- 13 1月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
Currently we assign managed interrupt vectors to all present CPUs. This works fine for systems were we only online/offline CPUs. But in case of systems that support physical CPU hotplug (or the virtualized version of it) this means the additional CPUs covered for in the ACPI tables or on the command line are not catered for. To fix this we'd either need to introduce new hotplug CPU states just for this case, or we can start assining vectors to possible but not present CPUs. Reported-by: NChristian Borntraeger <borntraeger@de.ibm.com> Tested-by: NChristian Borntraeger <borntraeger@de.ibm.com> Tested-by: NStefan Haberland <sth@linux.vnet.ibm.com> Fixes: 4b855ad3 ("blk-mq: Create hctx for each present CPU") Cc: linux-kernel@vger.kernel.org Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 02 11月, 2017 1 次提交
-
-
由 Greg Kroah-Hartman 提交于
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org> Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 23 6月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
Currently the irq vector spread algorithm is restricted to online CPUs, which ties the IRQ mapping to the currently online devices and doesn't deal nicely with the fact that CPUs could come and go rapidly due to e.g. power management. Instead assign vectors to all present CPUs to avoid this churn. Build a map of all possible CPUs for a given node, as the architectures only provide a map of all onlines CPUs. Do this dynamically on each call for the vector assingments, which is a bit suboptimal and could be optimized in the future by provinding a mapping from the arch code. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: linux-block@vger.kernel.org Cc: Sagi Grimberg <sagi@grimberg.me> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: linux-nvme@lists.infradead.org Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20170603140403.27379-5-hch@lst.de
-
- 23 5月, 2017 1 次提交
-
-
由 Michael Hernandez 提交于
min_vecs is the minimum amount of vectors needed to operate in MSI-X mode which may just include the vectors that don't need affinity. Disabling affinity settings causes the qla2xxx driver scsi_add_host() to fail when blk_mq is enabled as the blk_mq_pci_map_queues() expects affinity masks on each vector. Fixes: dfef358b ("PCI/MSI: Don't apply affinity if there aren't enough vectors left") Signed-off-by: NMichael Hernandez <michael.hernandez@cavium.com> Signed-off-by: NHimanshu Madhani <himanshu.madhani@cavium.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: stable@vger.kernel.org # v4.10+
-
- 20 4月, 2017 1 次提交
-
-
由 Keith Busch 提交于
The vectors_per_node is calculated from the remaining available vectors. The current vector starts after pre_vectors, so we need to subtract that from the current to properly account for the number of remaining vectors to assign. Fixes: 3412386b ("irq/affinity: Fix extra vecs calculation") Reported-by: NAndrei Vagin <avagin@virtuozzo.com> Signed-off-by: NKeith Busch <keith.busch@intel.com> Link: http://lkml.kernel.org/r/1492645870-13019-1-git-send-email-keith.busch@intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 14 4月, 2017 1 次提交
-
-
由 Keith Busch 提交于
This fixes a math error calculating the extra_vecs. The error assumed only 1 cpu per vector, but the value needs to account for the actual number of cpus per vector in order to get the correct remainder for extra CPU assignment. Fixes: 7bf8222b ("irq/affinity: Fix CPU spread for unbalanced nodes") Reported-by: NXiaolong Ye <xiaolong.ye@intel.com> Signed-off-by: NKeith Busch <keith.busch@intel.com> Link: http://lkml.kernel.org/r/1492104492-19943-1-git-send-email-keith.busch@intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 04 4月, 2017 1 次提交
-
-
由 Keith Busch 提交于
The irq_create_affinity_masks routine is responsible for assigning a number of interrupt vectors to CPUs. The optimal assignemnet will spread requested vectors to all CPUs, with the fewest CPUs sharing a vector. The algorithm may fail to assign some vectors to any CPUs if a node's CPU count is lower than the average number of vectors per node. These vectors are unusable and create an un-optimal spread. Recalculate the number of vectors to assign at each node iteration by using the remaining number of vectors and nodes to be assigned, not exceeding the number of CPUs in that node. This will guarantee that every CPU is assigned at least one vector. Signed-off-by: NKeith Busch <keith.busch@intel.com> Reviewed-by: NSagi Grimberg <sagi@grimberg.me> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: linux-nvme@lists.infradead.org Link: http://lkml.kernel.org/r/1491247553-7603-1-git-send-email-keith.busch@intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 15 12月, 2016 1 次提交
-
-
由 Guilherme G. Piccoli 提交于
Commit 34c3d981 ("genirq/affinity: Provide smarter irq spreading infrastructure") introduced a better IRQ spreading mechanism, taking account of the available NUMA nodes in the machine. Problem is that the algorithm of retrieving the nodemask iterates "linearly" based on the number of online nodes - some architectures present non-linear node distribution among the nodemask, like PowerPC. If this is the case, the algorithm lead to a wrong node count number and therefore to a bad/incomplete IRQ affinity distribution. For example, this problem were found in a machine with 128 CPUs and two nodes, namely nodes 0 and 8 (instead of 0 and 1, if it was linearly distributed). This led to a wrong affinity distribution which then led to a bad mq allocation for nvme driver. Finally, we take the opportunity to fix a comment regarding the affinity distribution when we have _more_ nodes than vectors. Fixes: 34c3d981 ("genirq/affinity: Provide smarter irq spreading infrastructure") Reported-by: NGabriel Krisman Bertazi <gabriel@krisman.be> Signed-off-by: NGuilherme G. Piccoli <gpiccoli@linux.vnet.ibm.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NGabriel Krisman Bertazi <gabriel@krisman.be> Reviewed-by: NGavin Shan <gwshan@linux.vnet.ibm.com> Cc: linux-pci@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: hch@lst.de Link: http://lkml.kernel.org/r/1481738472-2671-1-git-send-email-gpiccoli@linux.vnet.ibm.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 17 11月, 2016 2 次提交
-
-
由 Thomas Gleixner 提交于
The reserved vectors at the beginning and the end of the vector space get cpu_possible_mask assigned as their affinity mask. All other non-auto affine interrupts get the default irq affinity mask assigned. Using cpu_possible_mask breaks that rule. Treat them like any other interrupt and use irq_default_affinity as target mask. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> -
由 Christoph Hellwig 提交于
The recent addition of reserved vectors at the beginning or the end of the vector space did not take the reserved vectors at the beginning into account for the various loop exit conditions. As a consequence the last vectors of the spread area are not included into the spread algorithm and are treated like the reserved vectors at the end of the vector space and get the default affinity mask assigned. Sum up the affinity vectors and the reserved vectors at the beginning and use the sum as exit condition. [ tglx: Fixed all conditions instead of only one and massaged changelog ] Signed-off-by: NChristoph Hellwig <hch@lst.de> Link: http://lkml.kernel.org/r/1479201178-29604-2-git-send-email-hch@lst.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 09 11月, 2016 2 次提交
-
-
由 Christoph Hellwig 提交于
Only calculate the affinity for the main I/O vectors, and skip the pre or post vectors specified by struct irq_affinity. Also remove the irq_affinity cpumask argument that has never been used. If we ever need it in the future we can pass it through struct irq_affinity. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NHannes Reinecke <hare@suse.com> Acked-by: NBjorn Helgaas <bhelgaas@google.com> Acked-by: NJens Axboe <axboe@kernel.dk> Cc: linux-block@vger.kernel.org Cc: linux-pci@vger.kernel.org Link: http://lkml.kernel.org/r/1478654107-7384-4-git-send-email-hch@lst.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Christoph Hellwig 提交于
Only calculate the affinity for the main I/O vectors, and skip the pre or post vectors specified by struct irq_affinity. Also remove the irq_affinity cpumask argument that has never been used. If we ever need it in the future we can pass it through struct irq_affinity. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NHannes Reinecke <hare@suse.com> Acked-by: NJens Axboe <axboe@kernel.dk> Cc: linux-block@vger.kernel.org Cc: linux-pci@vger.kernel.org Link: http://lkml.kernel.org/r/1478654107-7384-3-git-send-email-hch@lst.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 15 9月, 2016 2 次提交
-
-
由 Thomas Gleixner 提交于
No more users. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: axboe@fb.com Cc: keith.busch@intel.com Cc: agordeev@redhat.com Cc: linux-block@vger.kernel.org Link: http://lkml.kernel.org/r/1473862739-15032-5-git-send-email-hch@lst.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Thomas Gleixner 提交于
The current irq spreading infrastructure is just looking at a cpumask and tries to spread the interrupts over the mask. Thats suboptimal as it does not take numa nodes into account. Change the logic so the interrupts are spread across numa nodes and inside the nodes. If there are more cpus than vectors per node, then we set the affinity to several cpus. If HT siblings are available we take that into account and try to set all siblings to a single vector. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: axboe@fb.com Cc: keith.busch@intel.com Cc: agordeev@redhat.com Cc: linux-block@vger.kernel.org Link: http://lkml.kernel.org/r/1473862739-15032-3-git-send-email-hch@lst.de
-
- 22 8月, 2016 1 次提交
-
-
由 Christoph Hellwig 提交于
Without locking out CPU mask operations we might end up with an inconsistent view of the cpumask in the function. Fixes: 5e385a6e: "genirq: Add a helper to spread an affinity mask for MSI/MSI-X vectors" Signed-off-by: NChristoph Hellwig <hch@lst.de> Link: http://lkml.kernel.org/r/1470924405-25728-1-git-send-email-hch@lst.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 04 7月, 2016 1 次提交
-
-
由 Christoph Hellwig 提交于
This is lifted from the blk-mq code and adopted to use the affinity mask concept just introduced in the irq handling code. It tries to keep the algorithm the same as the one current used by blk-mq, but improvements like assining vectors on a per-node basis instead of just per sibling are possible with this simple move and refactoring. Signed-off-by: NChristoph Hellwig <hch@lst.de> Cc: linux-block@vger.kernel.org Cc: linux-pci@vger.kernel.org Cc: linux-nvme@lists.infradead.org Cc: axboe@fb.com Cc: agordeev@redhat.com Link: http://lkml.kernel.org/r/1467621574-8277-7-git-send-email-hch@lst.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-