- 17 4月, 2020 1 次提交
-
-
由 Xu Yu 提交于
to #26424368 This reworks memsli "start", "end", "update" interfaces to make it more clear and symmetrical, by merging "update" action into "end", just like what psi_memstall_{enter, leave} does. Now the latency probe pattern of memsli is as follows: memcg_lat_stat_start(&start); /* kernel codes being probed */ memcg_lat_stat_end(MEM_LAT_XXX, start); This also formats the codes and fixes the warning(s) produced when CONFIG_MEMSLI is not set. Signed-off-by: NXu Yu <xuyu@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com> Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com>
-
- 16 4月, 2020 4 次提交
-
-
由 Xu Yu 提交于
to #26424368 Since memsli also records latency histogram for swapout and swapin, which are NOT in the slow memory path, the overhead of memsli could be nonnegligible in some specific scenarios. For example, in scenarios with frequent swapping out and in, memsli could introduce overhead of ~1% of total run time of the synthetic testcase. This adds procfs interface for memsli switch. The memsli feature is enabled by default, and you can now disable it by: $ echo 0 > /proc/memsli/enabled Apparently, you can check current memsli switch status by: $ cat /proc/memsli/enabled Note that disabling memsli at runtime will NOT clear the existing latency histogram. You still need to manually reset the specified latency histogram(s) by echo 0 into the corresponding cgroup control file(s). Signed-off-by: NXu Yu <xuyu@linux.alibaba.com> Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
由 Xu Yu 提交于
to #26424368 There are some duplicate codes in the original implementation of memory latency histogram, such as {x, y, z}_show, and {x, y, z}_write, where x, y, z represents various types of memory latency. This reworks common codes of memory latency histogram to make it easier to add more types of memory latency later. Signed-off-by: NXu Yu <xuyu@linux.alibaba.com> Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
由 Xu Yu 提交于
to #26424368 Probe and calculate the latency of direct compact, and then group into the latency histogram in struct mem_cgroup. Note that the latency in each memcg is aggregated from all child memcgs. Usage: $ cat memory.direct_compact_latency 0-1ms: 1176 1-5ms: 259 5-10ms: 17 10-100ms: 10 100-500ms: 0 500-1000ms: 0 >=1000ms: 0 total(ms): 921 Each line is the count of direct compact within the appropriate latency range. To clear the latency histogram: $ echo 0 > memory.direct_compact_latency $ cat memory.direct_compact_latency 0-1ms: 0 1-5ms: 0 5-10ms: 0 10-100ms: 0 100-500ms: 0 500-1000ms: 0 >=1000ms: 0 total(ms): 0 Signed-off-by: NXu Yu <xuyu@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
由 Xu Yu 提交于
to #26424368 Probe and calculate the latency of global direct reclaim and memcg direct reclaim, respectively, and then group into the latency histogram in struct mem_cgroup. Besides, the total latency is accumulated each time the histogram is updated. Note that the latency in each memcg is aggregated from all child memcgs. Usage: $ cat memory.direct_reclaim_global_latency 0-1ms: 228 1-5ms: 283 5-10ms: 0 10-100ms: 0 100-500ms: 0 500-1000ms: 0 >=1000ms: 0 total(ms): 539 Each line is the count of global direct reclaim within the appropriate latency range. To clear the latency histogram: $ echo 0 > memory.direct_reclaim_global_latency $ cat memory.direct_reclaim_global_latency 0-1ms: 0 1-5ms: 0 5-10ms: 0 10-100ms: 0 100-500ms: 0 500-1000ms: 0 >=1000ms: 0 total(ms): 0 The usage of memory.direct_reclaim_memcg_latency is the same as memory.direct_reclaim_global_latency. Signed-off-by: NXu Yu <xuyu@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
- 13 4月, 2020 4 次提交
-
-
由 Alexander Duyck 提交于
to #26589565 In order to pave the way for free page reporting in virtualized environments we will need a way to get pages out of the free lists and identify those pages after they have been returned. To accomplish this, this patch adds the concept of a Reported Buddy, which is essentially meant to just be the Uptodate flag used in conjunction with the Buddy page type. To prevent the reported pages from leaking outside of the buddy lists I added a check to clear the PageReported bit in the del_page_from_free_list function. As a result any reported page that is split, merged, or allocated will have the flag cleared prior to the PageBuddy value being cleared. The process for reporting pages is fairly simple. Once we free a page that meets the minimum order for page reporting we will schedule a worker thread to start 2s or more in the future. That worker thread will begin working from the lowest supported page reporting order up to MAX_ORDER - 1 pulling unreported pages from the free list and storing them in the scatterlist. When processing each individual free list it is necessary for the worker thread to release the zone lock when it needs to stop and report the full scatterlist of pages. To reduce the work of the next iteration the worker thread will rotate the free list so that the first unreported page in the free list becomes the first entry in the list. It will then call a reporting function providing information on how many entries are in the scatterlist. Once the function completes it will return the pages to the free area from which they were allocated and start over pulling more pages from the free areas until there are no longer enough pages to report on to keep the worker busy, or we have processed as many pages as were contained in the free area when we started processing the list. The worker thread will work in a round-robin fashion making its way though each zone requesting reporting, and through each reportable free list within that zone. Once all free areas within the zone have been processed it will check to see if there have been any requests for reporting while it was processing. If so it will reschedule the worker thread to start up again in roughly 2s and exit. Link: http://lkml.kernel.org/r/20200211224635.29318.19750.stgit@localhost.localdomainSigned-off-by: NAlexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com>
-
由 Alexander Duyck 提交于
to #26589565 commit 624f58d8f4639676d2fa1238425ab0148d501c4a upstream linux-next. There are cases where we would benefit from avoiding having to go through the allocation and free cycle to return an isolated page. Examples for this might include page poisoning in which we isolate a page and then put it back in the free list without ever having actually allocated it. This will enable us to also avoid notifiers for the future free page reporting which will need to avoid retriggering page reporting when returning pages that have been reported on. Link: http://lkml.kernel.org/r/20200211224624.29318.89287.stgit@localhost.localdomainSigned-off-by: NAlexander Duyck <alexander.h.duyck@linux.intel.com> Acked-by: NDavid Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com>
-
由 Alexander Duyck 提交于
to #26589565 In order to enable the use of the zone from the list manipulator functions I will need access to the zone pointer. As it turns out most of the accessors were always just being directly passed &zone->free_area[order] anyway so it would make sense to just fold that into the function itself and pass the zone and order as arguments instead of the free area. In order to be able to reference the zone we need to move the declaration of the functions down so that we have the zone defined before we define the list manipulation functions. Since the functions are only used in the file mm/page_alloc.c we can just move them there to reduce noise in the header. Link: http://lkml.kernel.org/r/20200211224613.29318.43080.stgit@localhost.localdomainSigned-off-by: NAlexander Duyck <alexander.h.duyck@linux.intel.com> Acked-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NDan Williams <dan.j.williams@intel.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Reviewed-by: NPankaj Gupta <pagupta@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com>
-
由 Dan Williams 提交于
to #26589565 commit b03641af680959df57c275a80ff0dc116627c7ae upstream In preparation for runtime randomization of the zone lists, take all (well, most of) the list_*() functions in the buddy allocator and put them in helper functions. Provide a common control point for injecting additional behavior when freeing pages. [dan.j.williams@intel.com: fix buddy list helpers] Link: http://lkml.kernel.org/r/155033679702.1773410.13041474192173212653.stgit@dwillia2-desk3.amr.corp.intel.com [vbabka@suse.cz: remove del_page_from_free_area() migratetype parameter] Link: http://lkml.kernel.org/r/4672701b-6775-6efd-0797-b6242591419e@suse.cz Link: http://lkml.kernel.org/r/154899812264.3165233.5219320056406926223.stgit@dwillia2-desk3.amr.corp.intel.comSigned-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Tested-by: NTetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: Keith Busch <keith.busch@intel.com> Cc: Robert Elliott <elliott@hpe.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com>
-
- 09 4月, 2020 1 次提交
-
-
由 Juergen Gross 提交于
fix #26417771 commit b9705d8778e7adc97de38f405f835a2426e14d84 upstream. Commit 0e56acae4b4d ("mm: initialize MAX_ORDER_NR_PAGES at a time instead of doing larger sections") is causing a regression on some systems when the kernel is booted as Xen dom0. The system will just hang in early boot. Reason is an endless loop in get_page_from_freelist() in case the first zone looked at has no free memory. deferred_grow_zone() is always returning true due to the following code snipplet: /* If the zone is empty somebody else may have cleared out the zone */ if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_deferred_pfn)) { pgdat->first_deferred_pfn = ULONG_MAX; pgdat_resize_unlock(pgdat, &flags); return true; } This in turn results in the loop as get_page_from_freelist() is assuming forward progress can be made by doing some more struct page initialization. Link: http://lkml.kernel.org/r/20190620160821.4210-1-jgross@suse.com Fixes: 0e56acae4b4d ("mm: initialize MAX_ORDER_NR_PAGES at a time instead of doing larger sections") Signed-off-by: NJuergen Gross <jgross@suse.com> Suggested-by: NAlexander Duyck <alexander.h.duyck@linux.intel.com> Acked-by: NAlexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
- 18 3月, 2020 5 次提交
-
-
由 Shile Zhang 提交于
commit 07447453db3aebb6a0917592f411a7122d12a8b9 upstream linux-next. When 'CONFIG_DEFERRED_STRUCT_PAGE_INIT' is set, 'pgdatinit' kthread will initialise the deferred pages with local interrupts disabled. It is introduced by commit 3a2d7fa8 ("mm: disable interrupts while initializing deferred pages"). On machine with NCPUS <= 2, the 'pgdatinit' kthread could be bound to the boot CPU, which could caused the tick timer long time stall, system jiffies not be updated in time. The dmesg shown that: [ 0.197975] node 0 initialised, 32170688 pages in 1ms Obviously, 1ms is unreasonable. Now, fix it by restore in the pending interrupts for every 32*1204 pages (128MB) initialized, give the chance to update the systemd jiffies. The reasonable demsg shown likes: [ 1.069306] node 0 initialised, 32203456 pages in 894ms Link: http://lkml.kernel.org/r/20200311123848.118638-1-shile.zhang@linux.alibaba.com Fixes: 3a2d7fa8 ("mm: disable interrupts while initializing deferred pages") Signed-off-by: NKirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Co-developed-by: NKirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: NPavel Tatashin <pasha.tatashin@soleen.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Xunlei Pang 提交于
In co-location environment, there are more or less some memory overcommitment, then BATCH tasks may break the shared global min watermark resulting in all types of applications falling into the direct reclaim slow path hurting the RT of LS tasks. (NOTE: BATCH tasks tolerate big latency spike even in seconds as long as doesn't hurt its overal throughput. While LS tasks are very Latency-Sensitive, they may time out or fail in case of sudden latency spike lasts like hundreds of ms typically.) Actually BATCH tasks are not sensitive to memory latency, they can be assigned a strict min watermark which is different from that of LS tasks(which can be aissgned a lenient min watermark accordingly), thus isolating each other in case of global memory allocation. This is kind of like the idea behind ALLOC_HARDER for rt_task(), see gfp_to_alloc_flags(). memory.wmark_min_adj stands for memcg global WMARK_MIN adjustment, it is used to realize separate min watermarks above-mentioned for memcgs, its valid value is within [-25, 50], specifically: negative value means to be relative to [0, WMARK_MIN], positive value means to be relative to [WMARK_MIN, WMARK_LOW]. For examples, -25 means "WMARK_MIN + (WMARK_MIN - 0) * (-25%)" 50 means "WMARK_MIN + (WMARK_LOW - WMARK_MIN) * 50%" Note that the minimum -25 is what ALLOC_HARDER uses which is safe for us to adopt, and the maximum 50 is one experienced value. Negative memory.wmark_min_adj means high QoS requirements, it can allocate below the global WMARK_MIN, which is kind of like the idea behind ALLOC_HARDER, see gfp_to_alloc_flags(). Positive memory.wmark_min_adj means low QoS requirements, thus when allocation broke memcg min watermark, it should trigger direct reclaim traditionally, and we trigger throttle instead to further prevent them from disturbing others. With this interface, we can assign positive values for BATCH memcgs and negative values for LS memcgs. memory.wmark_min_adj default value is 0, and inherit from its parent, Note that the final effective wmark_min_adj will consider all the hierarchical values, its value is the maximal(most conservative) wmark_min_adj along the hierarchy but excluding intermediate default values(zero). Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NGavin Shan <shan.gavin@linux.alibaba.com> Signed-off-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
由 Alexander Duyck 提交于
commit 0e56acae4b4dd4a9fbe897854ab83a109e2a9e11 upstream. Add yet another iterator, for_each_free_mem_range_in_zone_from, and then use it to support initializing and freeing pages in groups no larger than MAX_ORDER_NR_PAGES. By doing this we can greatly improve the cache locality of the pages while we do several loops over them in the init and freeing process. We are able to tighten the loops further as a result of the "from" iterator as we can perform the initial checks for first_init_pfn in our first call to the iterator, and continue without the need for those checks via the "from" iterator. I have added this functionality in the function called deferred_init_mem_pfn_range_in_zone that primes the iterator and causes us to exit if we encounter any failure. On my x86_64 test system with 384GB of memory per node I saw a reduction in initialization time from 1.85s to 1.38s as a result of this patch. Link: http://lkml.kernel.org/r/20190405221231.12227.85836.stgit@localhost.localdomainSigned-off-by: NAlexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: NPavel Tatashin <pasha.tatashin@soleen.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: <yi.z.zhang@linux.intel.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David S. Miller <davem@davemloft.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Alexander Duyck 提交于
commit 837566e7e08e3f89444166444836a8a49b9f9322 upstream. Introduce a new iterator for_each_free_mem_pfn_range_in_zone. This iterator will take care of making sure a given memory range provided is in fact contained within a zone. It takes are of all the bounds checking we were doing in deferred_grow_zone, and deferred_init_memmap. In addition it should help to speed up the search a bit by iterating until the end of a range is greater than the start of the zone pfn range, and will exit completely if the start is beyond the end of the zone. Link: http://lkml.kernel.org/r/20190405221225.12227.22573.stgit@localhost.localdomainSigned-off-by: NAlexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: NPavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: NMike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <yi.z.zhang@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Alexander Duyck 提交于
commit 56ec43d8b02719402c9fcf984feb52ec2300f8a5 upstream. As best as I can tell the meminit_pfn_in_nid call is completely redundant. The deferred memory initialization is already making use of for_each_free_mem_range which in turn will call into __next_mem_range which will only return a memory range if it matches the node ID provided assuming it is not NUMA_NO_NODE. I am operating on the assumption that there are no zones or pgdata_t structures that have a NUMA node of NUMA_NO_NODE associated with them. If that is the case then __next_mem_range will never return a memory range that doesn't match the zone's node ID and as such the check is redundant. So one piece I would like to verify on this is if this works for ia64. Technically it was using a different approach to get the node ID, but it seems to have the node ID also encoded into the memblock. So I am assuming this is okay, but would like to get confirmation on that. On my x86_64 test system with 384GB of memory per node I saw a reduction in initialization time from 2.80s to 1.85s as a result of this patch. Link: http://lkml.kernel.org/r/20190405221219.12227.93957.stgit@localhost.localdomainSigned-off-by: NAlexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: NPavel Tatashin <pavel.tatashin@microsoft.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <yi.z.zhang@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
- 15 1月, 2020 3 次提交
-
-
由 Yang Shi 提交于
commit 7ae88534cdd96235cd775c03b32a75009355740b upstream A later patch makes THP deferred split shrinker memcg aware, but it needs page->mem_cgroup information in THP destructor, which is called after mem_cgroup_uncharge() now. So move mem_cgroup_uncharge() from __page_cache_release() to compound page destructor, which is called by both THP and other compound pages except HugeTLB. And call it in __put_single_page() for single order page. Link: http://lkml.kernel.org/r/1565144277-36240-3-git-send-email-yang.shi@linux.alibaba.comSigned-off-by: NYang Shi <yang.shi@linux.alibaba.com> Suggested-by: N"Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: NKirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
由 Yang Shi 提交于
commit 364c1eebe453f06f0c1e837eb155a5725c9cd272 upstream Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.comSigned-off-by: NYang Shi <yang.shi@linux.alibaba.com> Suggested-by: N"Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: NKirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
由 Gavin Shan 提交于
This enables scanning pages in fixed interval to determine their access frequency (hot/cold). The result is exported to user land on basis of memory cgroup by "memory.idle_page_stats". The design is highlighted as below: * A kernel thread is spawn when this feature is enabled by writing non-zero value to "/sys/kernel/mm/kidled/scan_period_in_seconds". The thread sequentially scans the nodes and their pages that have been chained up in LRU list. * For each page, its corresponding age information is stored in the page flags or array in node. The age represents the scanning intervals in which the page isn't accessed. Also, the page flag (PG_idle) is leveraged. The page's age is increased by one if the idle flag isn't cleared in two consective scans. Otherwise, the page's age is cleared out. Also, the page's age information is cleared when it's free'd so that the stale age information won't be fetched when it's allocated. * Initially, the flag is set, while the access bit in its PTE is cleared out by the thread. In next scanning period, its PTE access bit is synchronized with the page flag: clear the flag if access bit is set. The flag is kept otherwise. For unmapped pages, the flag is cleared when it's accessed. * Eventually, the page's aging information is updated to the unstable bucket of its corresponding memory cgroup, taking as statistics. The unstable bucket (statistics) is copied to stable bucket when all pages in all nodes are scanned for once. The stable bucket (statistics) is exported to user land through "memory.idle_page_stats". TESTING ======= * cgroup1, unmapped pagecache # dd if=/dev/zero of=/ext4/test.data oflag=direct bs=1M count=128 # # echo 1 > /sys/kernel/mm/kidled/use_hierarchy # echo 15 > /sys/kernel/mm/kidled/scan_period_in_seconds # mkdir -p /cgroup/memory # mount -tcgroup -o memory /cgroup/memory # echo 1 > /cgroup/memory/memory.use_hierarchy # mkdir -p /cgroup/memory/test # echo 1 > /cgroup/memory/test/memory.use_hierarchy # # echo $$ > /cgroup/memory/test/cgroup.procs # dd if=/ext4/test.data of=/dev/null bs=1M count=128 # < wait a few minutes > # cat /cgroup/memory/test/memory.idle_page_stats | grep cfei # cat /cgroup/memory/test/memory.idle_page_stats | grep cfei cfei 0 0 0 134217728 0 0 0 0 # cat /cgroup/memory/memory.idle_page_stats | grep cfei cfei 0 0 0 134217728 0 0 0 0 * cgroup1, mapped pagecache # < create same file and memory cgroups as above > # # echo $$ > /cgroup/memory/test/cgroup.procs # < run program to mmap the whole created file and access the area > # < wait a few minutes > # cat /cgroup/memory/test/memory.idle_page_stats | grep cfei cfei 0 134217728 0 0 0 0 0 0 # cat /cgroup/memory/memory.idle_page_stats | grep cfei cfei 0 134217728 0 0 0 0 0 0 * cgroup1, mapped and locked pagecache # < create same file and memory cgroups as above > # # echo $$ > /cgroup/memory/test/cgroup.procs # < run program to mmap the whole created file and mlock the area > # < wait a few minutes > # cat /cgroup/memory/test/memory.idle_page_stats | grep cfui cfui 0 134217728 0 0 0 0 0 0 # cat /cgroup/memory/memory.idle_page_stats | grep cfui cfui 0 134217728 0 0 0 0 0 0 * cgroup1, anonymous and locked area # < create memory cgroups as above > # # echo $$ > /cgroup/memory/test/cgroup.procs # < run program to mmap anonymous area and mlock it > # < wait a few minutes > # cat /cgroup/memory/test/memory.idle_page_stats | grep csui csui 0 0 134217728 0 0 0 0 0 # cat /cgroup/memory/memory.idle_page_stats | grep csui csui 0 0 134217728 0 0 0 0 0 * Rerun above test cases in cgroup2 and the results are no exceptional. However, the cgroups are populated in different way as below: # mkdir -p /cgroup # mount -tcgroup2 none /cgroup # echo "+memory" > /cgroup/cgroup.subtree_control # mkdir -p /cgroup/test Signed-off-by: NGavin Shan <shan.gavin@linux.alibaba.com> Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
- 27 12月, 2019 1 次提交
-
-
由 Johannes Weiner 提交于
commit eb414681d5a07d28d2ff90dc05f69ec6b232ebd2 upstream. When systems are overcommitted and resources become contended, it's hard to tell exactly the impact this has on workload productivity, or how close the system is to lockups and OOM kills. In particular, when machines work multiple jobs concurrently, the impact of overcommit in terms of latency and throughput on the individual job can be enormous. In order to maximize hardware utilization without sacrificing individual job health or risk complete machine lockups, this patch implements a way to quantify resource pressure in the system. A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that expose the percentage of time the system is stalled on CPU, memory, or IO, respectively. Stall states are aggregate versions of the per-task delay accounting delays: cpu: some tasks are runnable but not executing on a CPU memory: tasks are reclaiming, or waiting for swapin or thrashing cache io: tasks are waiting for io completions These percentages of walltime can be thought of as pressure percentages, and they give a general sense of system health and productivity loss incurred by resource overcommit. They can also indicate when the system is approaching lockup scenarios and OOMs. To do this, psi keeps track of the task states associated with each CPU and samples the time they spend in stall states. Every 2 seconds, the samples are averaged across CPUs - weighted by the CPUs' non-idle time to eliminate artifacts from unused CPUs - and translated into percentages of walltime. A running average of those percentages is maintained over 10s, 1m, and 5m periods (similar to the loadaverage). [hannes@cmpxchg.org: doc fixlet, per Randy] Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org [hannes@cmpxchg.org: code optimization] Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org [hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter] Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org [hannes@cmpxchg.org: fix build] Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Tested-by: NDaniel Drake <drake@endlessm.com> Tested-by: NSuren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> [Joseph: fix apply conflicts in task_struct] Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
- 05 12月, 2019 2 次提交
-
-
由 Aaron Lu 提交于
[ Upstream commit 742aa7fb52c56fb3b307e704f93e67b698959cc2 ] There are multiple places of freeing a page, they all do the same things so a common function can be used to reduce code duplicate. It also avoids bug fixed in one function but left in another. Link: http://lkml.kernel.org/r/20181119134834.17765-3-aaron.lu@intel.comSigned-off-by: NAaron Lu <aaron.lu@intel.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Ilias Apalodimas <ilias.apalodimas@linaro.org> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Pankaj gupta <pagupta@redhat.com> Cc: Pawel Staszewski <pstaszewski@itcare.pl> Cc: Tariq Toukan <tariqt@mellanox.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Aaron Lu 提交于
[ Upstream commit 65895b67ad27df0f62bfaf82dd5622f95ea29196 ] page_frag_free() calls __free_pages_ok() to free the page back to Buddy. This is OK for high order page, but for order-0 pages, it misses the optimization opportunity of using Per-Cpu-Pages and can cause zone lock contention when called frequently. Pawel Staszewski recently shared his result of 'how Linux kernel handles normal traffic'[1] and from perf data, Jesper Dangaard Brouer found the lock contention comes from page allocator: mlx5e_poll_tx_cq | --16.34%--napi_consume_skb | |--12.65%--__free_pages_ok | | | --11.86%--free_one_page | | | |--10.10%--queued_spin_lock_slowpath | | | --0.65%--_raw_spin_lock | |--1.55%--page_frag_free | --1.44%--skb_release_data Jesper explained how it happened: mlx5 driver RX-page recycle mechanism is not effective in this workload and pages have to go through the page allocator. The lock contention happens during mlx5 DMA TX completion cycle. And the page allocator cannot keep up at these speeds.[2] I thought that __free_pages_ok() are mostly freeing high order pages and thought this is an lock contention for high order pages but Jesper explained in detail that __free_pages_ok() here are actually freeing order-0 pages because mlx5 is using order-0 pages to satisfy its page pool allocation request.[3] The free path as pointed out by Jesper is: skb_free_head() -> skb_free_frag() -> page_frag_free() And the pages being freed on this path are order-0 pages. Fix this by doing similar things as in __page_frag_cache_drain() - send the being freed page to PCP if it's an order-0 page, or directly to Buddy if it is a high order page. With this change, Paweł hasn't noticed lock contention yet in his workload and Jesper has noticed a 7% performance improvement using a micro benchmark and lock contention is gone. Ilias' test on a 'low' speed 1Gbit interface on an cortex-a53 shows ~11% performance boost testing with 64byte packets and __free_pages_ok() disappeared from perf top. [1]: https://www.spinics.net/lists/netdev/msg531362.html [2]: https://www.spinics.net/lists/netdev/msg531421.html [3]: https://www.spinics.net/lists/netdev/msg531556.html [akpm@linux-foundation.org: add comment] Link: http://lkml.kernel.org/r/20181120014544.GB10657@intel.comSigned-off-by: NAaron Lu <aaron.lu@intel.com> Reported-by: NPawel Staszewski <pstaszewski@itcare.pl> Analysed-by: NJesper Dangaard Brouer <brouer@redhat.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NJesper Dangaard Brouer <brouer@redhat.com> Acked-by: NIlias Apalodimas <ilias.apalodimas@linaro.org> Tested-by: NIlias Apalodimas <ilias.apalodimas@linaro.org> Acked-by: NAlexander Duyck <alexander.h.duyck@linux.intel.com> Acked-by: NTariq Toukan <tariqt@mellanox.com> Acked-by: NPankaj gupta <pagupta@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 13 11月, 2019 1 次提交
-
-
由 Mel Gorman 提交于
commit 3e8fc0075e24338b1117cdff6a79477427b8dbed upstream. Deferred memory initialisation updates zone->managed_pages during the initialisation phase but before that finishes, the per-cpu page allocator (pcpu) calculates the number of pages allocated/freed in batches as well as the maximum number of pages allowed on a per-cpu list. As zone->managed_pages is not up to date yet, the pcpu initialisation calculates inappropriately low batch and high values. This increases zone lock contention quite severely in some cases with the degree of severity depending on how many CPUs share a local zone and the size of the zone. A private report indicated that kernel build times were excessive with extremely high system CPU usage. A perf profile indicated that a large chunk of time was lost on zone->lock contention. This patch recalculates the pcpu batch and high values after deferred initialisation completes for every populated zone in the system. It was tested on a 2-socket AMD EPYC 2 machine using a kernel compilation workload -- allmodconfig and all available CPUs. mmtests configuration: config-workload-kernbench-max Configuration was modified to build on a fresh XFS partition. kernbench 5.4.0-rc3 5.4.0-rc3 vanilla resetpcpu-v2 Amean user-256 13249.50 ( 0.00%) 16401.31 * -23.79%* Amean syst-256 14760.30 ( 0.00%) 4448.39 * 69.86%* Amean elsp-256 162.42 ( 0.00%) 119.13 * 26.65%* Stddev user-256 42.97 ( 0.00%) 19.15 ( 55.43%) Stddev syst-256 336.87 ( 0.00%) 6.71 ( 98.01%) Stddev elsp-256 2.46 ( 0.00%) 0.39 ( 84.03%) 5.4.0-rc3 5.4.0-rc3 vanilla resetpcpu-v2 Duration User 39766.24 49221.79 Duration System 44298.10 13361.67 Duration Elapsed 519.11 388.87 The patch reduces system CPU usage by 69.86% and total build time by 26.65%. The variance of system CPU usage is also much reduced. Before, this was the breakdown of batch and high values over all zones was: 256 batch: 1 256 batch: 63 512 batch: 7 256 high: 0 256 high: 378 512 high: 42 512 pcpu pagesets had a batch limit of 7 and a high limit of 42. After the patch: 256 batch: 1 768 batch: 63 256 high: 0 768 high: 378 [mgorman@techsingularity.net: fix merge/linkage snafu] Link: http://lkml.kernel.org/r/20191023084705.GD3016@techsingularity.netLink: http://lkml.kernel.org/r/20191021094808.28824-2-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NDavid Hildenbrand <david@redhat.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Qian Cai <cai@lca.pw> Cc: <stable@vger.kernel.org> [4.1+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 15 6月, 2019 1 次提交
-
-
由 Linxu Fang 提交于
[ Upstream commit 299c83dce9ea3a79bb4b5511d2cb996b6b8e5111 ] 342332e6 ("mm/page_alloc.c: introduce kernelcore=mirror option") and later patches rewrote the calculation of node spanned pages. e506b996 ("mem-hotplug: fix node spanned pages when we have a movable node"), but the current code still has problems, When we have a node with only zone_movable and the node id is not zero, the size of node spanned pages is double added. That's because we have an empty normal zone, and zone_start_pfn or zone_end_pfn is not between arch_zone_lowest_possible_pfn and arch_zone_highest_possible_pfn, so we need to use clamp to constrain the range just like the commit <96e907d1> (bootmem: Reimplement __absent_pages_in_range() using for_each_mem_pfn_range()). e.g. Zone ranges: DMA [mem 0x0000000000001000-0x0000000000ffffff] DMA32 [mem 0x0000000001000000-0x00000000ffffffff] Normal [mem 0x0000000100000000-0x000000023fffffff] Movable zone start for each node Node 0: 0x0000000100000000 Node 1: 0x0000000140000000 Early memory node ranges node 0: [mem 0x0000000000001000-0x000000000009efff] node 0: [mem 0x0000000000100000-0x00000000bffdffff] node 0: [mem 0x0000000100000000-0x000000013fffffff] node 1: [mem 0x0000000140000000-0x000000023fffffff] node 0 DMA spanned:0xfff present:0xf9e absent:0x61 node 0 DMA32 spanned:0xff000 present:0xbefe0 absent:0x40020 node 0 Normal spanned:0 present:0 absent:0 node 0 Movable spanned:0x40000 present:0x40000 absent:0 On node 0 totalpages(node_present_pages): 1048446 node_spanned_pages:1310719 node 1 DMA spanned:0 present:0 absent:0 node 1 DMA32 spanned:0 present:0 absent:0 node 1 Normal spanned:0x100000 present:0x100000 absent:0 node 1 Movable spanned:0x100000 present:0x100000 absent:0 On node 1 totalpages(node_present_pages): 2097152 node_spanned_pages:2097152 Memory: 6967796K/12582392K available (16388K kernel code, 3686K rwdata, 4468K rodata, 2160K init, 10444K bss, 5614596K reserved, 0K cma-reserved) It shows that the current memory of node 1 is double added. After this patch, the problem is fixed. node 0 DMA spanned:0xfff present:0xf9e absent:0x61 node 0 DMA32 spanned:0xff000 present:0xbefe0 absent:0x40020 node 0 Normal spanned:0 present:0 absent:0 node 0 Movable spanned:0x40000 present:0x40000 absent:0 On node 0 totalpages(node_present_pages): 1048446 node_spanned_pages:1310719 node 1 DMA spanned:0 present:0 absent:0 node 1 DMA32 spanned:0 present:0 absent:0 node 1 Normal spanned:0 present:0 absent:0 node 1 Movable spanned:0x100000 present:0x100000 absent:0 On node 1 totalpages(node_present_pages): 1048576 node_spanned_pages:1048576 memory: 6967796K/8388088K available (16388K kernel code, 3686K rwdata, 4468K rodata, 2160K init, 10444K bss, 1420292K reserved, 0K cma-reserved) Link: http://lkml.kernel.org/r/1554178276-10372-1-git-send-email-fanglinxu@huawei.comSigned-off-by: NLinxu Fang <fanglinxu@huawei.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 06 4月, 2019 1 次提交
-
-
由 Qian Cai 提交于
[ Upstream commit 4117992df66a26fa33908b4969e04801534baab1 ] KASAN does not play well with the page poisoning (CONFIG_PAGE_POISONING). It triggers false positives in the allocation path: BUG: KASAN: use-after-free in memchr_inv+0x2ea/0x330 Read of size 8 at addr ffff88881f800000 by task swapper/0 CPU: 0 PID: 0 Comm: swapper Not tainted 5.0.0-rc1+ #54 Call Trace: dump_stack+0xe0/0x19a print_address_description.cold.2+0x9/0x28b kasan_report.cold.3+0x7a/0xb5 __asan_report_load8_noabort+0x19/0x20 memchr_inv+0x2ea/0x330 kernel_poison_pages+0x103/0x3d5 get_page_from_freelist+0x15e7/0x4d90 because KASAN has not yet unpoisoned the shadow page for allocation before it checks memchr_inv() but only found a stale poison pattern. Also, false positives in free path, BUG: KASAN: slab-out-of-bounds in kernel_poison_pages+0x29e/0x3d5 Write of size 4096 at addr ffff8888112cc000 by task swapper/0/1 CPU: 5 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc1+ #55 Call Trace: dump_stack+0xe0/0x19a print_address_description.cold.2+0x9/0x28b kasan_report.cold.3+0x7a/0xb5 check_memory_region+0x22d/0x250 memset+0x28/0x40 kernel_poison_pages+0x29e/0x3d5 __free_pages_ok+0x75f/0x13e0 due to KASAN adds poisoned redzones around slab objects, but the page poisoning needs to poison the whole page. Link: http://lkml.kernel.org/r/20190114233405.67843-1-cai@lca.pwSigned-off-by: NQian Cai <cai@lca.pw> Acked-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 24 3月, 2019 1 次提交
-
-
由 Jann Horn 提交于
[ Upstream commit 2c2ade81741c66082f8211f0b96cf509cc4c0218 ] The basic idea behind ->pagecnt_bias is: If we pre-allocate the maximum number of references that we might need to create in the fastpath later, the bump-allocation fastpath only has to modify the non-atomic bias value that tracks the number of extra references we hold instead of the atomic refcount. The maximum number of allocations we can serve (under the assumption that no allocation is made with size 0) is nc->size, so that's the bias used. However, even when all memory in the allocation has been given away, a reference to the page is still held; and in the `offset < 0` slowpath, the page may be reused if everyone else has dropped their references. This means that the necessary number of references is actually `nc->size+1`. Luckily, from a quick grep, it looks like the only path that can call page_frag_alloc(fragsz=1) is TAP with the IFF_NAPI_FRAGS flag, which requires CAP_NET_ADMIN in the init namespace and is only intended to be used for kernel testing and fuzzing. To test for this issue, put a `WARN_ON(page_ref_count(page) == 0)` in the `offset < 0` path, below the virt_to_page() call, and then repeatedly call writev() on a TAP device with IFF_TAP|IFF_NO_PI|IFF_NAPI_FRAGS|IFF_NAPI, with a vector consisting of 15 elements containing 1 byte each. Signed-off-by: NJann Horn <jannh@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 13 2月, 2019 1 次提交
-
-
由 Waiman Long 提交于
[ Upstream commit 3c0c12cc8f00ca5f81acb010023b8eb13e9a7004 ] When CONFIG_KASAN is enabled on large memory SMP systems, the deferrred pages initialization can take a long time. Below were the reported init times on a 8-socket 96-core 4TB IvyBridge system. 1) Non-debug kernel without CONFIG_KASAN [ 8.764222] node 1 initialised, 132086516 pages in 7027ms 2) Debug kernel with CONFIG_KASAN [ 146.288115] node 1 initialised, 132075466 pages in 143052ms So the page init time in a debug kernel was 20X of the non-debug kernel. The long init time can be problematic as the page initialization is done with interrupt disabled. In this particular case, it caused the appearance of following warning messages as well as NMI backtraces of all the cores that were doing the initialization. [ 68.240049] rcu: INFO: rcu_sched detected stalls on CPUs/tasks: [ 68.241000] rcu: 25-...0: (100 ticks this GP) idle=b72/1/0x4000000000000000 softirq=915/915 fqs=16252 [ 68.241000] rcu: 44-...0: (95 ticks this GP) idle=49a/1/0x4000000000000000 softirq=788/788 fqs=16253 [ 68.241000] rcu: 54-...0: (104 ticks this GP) idle=03a/1/0x4000000000000000 softirq=721/825 fqs=16253 [ 68.241000] rcu: 60-...0: (103 ticks this GP) idle=cbe/1/0x4000000000000000 softirq=637/740 fqs=16253 [ 68.241000] rcu: 72-...0: (105 ticks this GP) idle=786/1/0x4000000000000000 softirq=536/641 fqs=16253 [ 68.241000] rcu: 84-...0: (99 ticks this GP) idle=292/1/0x4000000000000000 softirq=537/537 fqs=16253 [ 68.241000] rcu: 111-...0: (104 ticks this GP) idle=bde/1/0x4000000000000000 softirq=474/476 fqs=16253 [ 68.241000] rcu: (detected by 13, t=65018 jiffies, g=249, q=2) The long init time was mainly caused by the call to kasan_free_pages() to poison the newly initialized pages. On a 4TB system, we are talking about almost 500GB of memory probably on the same node. In reality, we may not need to poison the newly initialized pages before they are ever allocated. So KASAN poisoning of freed pages before the completion of deferred memory initialization is now disabled. Those pages will be properly poisoned when they are allocated or freed after deferred pages initialization is done. With this change, the new page initialization time became: [ 21.948010] node 1 initialised, 132075466 pages in 18702ms This was still about double the non-debug kernel time, but was much better than before. Link: http://lkml.kernel.org/r/1544459388-8736-1-git-send-email-longman@redhat.comSigned-off-by: NWaiman Long <longman@redhat.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 31 1月, 2019 1 次提交
-
-
由 Michal Hocko 提交于
commit 4aa9fc2a435abe95a1e8d7f8c7b3d6356514b37a upstream. This reverts commit 2830bf6f05fb3e05bc4743274b806c821807a684. The underlying assumption that one sparse section belongs into a single numa node doesn't hold really. Robert Shteynfeld has reported a boot failure. The boot log was not captured but his memory layout is as follows: Early memory node ranges node 1: [mem 0x0000000000001000-0x0000000000090fff] node 1: [mem 0x0000000000100000-0x00000000dbdf8fff] node 1: [mem 0x0000000100000000-0x0000001423ffffff] node 0: [mem 0x0000001424000000-0x0000002023ffffff] This means that node0 starts in the middle of a memory section which is also in node1. memmap_init_zone tries to initialize padding of a section even when it is outside of the given pfn range because there are code paths (e.g. memory hotplug) which assume that the full worth of memory section is always initialized. In this particular case, though, such a range is already intialized and most likely already managed by the page allocator. Scribbling over those pages corrupts the internal state and likely blows up when any of those pages gets used. Reported-by: NRobert Shteynfeld <robert.shteynfeld@gmail.com> Fixes: 2830bf6f05fb ("mm, memory_hotplug: initialize struct pages for the full memory section") Cc: stable@kernel.org Signed-off-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 29 12月, 2018 2 次提交
-
-
由 Oscar Salvador 提交于
commit 17e2e7d7e1b83fa324b3f099bfe426659aa3c2a4 upstream. While playing with gigantic hugepages and memory_hotplug, I triggered the following #PF when "cat memoryX/removable": BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 #PF error: [normal kernel read fault] PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 1 PID: 1481 Comm: cat Tainted: G E 4.20.0-rc6-mm1-1-default+ #18 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/01/2014 RIP: 0010:has_unmovable_pages+0x154/0x210 Call Trace: is_mem_section_removable+0x7d/0x100 removable_show+0x90/0xb0 dev_attr_show+0x1c/0x50 sysfs_kf_seq_show+0xca/0x1b0 seq_read+0x133/0x380 __vfs_read+0x26/0x180 vfs_read+0x89/0x140 ksys_read+0x42/0x90 do_syscall_64+0x5b/0x180 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The reason is we do not pass the Head to page_hstate(), and so, the call to compound_order() in page_hstate() returns 0, so we end up checking all hstates's size to match PAGE_SIZE. Obviously, we do not find any hstate matching that size, and we return NULL. Then, we dereference that NULL pointer in hugepage_migration_supported() and we got the #PF from above. Fix that by getting the head page before calling page_hstate(). Also, since gigantic pages span several pageblocks, re-adjust the logic for skipping pages. While are it, we can also get rid of the round_up(). [osalvador@suse.de: remove round_up(), adjust skip pages logic per Michal] Link: http://lkml.kernel.org/r/20181221062809.31771-1-osalvador@suse.de Link: http://lkml.kernel.org/r/20181217225113.17864-1-osalvador@suse.deSigned-off-by: NOscar Salvador <osalvador@suse.de> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Mikhail Zaslonko 提交于
commit 2830bf6f05fb3e05bc4743274b806c821807a684 upstream. If memory end is not aligned with the sparse memory section boundary, the mapping of such a section is only partly initialized. This may lead to VM_BUG_ON due to uninitialized struct page access from is_mem_section_removable() or test_pages_in_a_zone() function triggered by memory_hotplug sysfs handlers: Here are the the panic examples: CONFIG_DEBUG_VM=y CONFIG_DEBUG_VM_PGFLAGS=y kernel parameter mem=2050M -------------------------- page:000003d082008000 is uninitialized and poisoned page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p)) Call Trace: ( test_pages_in_a_zone+0xde/0x160) show_valid_zones+0x5c/0x190 dev_attr_show+0x34/0x70 sysfs_kf_seq_show+0xc8/0x148 seq_read+0x204/0x480 __vfs_read+0x32/0x178 vfs_read+0x82/0x138 ksys_read+0x5a/0xb0 system_call+0xdc/0x2d8 Last Breaking-Event-Address: test_pages_in_a_zone+0xde/0x160 Kernel panic - not syncing: Fatal exception: panic_on_oops kernel parameter mem=3075M -------------------------- page:000003d08300c000 is uninitialized and poisoned page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p)) Call Trace: ( is_mem_section_removable+0xb4/0x190) show_mem_removable+0x9a/0xd8 dev_attr_show+0x34/0x70 sysfs_kf_seq_show+0xc8/0x148 seq_read+0x204/0x480 __vfs_read+0x32/0x178 vfs_read+0x82/0x138 ksys_read+0x5a/0xb0 system_call+0xdc/0x2d8 Last Breaking-Event-Address: is_mem_section_removable+0xb4/0x190 Kernel panic - not syncing: Fatal exception: panic_on_oops Fix the problem by initializing the last memory section of each zone in memmap_init_zone() till the very end, even if it goes beyond the zone end. Michal said: : This has alwways been problem AFAIU. It just went unnoticed because we : have zeroed memmaps during allocation before f7f99100 ("mm: stop : zeroing memory during allocation in vmemmap") and so the above test : would simply skip these ranges as belonging to zone 0 or provided a : garbage. : : So I guess we do care for post f7f99100 kernels mostly and : therefore Fixes: f7f99100 ("mm: stop zeroing memory during : allocation in vmemmap") Link: http://lkml.kernel.org/r/20181212172712.34019-2-zaslonko@linux.ibm.com Fixes: f7f99100 ("mm: stop zeroing memory during allocation in vmemmap") Signed-off-by: NMikhail Zaslonko <zaslonko@linux.ibm.com> Reviewed-by: NGerald Schaefer <gerald.schaefer@de.ibm.com> Suggested-by: NMichal Hocko <mhocko@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.com> Reported-by: NMikhail Gavrilov <mikhail.v.gavrilov@gmail.com> Tested-by: NMikhail Gavrilov <mikhail.v.gavrilov@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 17 12月, 2018 1 次提交
-
-
由 Wei Yang 提交于
[ Upstream commit 8f416836c0d50b198cad1225132e5abebf8980dc ] init_currently_empty_zone() will adjust pgdat->nr_zones and set it to 'zone_idx(zone) + 1' unconditionally. This is correct in the normal case, while not exact in hot-plug situation. This function is used in two places: * free_area_init_core() * move_pfn_range_to_zone() In the first case, we are sure zone index increase monotonically. While in the second one, this is under users control. One way to reproduce this is: ---------------------------- 1. create a virtual machine with empty node1 -m 4G,slots=32,maxmem=32G \ -smp 4,maxcpus=8 \ -numa node,nodeid=0,mem=4G,cpus=0-3 \ -numa node,nodeid=1,mem=0G,cpus=4-7 2. hot-add cpu 3-7 cpu-add [3-7] 2. hot-add memory to nod1 object_add memory-backend-ram,id=ram0,size=1G device_add pc-dimm,id=dimm0,memdev=ram0,node=1 3. online memory with following order echo online_movable > memory47/state echo online > memory40/state After this, node1 will have its nr_zones equals to (ZONE_NORMAL + 1) instead of (ZONE_MOVABLE + 1). Michal said: "Having an incorrect nr_zones might result in all sorts of problems which would be quite hard to debug (e.g. reclaim not considering the movable zone). I do not expect many users would suffer from this it but still this is trivial and obviously right thing to do so backporting to the stable tree shouldn't be harmful (last famous words)" Link: http://lkml.kernel.org/r/20181117022022.9956-1-richard.weiyang@gmail.com Fixes: f1dd2cd1 ("mm, memory_hotplug: do not associate hotadded memory to zones until online") Signed-off-by: NWei Yang <richard.weiyang@gmail.com> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 01 12月, 2018 2 次提交
-
-
由 Michal Hocko 提交于
[ Upstream commit c63ae43b ] Konstantin has noticed that kvmalloc might trigger the following warning: WARNING: CPU: 0 PID: 6676 at mm/vmstat.c:986 __fragmentation_index+0x54/0x60 [...] Call Trace: fragmentation_index+0x76/0x90 compaction_suitable+0x4f/0xf0 shrink_node+0x295/0x310 node_reclaim+0x205/0x250 get_page_from_freelist+0x649/0xad0 __alloc_pages_nodemask+0x12a/0x2a0 kmalloc_large_node+0x47/0x90 __kmalloc_node+0x22b/0x2e0 kvmalloc_node+0x3e/0x70 xt_alloc_table_info+0x3a/0x80 [x_tables] do_ip6t_set_ctl+0xcd/0x1c0 [ip6_tables] nf_setsockopt+0x44/0x60 SyS_setsockopt+0x6f/0xc0 do_syscall_64+0x67/0x120 entry_SYSCALL_64_after_hwframe+0x3d/0xa2 the problem is that we only check for an out of bound order in the slow path and the node reclaim might happen from the fast path already. This is fixable by making sure that kvmalloc doesn't ever use kmalloc for requests that are larger than KMALLOC_MAX_SIZE but this also shows that the code is rather fragile. A recent UBSAN report just underlines that by the following report UBSAN: Undefined behaviour in mm/page_alloc.c:3117:19 shift exponent 51 is too large for 32-bit type 'int' CPU: 0 PID: 6520 Comm: syz-executor1 Not tainted 4.19.0-rc2 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0xd2/0x148 lib/dump_stack.c:113 ubsan_epilogue+0x12/0x94 lib/ubsan.c:159 __ubsan_handle_shift_out_of_bounds+0x2b6/0x30b lib/ubsan.c:425 __zone_watermark_ok+0x2c7/0x400 mm/page_alloc.c:3117 zone_watermark_fast mm/page_alloc.c:3216 [inline] get_page_from_freelist+0xc49/0x44c0 mm/page_alloc.c:3300 __alloc_pages_nodemask+0x21e/0x640 mm/page_alloc.c:4370 alloc_pages_current+0xcc/0x210 mm/mempolicy.c:2093 alloc_pages include/linux/gfp.h:509 [inline] __get_free_pages+0x12/0x60 mm/page_alloc.c:4414 dma_mem_alloc+0x36/0x50 arch/x86/include/asm/floppy.h:156 raw_cmd_copyin drivers/block/floppy.c:3159 [inline] raw_cmd_ioctl drivers/block/floppy.c:3206 [inline] fd_locked_ioctl+0xa00/0x2c10 drivers/block/floppy.c:3544 fd_ioctl+0x40/0x60 drivers/block/floppy.c:3571 __blkdev_driver_ioctl block/ioctl.c:303 [inline] blkdev_ioctl+0xb3c/0x1a30 block/ioctl.c:601 block_ioctl+0x105/0x150 fs/block_dev.c:1883 vfs_ioctl fs/ioctl.c:46 [inline] do_vfs_ioctl+0x1c0/0x1150 fs/ioctl.c:687 ksys_ioctl+0x9e/0xb0 fs/ioctl.c:702 __do_sys_ioctl fs/ioctl.c:709 [inline] __se_sys_ioctl fs/ioctl.c:707 [inline] __x64_sys_ioctl+0x7e/0xc0 fs/ioctl.c:707 do_syscall_64+0xc4/0x510 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe Note that this is not a kvmalloc path. It is just that the fast path really depends on having sanitzed order as well. Therefore move the order check to the fast path. Link: http://lkml.kernel.org/r/20181113094305.GM15120@dhcp22.suse.czSigned-off-by: NMichal Hocko <mhocko@suse.com> Reported-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Reported-by: NKyungtae Kim <kt0755@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Byoungyoung Lee <lifeasageek@gmail.com> Cc: "Dae R. Jeong" <threeearcat@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Michal Hocko 提交于
[ Upstream commit 9d789999 ] Page state checks are racy. Under a heavy memory workload (e.g. stress -m 200 -t 2h) it is quite easy to hit a race window when the page is allocated but its state is not fully populated yet. A debugging patch to dump the struct page state shows has_unmovable_pages: pfn:0x10dfec00, found:0x1, count:0x0 page:ffffea0437fb0000 count:1 mapcount:1 mapping:ffff880e05239841 index:0x7f26e5000 compound_mapcount: 1 flags: 0x5fffffc0090034(uptodate|lru|active|head|swapbacked) Note that the state has been checked for both PageLRU and PageSwapBacked already. Closing this race completely would require some sort of retry logic. This can be tricky and error prone (think of potential endless or long taking loops). Workaround this problem for movable zones at least. Such a zone should only contain movable pages. Commit 15c30bc0 ("mm, memory_hotplug: make has_unmovable_pages more robust") has told us that this is not strictly true though. Bootmem pages should be marked reserved though so we can move the original check after the PageReserved check. Pages from other zones are still prone to races but we even do not pretend that memory hotremove works for those so pre-mature failure doesn't hurt that much. Link: http://lkml.kernel.org/r/20181106095524.14629-1-mhocko@kernel.org Fixes: 15c30bc0 ("mm, memory_hotplug: make has_unmovable_pages more robust") Signed-off-by: NMichal Hocko <mhocko@suse.com> Reported-by: NBaoquan He <bhe@redhat.com> Tested-by: NBaoquan He <bhe@redhat.com> Acked-by: NBaoquan He <bhe@redhat.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Acked-by: NBalbir Singh <bsingharora@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 09 10月, 2018 1 次提交
-
-
由 Srikar Dronamraju 提交于
Remove the leftover pglist_data::numabalancing_migrate_lock and its initialization, we stopped using this lock with: efaffc5e ("mm, sched/numa: Remove rate-limiting of automatic NUMA balancing migration") [ mingo: Rewrote the changelog. ] Signed-off-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: NMel Gorman <mgorman@techsingularity.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Linux-MM <linux-mm@kvack.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1538824999-31230-1-git-send-email-srikar@linux.vnet.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 02 10月, 2018 1 次提交
-
-
由 Mel Gorman 提交于
Rate limiting of page migrations due to automatic NUMA balancing was introduced to mitigate the worst-case scenario of migrating at high frequency due to false sharing or slowly ping-ponging between nodes. Since then, a lot of effort was spent on correctly identifying these pages and avoiding unnecessary migrations and the safety net may no longer be required. Jirka Hladky reported a regression in 4.17 due to a scheduler patch that avoids spreading STREAM tasks wide prematurely. However, once the task was properly placed, it delayed migrating the memory due to rate limiting. Increasing the limit fixed the problem for him. Currently, the limit is hard-coded and does not account for the real capabilities of the hardware. Even if an estimate was attempted, it would not properly account for the number of memory controllers and it could not account for the amount of bandwidth used for normal accesses. Rather than fudging, this patch simply eliminates the rate limiting. However, Jirka reports that a STREAM configuration using multiple processes achieved similar performance to 4.16. In local tests, this patch improved performance of STREAM relative to the baseline but it is somewhat machine-dependent. Most workloads show little or not performance difference implying that there is not a heavily reliance on the throttling mechanism and it is safe to remove. STREAM on 2-socket machine 4.19.0-rc5 4.19.0-rc5 numab-v1r1 noratelimit-v1r1 MB/sec copy 43298.52 ( 0.00%) 44673.38 ( 3.18%) MB/sec scale 30115.06 ( 0.00%) 31293.06 ( 3.91%) MB/sec add 32825.12 ( 0.00%) 34883.62 ( 6.27%) MB/sec triad 32549.52 ( 0.00%) 34906.60 ( 7.24% Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NRik van Riel <riel@surriel.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Jirka Hladky <jhladky@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Linux-MM <linux-mm@kvack.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20181001100525.29789-2-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 05 9月, 2018 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
When scanning for movable pages, filter out Hugetlb pages if hugepage migration is not supported. Without this we hit infinte loop in __offline_pages() where we do pfn = scan_movable_pages(start_pfn, end_pfn); if (pfn) { /* We have movable pages */ ret = do_migrate_range(pfn, end_pfn); goto repeat; } Fix this by checking hugepage_migration_supported both in has_unmovable_pages which is the primary backoff mechanism for page offlining and for consistency reasons also into scan_movable_pages because it doesn't make any sense to return a pfn to non-migrateable huge page. This issue was revealed by, but not caused by 72b39cfc ("mm, memory_hotplug: do not fail offlining too early"). Link: http://lkml.kernel.org/r/20180824063314.21981-1-aneesh.kumar@linux.ibm.com Fixes: 72b39cfc ("mm, memory_hotplug: do not fail offlining too early") Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: NHaren Myneni <haren@linux.vnet.ibm.com> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 8月, 2018 1 次提交
-
-
由 Mukesh Ojha 提交于
The conversion of the hotplug notifiers to a state machine left the notifier.h includes around in some places. Remove them. Signed-off-by: NMukesh Ojha <mojha@codeaurora.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1535114033-4605-1-git-send-email-mojha@codeaurora.org
-
- 24 8月, 2018 1 次提交
-
-
由 Naoya Horiguchi 提交于
A process can be killed with SIGBUS(BUS_MCEERR_AR) when it tries to allocate a page that was just freed on the way of soft-offline. This is undesirable because soft-offline (which is about corrected error) is less aggressive than hard-offline (which is about uncorrected error), and we can make soft-offline fail and keep using the page for good reason like "system is busy." Two main changes of this patch are: - setting migrate type of the target page to MIGRATE_ISOLATE. As done in free_unref_page_commit(), this makes kernel bypass pcplist when freeing the page. So we can assume that the page is in freelist just after put_page() returns, - setting PG_hwpoison on free page under zone->lock which protects freelists, so this allows us to avoid setting PG_hwpoison on a page that is decided to be allocated soon. [akpm@linux-foundation.org: tweak set_hwpoison_free_buddy_page() comment] Link: http://lkml.kernel.org/r/1531452366-11661-3-git-send-email-n-horiguchi@ah.jp.nec.comSigned-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: NXishi Qiu <xishi.qiuxishi@alibaba-inc.com> Tested-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: <zy.zhengyi@alibaba-inc.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 8月, 2018 3 次提交
-
-
由 Oscar Salvador 提交于
Currently, whenever a new node is created/re-used from the memhotplug path, we call free_area_init_node()->free_area_init_core(). But there is some code that we do not really need to run when we are coming from such path. free_area_init_core() performs the following actions: 1) Initializes pgdat internals, such as spinlock, waitqueues and more. 2) Account # nr_all_pages and # nr_kernel_pages. These values are used later on when creating hash tables. 3) Account number of managed_pages per zone, substracting dma_reserved and memmap pages. 4) Initializes some fields of the zone structure data 5) Calls init_currently_empty_zone to initialize all the freelists 6) Calls memmap_init to initialize all pages belonging to certain zone When called from memhotplug path, free_area_init_core() only performs actions #1 and #4. Action #2 is pointless as the zones do not have any pages since either the node was freed, or we are re-using it, eitherway all zones belonging to this node should have 0 pages. For the same reason, action #3 results always in manages_pages being 0. Action #5 and #6 are performed later on when onlining the pages: online_pages()->move_pfn_range_to_zone()->init_currently_empty_zone() online_pages()->move_pfn_range_to_zone()->memmap_init_zone() This patch does two things: First, moves the node/zone initializtion to their own function, so it allows us to create a small version of free_area_init_core, where we only perform: 1) Initialization of pgdat internals, such as spinlock, waitqueues and more 4) Initialization of some fields of the zone structure data These two functions are: pgdat_init_internals() and zone_init_internals(). The second thing this patch does, is to introduce free_area_init_core_hotplug(), the memhotplug version of free_area_init_core(): Currently, we call free_area_init_node() from the memhotplug path. In there, we set some pgdat's fields, and call calculate_node_totalpages(). calculate_node_totalpages() calculates the # of pages the node has. Since the node is either new, or we are re-using it, the zones belonging to this node should not have any pages, so there is no point to calculate this now. Actually, we re-set these values to 0 later on with the calls to: reset_node_managed_pages() reset_node_present_pages() The # of pages per node and the # of pages per zone will be calculated when onlining the pages: online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_zone_range() online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_pgdat_range() Also, since free_area_init_core/free_area_init_node will now only get called during early init, let us replace __paginginit with __init, so their code gets freed up. [osalvador@techadventures.net: fix section usage] Link: http://lkml.kernel.org/r/20180731101752.GA473@techadventures.net [osalvador@suse.de: v6] Link: http://lkml.kernel.org/r/20180801122348.21588-6-osalvador@techadventures.net Link: http://lkml.kernel.org/r/20180730101757.28058-5-osalvador@techadventures.netSigned-off-by: NOscar Salvador <osalvador@suse.de> Reviewed-by: NPavel Tatashin <pasha.tatashin@oracle.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oscar Salvador 提交于
Let us move the code between CONFIG_DEFERRED_STRUCT_PAGE_INIT to an inline function. Not having an ifdef in the function makes the code more readable. Link: http://lkml.kernel.org/r/20180730101757.28058-4-osalvador@techadventures.netSigned-off-by: NOscar Salvador <osalvador@suse.de> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NPavel Tatashin <pasha.tatashin@oracle.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Pavel Tatashin 提交于
__paginginit is the same thing as __meminit except for platforms without sparsemem, there it is defined as __init. Remove __paginginit and use __meminit. Use __ref in one single function that merges __meminit and __init sections: setup_usemap(). Link: http://lkml.kernel.org/r/20180801122348.21588-4-osalvador@techadventures.netSigned-off-by: NPavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: NOscar Salvador <osalvador@suse.de> Reviewed-by: NOscar Salvador <osalvador@suse.de> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-