- 30 11月, 2017 1 次提交
-
-
由 Alex Bennée 提交于
There is a fast-path of MMIO emulation inside hyp mode. The handling of single-step is broadly the same as kvm_arm_handle_step_debug() except we just setup ESR/HSR so handle_exit() does the correct thing as we exit. For the case of an emulated illegal access causing an SError we will exit via the ARM_EXCEPTION_EL1_SERROR path in handle_exit(). We behave as we would during a real SError and clear the DBG_SPSR_SS bit for the emulated instruction. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NAlex Bennée <alex.bennee@linaro.org> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 06 11月, 2017 1 次提交
-
-
由 Christoffer Dall 提交于
As we are about to be lazy with saving and restoring the timer registers, we prepare by moving all possible timer configuration logic out of the hyp code. All virtual timer registers can be programmed from EL1 and since the arch timer is always a level triggered interrupt we can safely do this with interrupts disabled in the host kernel on the way to the guest without taking vtimer interrupts in the host kernel (yet). The downside is that the cntvoff register can only be programmed from hyp mode, so we jump into hyp mode and back to program it. This is also safe, because the host kernel doesn't use the virtual timer in the KVM code. It may add a little performance performance penalty, but only until following commits where we move this operation to vcpu load/put. Signed-off-by: NChristoffer Dall <cdall@linaro.org> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 03 11月, 2017 2 次提交
-
-
由 Dave Martin 提交于
Until KVM has full SVE support, guests must not be allowed to execute SVE instructions. This patch enables the necessary traps, and also ensures that the traps are disabled again on exit from the guest so that the host can still use SVE if it wants to. On guest exit, high bits of the SVE Zn registers may have been clobbered as a side-effect the execution of FPSIMD instructions in the guest. The existing KVM host FPSIMD restore code is not sufficient to restore these bits, so this patch explicitly marks the CPU as not containing cached vector state for any task, thus forcing a reload on the next return to userspace. This is an interim measure, in advance of adding full SVE awareness to KVM. This marking of cached vector state in the CPU as invalid is done using __this_cpu_write(fpsimd_last_state, NULL) in fpsimd.c. Due to the repeated use of this rather obscure operation, it makes sense to factor it out as a separate helper with a clearer name. This patch factors it out as fpsimd_flush_cpu_state(), and ports all callers to use it. As a side effect of this refactoring, a this_cpu_write() in fpsimd_cpu_pm_notifier() is changed to __this_cpu_write(). This should be fine, since cpu_pm_enter() is supposed to be called only with interrupts disabled. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NAlex Bennée <alex.bennee@linaro.org> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Dave Martin 提交于
Currently, a guest kernel sees the true CPU feature registers (ID_*_EL1) when it reads them using MRS instructions. This means that the guest may observe features that are present in the hardware but the host doesn't understand or doesn't provide support for. A guest may legimitately try to use such a feature as per the architecture, but use of the feature may trap instead of working normally, triggering undef injection into the guest. This is not a problem for the host, but the guest may go wrong when running on newer hardware than the host knows about. This patch hides from guest VMs any AArch64-specific CPU features that the host doesn't support, by exposing to the guest the sanitised versions of the registers computed by the cpufeatures framework, instead of the true hardware registers. To achieve this, HCR_EL2.TID3 is now set for AArch64 guests, and emulation code is added to KVM to report the sanitised versions of the affected registers in response to MRS and register reads from userspace. The affected registers are removed from invariant_sys_regs[] (since the invariant_sys_regs handling is no longer quite correct for them) and added to sys_reg_desgs[], with appropriate access(), get_user() and set_user() methods. No runtime vcpu storage is allocated for the registers: instead, they are read on demand from the cpufeatures framework. This may need modification in the future if there is a need for userspace to customise the features visible to the guest. Attempts by userspace to write the registers are handled similarly to the current invariant_sys_regs handling: writes are permitted, but only if they don't attempt to change the value. This is sufficient to support VM snapshot/restore from userspace. Because of the additional registers, restoring a VM on an older kernel may not work unless userspace knows how to handle the extra VM registers exposed to the KVM user ABI by this patch. Under the principle of least damage, this patch makes no attempt to handle any of the other registers currently in invariant_sys_regs[], or to emulate registers for AArch32: however, these could be handled in a similar way in future, as necessary. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 15 6月, 2017 1 次提交
-
-
由 Marc Zyngier 提交于
In order to start handling guest access to GICv3 system registers, let's add a hook that will get called when we trap a system register access. This is gated by a new static key (vgic_v3_cpuif_trap). Tested-by: NAlexander Graf <agraf@suse.de> Acked-by: NDavid Daney <david.daney@cavium.com> Reviewed-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <cdall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
- 16 5月, 2017 1 次提交
-
-
由 James Morse 提交于
When KVM panics, it hurridly restores the host context and parachutes into the host's panic() code. At some point panic() touches the physical timer/counter. Unless we are an arm64 system with VHE, this traps back to EL2. If we're lucky, we panic again. Add a __timer_save_state() call to KVMs hyp_panic() path, this saves the guest registers and disables the traps for the host. Fixes: 53fd5b64 ("arm64: KVM: Add panic handling") Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <cdall@linaro.org> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
- 03 2月, 2017 1 次提交
-
-
由 Will Deacon 提交于
The SPE buffer is virtually addressed, using the page tables of the CPU MMU. Unusually, this means that the EL0/1 page table may be live whilst we're executing at EL2 on non-VHE configurations. When VHE is in use, we can use the same property to profile the guest behind its back. This patch adds the relevant disabling and flushing code to KVM so that the host can make use of SPE without corrupting guest memory, and any attempts by a guest to use SPE will result in a trap. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 09 12月, 2016 1 次提交
-
-
由 Marc Zyngier 提交于
The ARMv8 architecture allows the cycle counter to be configured by setting PMSELR_EL0.SEL==0x1f and then accessing PMXEVTYPER_EL0, hence accessing PMCCFILTR_EL0. But it disallows the use of PMSELR_EL0.SEL==0x1f to access the cycle counter itself through PMXEVCNTR_EL0. Linux itself doesn't violate this rule, but we may end up with PMSELR_EL0.SEL being set to 0x1f when we enter a guest. If that guest accesses PMXEVCNTR_EL0, the access may UNDEF at EL1, despite the guest not having done anything wrong. In order to avoid this unfortunate course of events (haha!), let's sanitize PMSELR_EL0 on guest entry. This ensures that the guest won't explode unexpectedly. Cc: stable@vger.kernel.org #4.6+ Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 17 11月, 2016 1 次提交
-
-
由 Suzuki K Poulose 提交于
The arm64 kernel assumes that FP/ASIMD units are always present and accesses the FP/ASIMD specific registers unconditionally. This could cause problems when they are absent. This patch adds the support for kernel handling systems without FP/ASIMD by skipping the register access within the kernel. For kvm, we trap the accesses to FP/ASIMD and inject an undefined instruction exception to the VM. The callers of the exported kernel_neon_begin_partial() should make sure that the FP/ASIMD is supported. Cc: Will Deacon <will.deacon@arm.com> Cc: Christoffer Dall <christoffer.dall@linaro.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> [catalin.marinas@arm.com: add comment on the ARM64_HAS_NO_FPSIMD conflict and the new location] Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 22 9月, 2016 1 次提交
-
-
由 Vladimir Murzin 提交于
Currently GIC backend is selected via alternative framework and this is fine. We are going to introduce vgic-v3 to 32-bit world and there we don't have patching framework in hand, so we can either check support for GICv3 every time we need to choose which backend to use or try to optimise it by using static keys. The later looks quite promising because we can share logic involved in selecting GIC backend between architectures if both uses static keys. This patch moves arm64 from alternative to static keys framework for selecting GIC backend. For that we embed static key into vgic_global and enable the key during vgic initialisation based on what has already been exposed by the host GIC driver. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NVladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 08 9月, 2016 5 次提交
-
-
由 Marc Zyngier 提交于
If, when proxying a GICV access at EL2, we detect that the guest is doing something silly, report an EL1 SError instead ofgnoring the access. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
If EL1 generates an asynchronous abort and then traps into EL2 before the abort has been delivered, we may end-up with the abort firing at the worse possible place: on the host. In order to avoid this, it is necessary to take the abort at EL2, by clearing the PSTATE.A bit. In order to survive this abort, we do it at a point where we're in a known state with respect to the world switch, and handle the resulting exception, overloading the exit code in the process. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
The HCR_EL2.VSE bit is used to signal an SError to a guest, and has the peculiar feature of getting cleared when the guest has taken the abort (this is the only bit that behaves as such in this register). This means that if we signal such an abort, we must leave it in the guest context until it disappears from HCR_EL2, and at which point it must be cleared from the context. This is achieved by reading back from HCR_EL2 until the guest takes the fault. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
In order to efficiently perform the GICV access on behalf of the guest, we need to be able to avoid going back all the way to the host kernel. For this, we introduce a new hook in the world switch code, conveniently placed just after populating the fault info. At that point, we only have saved/restored the GP registers, and we can quickly perform all the required checks (data abort, translation fault, valid faulting syndrome, not an external abort, not a PTW). Coming back from the emulation code, we need to skip the emulated instruction. This involves an additional bit of save/restore in order to be able to access the guest's PC (and possibly CPSR if this is a 32bit guest). At this stage, no emulation code is provided. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
When rewriting the assembly code to C code, it was useful to have exported aliases or static functions so that we could keep the existing common C code unmodified and at the same time rewrite arm64 from assembly to C code, and later do the arm part. Now when both are done, we really don't need this level of indirection anymore, and it's time to save a few lines and brain cells. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 17 8月, 2016 1 次提交
-
-
由 Marc Zyngier 提交于
We already have a workaround for Cortex-A57 erratum #852523, but Cortex-A72 r0p0 to r0p2 do suffer from the same issue (known as erratum #853709). Let's document the fact that we already handle this. Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 04 7月, 2016 1 次提交
-
-
由 Marc Zyngier 提交于
__hyp_panic_string is passed via the HYP panic code to the panic function, and is being "upgraded" to a kernel address, as it is referenced by the HYP code (in a PC-relative way). This is a bit silly, and we'd be better off obtaining the kernel address and not mess with it at all. This patch implements this with a tiny bit of asm glue, by forcing the string pointer to be read from the literal pool. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 22 6月, 2016 1 次提交
-
-
由 Mark Rutland 提交于
Now that we have a helper to extract the EC from an ESR_ELx value, make use of this in the arm64 KVM code for simplicity and consistency. There should be no functional changes as a result of this patch. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Dave P Martin <dave.martin@arm.com> Cc: Huang Shijie <shijie.huang@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: kvmarm@lists.cs.columbia.edu Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 01 3月, 2016 7 次提交
-
-
由 Shannon Zhao 提交于
This register resets as unknown in 64bit mode while it resets as zero in 32bit mode. Here we choose to reset it as zero for consistency. PMUSERENR_EL0 holds some bits which decide whether PMU registers can be accessed from EL0. Add some check helpers to handle the access from EL0. When these bits are zero, only reading PMUSERENR will trap to EL2 and writing PMUSERENR or reading/writing other PMU registers will trap to EL1 other than EL2 when HCR.TGE==0. To current KVM configuration (HCR.TGE==0) there is no way to get these traps. Here we write 0xf to physical PMUSERENR register on VM entry, so that it will trap PMU access from EL0 to EL2. Within the register access handler we check the real value of guest PMUSERENR register to decide whether this access is allowed. If not allowed, return false to inject UND to guest. Signed-off-by: NShannon Zhao <shannon.zhao@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
In order to be able to move code outside of kvm/hyp, we need to make the global hyp.h file accessible from a standard location. include/asm/kvm_hyp.h seems good enough. Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
The fault decoding process (including computing the IPA in the case of a permission fault) would be much better done in C code, as we have a reasonable infrastructure to deal with the VHE/non-VHE differences. Let's move the whole thing to C, including the workaround for erratum 834220, and just patch the odd ESR_EL2 access remaining in hyp-entry.S. Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
As the kernel fully runs in HYP when VHE is enabled, we can directly branch to the kernel's panic() implementation, and not perform an exception return. Add the alternative code to deal with this. Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Running the kernel in HYP mode requires the HCR_E2H bit to be set at all times, and the HCR_TGE bit to be set when running as a host (and cleared when running as a guest). At the same time, the vector must be set to the current role of the kernel (either host or hypervisor), and a couple of system registers differ between VHE and non-VHE. We implement these by using another set of alternate functions that get dynamically patched. Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
As non-VHE and VHE have different ways to express the trapping of FPSIMD registers to EL2, make __fpsimd_enabled a patchable predicate and provide a VHE implementation. Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
With ARMv8, host and guest share the same system register file, making the save/restore procedure completely symetrical. With VHE, host and guest now have different requirements, as they use different sysregs. In order to prepare for this, add split sysreg save/restore functions for both host and guest. No functional changes yet. Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 25 1月, 2016 1 次提交
-
-
由 Dave Martin 提交于
Some bits in CPTR are defined as RES1 in the architecture. Setting these bits to zero may unintentionally enable future architecture extensions, allowing guests to use them without supervision by the host. This would be bad: for forwards compatibility, this patch makes sure the affected bits are always written with 1, not 0. This patch only addresses CPTR_EL2. Initialisation of other system registers may still need review. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NDave Martin <Dave.Martin@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 14 12月, 2015 5 次提交
-
-
由 Marc Zyngier 提交于
As we've now switched to the new world switch implementation, remove the weak attributes, as nobody is supposed to override it anymore. Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
So far, we've implemented the new world switch with a completely different namespace, so that we could have both implementation compiled in. Let's take things one step further by adding weak aliases that have the same names as the original implementation. The weak attributes allows the new implementation to be overriden by the old one, and everything still work. At a later point, we'll be able to simply drop the old code, and everything will hopefully keep working, thanks to the aliases we have just added. This also saves us repainting all the callers. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
Add the panic handler, together with the small bits of assembly code to call the kernel's panic implementation. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
Implement the fpsimd save restore, keeping the lazy part in assembler (as returning to C would be overkill). Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
Implement the core of the world switch in C. Not everything is there yet, and there is nothing to re-enter the world switch either. But this already outlines the code structure well enough. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org>
-