 12月, 2012 1 次提交
-
-
由 Eric W. Biederman 提交于
The sequence: unshare(CLONE_NEWPID) clone(CLONE_THREAD|CLONE_SIGHAND|CLONE_VM) Creates a new process in the new pid namespace without setting pid_ns->child_reaper. After forking this results in a NULL pointer dereference. Avoid this and other nonsense scenarios that can show up after creating a new pid namespace with unshare by adding a new check in copy_prodcess. Pointed-out-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
-
- 20 12月, 2012 1 次提交
-
-
由 Al Viro 提交于
All architectures have CONFIG_GENERIC_KERNEL_THREAD CONFIG_GENERIC_KERNEL_EXECVE __ARCH_WANT_SYS_EXECVE None of them have __ARCH_WANT_KERNEL_EXECVE and there are only two callers of kernel_execve() (which is a trivial wrapper for do_execve() now) left. Kill the conditionals and make both callers use do_execve(). Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 19 12月, 2012 1 次提交
-
-
由 Glauber Costa 提交于
Because those architectures will draw their stacks directly from the page allocator, rather than the slab cache, we can directly pass __GFP_KMEMCG flag, and issue the corresponding free_pages. This code path is taken when the architecture doesn't define CONFIG_ARCH_THREAD_INFO_ALLOCATOR (only ia64 seems to), and has THREAD_SIZE >= PAGE_SIZE. Luckily, most - if not all - of the remaining architectures fall in this category. This will guarantee that every stack page is accounted to the memcg the process currently lives on, and will have the allocations to fail if they go over limit. For the time being, I am defining a new variant of THREADINFO_GFP, not to mess with the other path. Once the slab is also tracked by memcg, we can get rid of that flag. Tested to successfully protect against :(){ :|:& };: Signed-off-by: NGlauber Costa <glommer@parallels.com> Acked-by: NFrederic Weisbecker <fweisbec@redhat.com> Acked-by: NKamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 12月, 2012 1 次提交
-
-
由 Mel Gorman 提交于
Due to the fact that migrations are driven by the CPU a task is running on there is no point tracking NUMA faults until one task runs on a new node. This patch tracks the first node used by an address space. Until it changes, PTE scanning is disabled and no NUMA hinting faults are trapped. This should help workloads that are short-lived, do not care about NUMA placement or have bound themselves to a single node. This takes advantage of the logic in "mm: sched: numa: Implement slow start for working set sampling" to delay when the checks are made. This will take advantage of processes that set their CPU and node bindings early in their lifetime. It will also potentially allow any initial load balancing to take place. Signed-off-by: NMel Gorman <mgorman@suse.de>
-
- 29 11月, 2012 6 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
... and get rid of idiotic struct pt_regs * in asm-generic/syscalls.h prototypes of the same, while we are at it. Eventually we want those in linux/syscalls.h, of course, but that'll have to wait a bit. Note that there are *three* variants of sys_clone() order of arguments. Braindamage galore... Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Frederic Weisbecker 提交于
task_cputime_adjusted() and thread_group_cputime_adjusted() essentially share the same code. They just don't use the same source: * The first function uses the cputime in the task struct and the previous adjusted snapshot that ensures monotonicity. * The second adds the cputime of all tasks in the group and the previous adjusted snapshot of the whole group from the signal structure. Just consolidate the common code that does the adjustment. These functions just need to fetch the values from the appropriate source. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
-
- 20 11月, 2012 1 次提交
-
-
由 Eric W. Biederman 提交于
- Add CLONE_THREAD to the unshare flags if CLONE_NEWUSER is selected As changing user namespaces is only valid if all there is only a single thread. - Restore the code to add CLONE_VM if CLONE_THREAD is selected and the code to addCLONE_SIGHAND if CLONE_VM is selected. Making the constraints in the code clear. Acked-by: NSerge Hallyn <serge.hallyn@canonical.com> Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
-
- 19 11月, 2012 5 次提交
-
-
由 Eric W. Biederman 提交于
Now that we have been through every permission check in the kernel having uid == 0 and gid == 0 in your local user namespace no longer adds any special privileges. Even having a full set of caps in your local user namespace is safe because capabilies are relative to your local user namespace, and do not confer unexpected privileges. Over the long term this should allow much more of the kernels functionality to be safely used by non-root users. Functionality like unsharing the mount namespace that is only unsafe because it can fool applications whose privileges are raised when they are executed. Since those applications have no privileges in a user namespaces it becomes safe to spoof and confuse those applications all you want. Those capabilities will still need to be enabled carefully because we may still need things like rlimits on the number of unprivileged mounts but that is to avoid DOS attacks not to avoid fooling root owned processes. Acked-by: NSerge Hallyn <serge.hallyn@canonical.com> Signed-off-by: NEric W. Biederman <ebiederm@xmission.com>
-
由 Eric W. Biederman 提交于
Unsharing of the pid namespace unlike unsharing of other namespaces does not take affect immediately. Instead it affects the children created with fork and clone. The first of these children becomes the init process of the new pid namespace, the rest become oddball children of pid 0. From the point of view of the new pid namespace the process that created it is pid 0, as it's pid does not map. A couple of different semantics were considered but this one was settled on because it is easy to implement and it is usable from pam modules. The core reasons for the existence of unshare. I took a survey of the callers of pam modules and the following appears to be a representative sample of their logic. { setup stuff include pam child = fork(); if (!child) { setuid() exec /bin/bash } waitpid(child); pam and other cleanup } As you can see there is a fork to create the unprivileged user space process. Which means that the unprivileged user space process will appear as pid 1 in the new pid namespace. Further most login processes do not cope with extraneous children which means shifting the duty of reaping extraneous child process to the creator of those extraneous children makes the system more comprehensible. The practical reason for this set of pid namespace semantics is that it is simple to implement and verify they work correctly. Whereas an implementation that requres changing the struct pid on a process comes with a lot more races and pain. Not the least of which is that glibc caches getpid(). These semantics are implemented by having two notions of the pid namespace of a proces. There is task_active_pid_ns which is the pid namspace the process was created with and the pid namespace that all pids are presented to that process in. The task_active_pid_ns is stored in the struct pid of the task. Then there is the pid namespace that will be used for children that pid namespace is stored in task->nsproxy->pid_ns. Signed-off-by: NEric W. Biederman <ebiederm@xmission.com>
-
由 Eric W. Biederman 提交于
Instead of setting child_reaper and SIGNAL_UNKILLABLE one way for the system init process, and another way for pid namespace init processes test pid->nr == 1 and use the same code for both. For the global init this results in SIGNAL_UNKILLABLE being set much earlier in the initialization process. This is a small cleanup and it paves the way for allowing unshare and enter of the pid namespace as that path like our global init also will not set CLONE_NEWPID. Signed-off-by: NEric W. Biederman <ebiederm@xmission.com>
-
由 Eric W. Biederman 提交于
Track the number of pids in the proc hash table. When the number of pids goes to 0 schedule work to unmount the kernel mount of proc. Move the mount of proc into alloc_pid when we allocate the pid for init. Remove the surprising calls of pid_ns_release proc in fork and proc_flush_task. Those code paths really shouldn't know about proc namespace implementation details and people have demonstrated several times that finding and understanding those code paths is difficult and non-obvious. Because of the call path detach pid is alwasy called with the rtnl_lock held free_pid is not allowed to sleep, so the work to unmounting proc is moved to a work queue. This has the side benefit of not blocking the entire world waiting for the unnecessary rcu_barrier in deactivate_locked_super. In the process of making the code clear and obvious this fixes a bug reported by Gao feng <gaofeng@cn.fujitsu.com> where we would leak a mount of proc during clone(CLONE_NEWPID|CLONE_NEWNET) if copy_pid_ns succeeded and copy_net_ns failed. Acked-by: N"Serge E. Hallyn" <serge@hallyn.com> Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
-
由 Eric W. Biederman 提交于
The expressions tsk->nsproxy->pid_ns and task_active_pid_ns aka ns_of_pid(task_pid(tsk)) should have the same number of cache line misses with the practical difference that ns_of_pid(task_pid(tsk)) is released later in a processes life. Furthermore by using task_active_pid_ns it becomes trivial to write an unshare implementation for the the pid namespace. So I have used task_active_pid_ns everywhere I can. In fork since the pid has not yet been attached to the process I use ns_of_pid, to achieve the same effect. Signed-off-by: NEric W. Biederman <ebiederm@xmission.com>
-
- 16 11月, 2012 1 次提交
-
-
由 Oleg Nesterov 提交于
This was always racy, but 26872090 "uprobes: Rework register_for_each_vma() to make it O(n)" should be blamed anyway, it made everything worse and I didn't notice. register/unregister call build_map_info() and then do install/remove breakpoint for every mm which mmaps inode/offset. This can obviously race with fork()->dup_mmap() in between and we can miss the child. uprobe_register() could be easily fixed but unregister is much worse, the new mm inherits "int3" from parent and there is no way to detect this if uprobe goes away. So this patch simply adds percpu_down_read/up_read around dup_mmap(), and percpu_down_write/up_write into register_for_each_vma(). This adds 2 new hooks into dup_mmap() but we can kill uprobe_dup_mmap() and fold it into uprobe_end_dup_mmap(). Reported-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NOleg Nesterov <oleg@redhat.com>
-
- 17 10月, 2012 1 次提交
-
-
由 Tejun Heo 提交于
cgroup core has a bug which violates a basic rule about event notifications - when a new entity needs to be added, you add that to the notification list first and then make the new entity conform to the current state. If done in the reverse order, an event happening inbetween will be lost. cgroup_subsys->fork() is invoked way before the new task is added to the css_set. Currently, cgroup_freezer is the only user of ->fork() and uses it to make new tasks conform to the current state of the freezer. If FROZEN state is requested while fork is in progress between cgroup_fork_callbacks() and cgroup_post_fork(), the child could escape freezing - the cgroup isn't frozen when ->fork() is called and the freezer couldn't see the new task on the css_set. This patch moves cgroup_subsys->fork() invocation to cgroup_post_fork() after the new task is added to the css_set. cgroup_fork_callbacks() is removed. Because now a task may be migrated during cgroup_subsys->fork(), freezer_fork() is updated so that it adheres to the usual RCU locking and the rather pointless comment on why locking can be different there is removed (if it doesn't make anything simpler, why even bother?). Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: stable@vger.kernel.org
-
- 09 10月, 2012 5 次提交
-
-
由 Michel Lespinasse 提交于
Update the generic interval tree code that was introduced in "mm: replace vma prio_tree with an interval tree". Changes: - fixed 'endpoing' typo noticed by Andrew Morton - replaced include/linux/interval_tree_tmpl.h, which was used as a template (including it automatically defined the interval tree functions) with include/linux/interval_tree_generic.h, which only defines a preprocessor macro INTERVAL_TREE_DEFINE(), which itself defines the interval tree functions when invoked. Now that is a very long macro which is unfortunate, but it does make the usage sites (lib/interval_tree.c and mm/interval_tree.c) a bit nicer than previously. - make use of RB_DECLARE_CALLBACKS() in the INTERVAL_TREE_DEFINE() macro, instead of duplicating that code in the interval tree template. - replaced vma_interval_tree_add(), which was actually handling the nonlinear and interval tree cases, with vma_interval_tree_insert_after() which handles only the interval tree case and has an API that is more consistent with the other interval tree handling functions. The nonlinear case is now handled explicitly in kernel/fork.c dup_mmap(). Signed-off-by: NMichel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michel Lespinasse 提交于
Implement an interval tree as a replacement for the VMA prio_tree. The algorithms are similar to lib/interval_tree.c; however that code can't be directly reused as the interval endpoints are not explicitly stored in the VMA. So instead, the common algorithm is moved into a template and the details (node type, how to get interval endpoints from the node, etc) are filled in using the C preprocessor. Once the interval tree functions are available, using them as a replacement to the VMA prio tree is a relatively simple, mechanical job. Signed-off-by: NMichel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw2@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Davidlohr Bueso 提交于
The deprecated /proc/<pid>/oom_adj is scheduled for removal this month. Signed-off-by: NDavidlohr Bueso <dave@gnu.org> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
Currently the kernel sets mm->exe_file during sys_execve() and then tracks number of vmas with VM_EXECUTABLE flag in mm->num_exe_file_vmas, as soon as this counter drops to zero kernel resets mm->exe_file to NULL. Plus it resets mm->exe_file at last mmput() when mm->mm_users drops to zero. VMA with VM_EXECUTABLE flag appears after mapping file with flag MAP_EXECUTABLE, such vmas can appears only at sys_execve() or after vma splitting, because sys_mmap ignores this flag. Usually binfmt module sets mm->exe_file and mmaps executable vmas with this file, they hold mm->exe_file while task is running. comment from v2.6.25-6245-g925d1c40 ("procfs task exe symlink"), where all this stuff was introduced: > The kernel implements readlink of /proc/pid/exe by getting the file from > the first executable VMA. Then the path to the file is reconstructed and > reported as the result. > > Because of the VMA walk the code is slightly different on nommu systems. > This patch avoids separate /proc/pid/exe code on nommu systems. Instead of > walking the VMAs to find the first executable file-backed VMA we store a > reference to the exec'd file in the mm_struct. > > That reference would prevent the filesystem holding the executable file > from being unmounted even after unmapping the VMAs. So we track the number > of VM_EXECUTABLE VMAs and drop the new reference when the last one is > unmapped. This avoids pinning the mounted filesystem. exe_file's vma accounting is hooked into every file mmap/unmmap and vma split/merge just to fix some hypothetical pinning fs from umounting by mm, which already unmapped all its executable files, but still alive. Seems like currently nobody depends on this behaviour. We can try to remove this logic and keep mm->exe_file until final mmput(). mm->exe_file is still protected with mm->mmap_sem, because we want to change it via new sys_prctl(PR_SET_MM_EXE_FILE). Also via this syscall task can change its mm->exe_file and unpin mountpoint explicitly. Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
Some security modules and oprofile still uses VM_EXECUTABLE for retrieving a task's executable file. After this patch they will use mm->exe_file directly. mm->exe_file is protected with mm->mmap_sem, so locking stays the same. Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: Chris Metcalf <cmetcalf@tilera.com> [arch/tile] Acked-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> [tomoyo] Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Acked-by: NJames Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 10月, 2012 1 次提交
-
-
由 Al Viro 提交于
Let architectures select GENERIC_KERNEL_THREAD and have their copy_thread() treat NULL regs as "it came from kernel_thread(), sp argument contains the function new thread will be calling and stack_size - the argument for that function". Switching the architectures begins shortly... Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 25 9月, 2012 1 次提交
-
-
由 Eric Dumazet 提交于
We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: NVijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 9月, 2012 1 次提交
-
-
由 Peter Zijlstra 提交于
Now that the last architecture to use this has stopped doing so (ARM, thanks Catalin!) we can remove this complexity from the scheduler core. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Link: http://lkml.kernel.org/n/tip-g9p2a1w81xxbrze25v9zpzbf@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 29 8月, 2012 1 次提交
-
-
由 Oleg Nesterov 提交于
Now that we have uprobe_dup_mmap() we can fold uprobe_reset_state() into the new hook and remove it. mmput()->uprobe_clear_state() can't be called before dup_mmap(). Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com>
-