1. 10 1月, 2018 1 次提交
  2. 05 12月, 2017 1 次提交
    • H
      bpf: correct broken uapi for BPF_PROG_TYPE_PERF_EVENT program type · c895f6f7
      Hendrik Brueckner 提交于
      Commit 0515e599 ("bpf: introduce BPF_PROG_TYPE_PERF_EVENT
      program type") introduced the bpf_perf_event_data structure which
      exports the pt_regs structure.  This is OK for multiple architectures
      but fail for s390 and arm64 which do not export pt_regs.  Programs
      using them, for example, the bpf selftest fail to compile on these
      architectures.
      
      For s390, exporting the pt_regs is not an option because s390 wants
      to allow changes to it.  For arm64, there is a user_pt_regs structure
      that covers parts of the pt_regs structure for use by user space.
      
      To solve the broken uapi for s390 and arm64, introduce an abstract
      type for pt_regs and add an asm/bpf_perf_event.h file that concretes
      the type.  An asm-generic header file covers the architectures that
      export pt_regs today.
      
      The arch-specific enablement for s390 and arm64 follows in separate
      commits.
      Reported-by: NThomas Richter <tmricht@linux.vnet.ibm.com>
      Fixes: 0515e599 ("bpf: introduce BPF_PROG_TYPE_PERF_EVENT program type")
      Signed-off-by: NHendrik Brueckner <brueckner@linux.vnet.ibm.com>
      Reviewed-and-tested-by: NThomas Richter <tmricht@linux.vnet.ibm.com>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Namhyung Kim <namhyung@kernel.org>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Daniel Borkmann <daniel@iogearbox.net>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      c895f6f7
  3. 22 11月, 2017 2 次提交
    • K
      treewide: setup_timer() -> timer_setup() · e99e88a9
      Kees Cook 提交于
      This converts all remaining cases of the old setup_timer() API into using
      timer_setup(), where the callback argument is the structure already
      holding the struct timer_list. These should have no behavioral changes,
      since they just change which pointer is passed into the callback with
      the same available pointers after conversion. It handles the following
      examples, in addition to some other variations.
      
      Casting from unsigned long:
      
          void my_callback(unsigned long data)
          {
              struct something *ptr = (struct something *)data;
          ...
          }
          ...
          setup_timer(&ptr->my_timer, my_callback, ptr);
      
      and forced object casts:
      
          void my_callback(struct something *ptr)
          {
          ...
          }
          ...
          setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr);
      
      become:
      
          void my_callback(struct timer_list *t)
          {
              struct something *ptr = from_timer(ptr, t, my_timer);
          ...
          }
          ...
          timer_setup(&ptr->my_timer, my_callback, 0);
      
      Direct function assignments:
      
          void my_callback(unsigned long data)
          {
              struct something *ptr = (struct something *)data;
          ...
          }
          ...
          ptr->my_timer.function = my_callback;
      
      have a temporary cast added, along with converting the args:
      
          void my_callback(struct timer_list *t)
          {
              struct something *ptr = from_timer(ptr, t, my_timer);
          ...
          }
          ...
          ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback;
      
      And finally, callbacks without a data assignment:
      
          void my_callback(unsigned long data)
          {
          ...
          }
          ...
          setup_timer(&ptr->my_timer, my_callback, 0);
      
      have their argument renamed to verify they're unused during conversion:
      
          void my_callback(struct timer_list *unused)
          {
          ...
          }
          ...
          timer_setup(&ptr->my_timer, my_callback, 0);
      
      The conversion is done with the following Coccinelle script:
      
      spatch --very-quiet --all-includes --include-headers \
      	-I ./arch/x86/include -I ./arch/x86/include/generated \
      	-I ./include -I ./arch/x86/include/uapi \
      	-I ./arch/x86/include/generated/uapi -I ./include/uapi \
      	-I ./include/generated/uapi --include ./include/linux/kconfig.h \
      	--dir . \
      	--cocci-file ~/src/data/timer_setup.cocci
      
      @fix_address_of@
      expression e;
      @@
      
       setup_timer(
      -&(e)
      +&e
       , ...)
      
      // Update any raw setup_timer() usages that have a NULL callback, but
      // would otherwise match change_timer_function_usage, since the latter
      // will update all function assignments done in the face of a NULL
      // function initialization in setup_timer().
      @change_timer_function_usage_NULL@
      expression _E;
      identifier _timer;
      type _cast_data;
      @@
      
      (
      -setup_timer(&_E->_timer, NULL, _E);
      +timer_setup(&_E->_timer, NULL, 0);
      |
      -setup_timer(&_E->_timer, NULL, (_cast_data)_E);
      +timer_setup(&_E->_timer, NULL, 0);
      |
      -setup_timer(&_E._timer, NULL, &_E);
      +timer_setup(&_E._timer, NULL, 0);
      |
      -setup_timer(&_E._timer, NULL, (_cast_data)&_E);
      +timer_setup(&_E._timer, NULL, 0);
      )
      
      @change_timer_function_usage@
      expression _E;
      identifier _timer;
      struct timer_list _stl;
      identifier _callback;
      type _cast_func, _cast_data;
      @@
      
      (
      -setup_timer(&_E->_timer, _callback, _E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, &_callback, _E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, _callback, (_cast_data)_E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, &_callback, (_cast_data)_E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, (_cast_func)_callback, _E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, (_cast_func)&_callback, _E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, (_cast_data)_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, (_cast_data)&_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, &_callback, (_cast_data)_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, &_callback, (_cast_data)&_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
       _E->_timer@_stl.function = _callback;
      |
       _E->_timer@_stl.function = &_callback;
      |
       _E->_timer@_stl.function = (_cast_func)_callback;
      |
       _E->_timer@_stl.function = (_cast_func)&_callback;
      |
       _E._timer@_stl.function = _callback;
      |
       _E._timer@_stl.function = &_callback;
      |
       _E._timer@_stl.function = (_cast_func)_callback;
      |
       _E._timer@_stl.function = (_cast_func)&_callback;
      )
      
      // callback(unsigned long arg)
      @change_callback_handle_cast
       depends on change_timer_function_usage@
      identifier change_timer_function_usage._callback;
      identifier change_timer_function_usage._timer;
      type _origtype;
      identifier _origarg;
      type _handletype;
      identifier _handle;
      @@
      
       void _callback(
      -_origtype _origarg
      +struct timer_list *t
       )
       {
      (
      	... when != _origarg
      	_handletype *_handle =
      -(_handletype *)_origarg;
      +from_timer(_handle, t, _timer);
      	... when != _origarg
      |
      	... when != _origarg
      	_handletype *_handle =
      -(void *)_origarg;
      +from_timer(_handle, t, _timer);
      	... when != _origarg
      |
      	... when != _origarg
      	_handletype *_handle;
      	... when != _handle
      	_handle =
      -(_handletype *)_origarg;
      +from_timer(_handle, t, _timer);
      	... when != _origarg
      |
      	... when != _origarg
      	_handletype *_handle;
      	... when != _handle
      	_handle =
      -(void *)_origarg;
      +from_timer(_handle, t, _timer);
      	... when != _origarg
      )
       }
      
      // callback(unsigned long arg) without existing variable
      @change_callback_handle_cast_no_arg
       depends on change_timer_function_usage &&
                           !change_callback_handle_cast@
      identifier change_timer_function_usage._callback;
      identifier change_timer_function_usage._timer;
      type _origtype;
      identifier _origarg;
      type _handletype;
      @@
      
       void _callback(
      -_origtype _origarg
      +struct timer_list *t
       )
       {
      +	_handletype *_origarg = from_timer(_origarg, t, _timer);
      +
      	... when != _origarg
      -	(_handletype *)_origarg
      +	_origarg
      	... when != _origarg
       }
      
      // Avoid already converted callbacks.
      @match_callback_converted
       depends on change_timer_function_usage &&
                  !change_callback_handle_cast &&
      	    !change_callback_handle_cast_no_arg@
      identifier change_timer_function_usage._callback;
      identifier t;
      @@
      
       void _callback(struct timer_list *t)
       { ... }
      
      // callback(struct something *handle)
      @change_callback_handle_arg
       depends on change_timer_function_usage &&
      	    !match_callback_converted &&
                  !change_callback_handle_cast &&
                  !change_callback_handle_cast_no_arg@
      identifier change_timer_function_usage._callback;
      identifier change_timer_function_usage._timer;
      type _handletype;
      identifier _handle;
      @@
      
       void _callback(
      -_handletype *_handle
      +struct timer_list *t
       )
       {
      +	_handletype *_handle = from_timer(_handle, t, _timer);
      	...
       }
      
      // If change_callback_handle_arg ran on an empty function, remove
      // the added handler.
      @unchange_callback_handle_arg
       depends on change_timer_function_usage &&
      	    change_callback_handle_arg@
      identifier change_timer_function_usage._callback;
      identifier change_timer_function_usage._timer;
      type _handletype;
      identifier _handle;
      identifier t;
      @@
      
       void _callback(struct timer_list *t)
       {
      -	_handletype *_handle = from_timer(_handle, t, _timer);
       }
      
      // We only want to refactor the setup_timer() data argument if we've found
      // the matching callback. This undoes changes in change_timer_function_usage.
      @unchange_timer_function_usage
       depends on change_timer_function_usage &&
                  !change_callback_handle_cast &&
                  !change_callback_handle_cast_no_arg &&
      	    !change_callback_handle_arg@
      expression change_timer_function_usage._E;
      identifier change_timer_function_usage._timer;
      identifier change_timer_function_usage._callback;
      type change_timer_function_usage._cast_data;
      @@
      
      (
      -timer_setup(&_E->_timer, _callback, 0);
      +setup_timer(&_E->_timer, _callback, (_cast_data)_E);
      |
      -timer_setup(&_E._timer, _callback, 0);
      +setup_timer(&_E._timer, _callback, (_cast_data)&_E);
      )
      
      // If we fixed a callback from a .function assignment, fix the
      // assignment cast now.
      @change_timer_function_assignment
       depends on change_timer_function_usage &&
                  (change_callback_handle_cast ||
                   change_callback_handle_cast_no_arg ||
                   change_callback_handle_arg)@
      expression change_timer_function_usage._E;
      identifier change_timer_function_usage._timer;
      identifier change_timer_function_usage._callback;
      type _cast_func;
      typedef TIMER_FUNC_TYPE;
      @@
      
      (
       _E->_timer.function =
      -_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E->_timer.function =
      -&_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E->_timer.function =
      -(_cast_func)_callback;
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E->_timer.function =
      -(_cast_func)&_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E._timer.function =
      -_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E._timer.function =
      -&_callback;
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E._timer.function =
      -(_cast_func)_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E._timer.function =
      -(_cast_func)&_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      )
      
      // Sometimes timer functions are called directly. Replace matched args.
      @change_timer_function_calls
       depends on change_timer_function_usage &&
                  (change_callback_handle_cast ||
                   change_callback_handle_cast_no_arg ||
                   change_callback_handle_arg)@
      expression _E;
      identifier change_timer_function_usage._timer;
      identifier change_timer_function_usage._callback;
      type _cast_data;
      @@
      
       _callback(
      (
      -(_cast_data)_E
      +&_E->_timer
      |
      -(_cast_data)&_E
      +&_E._timer
      |
      -_E
      +&_E->_timer
      )
       )
      
      // If a timer has been configured without a data argument, it can be
      // converted without regard to the callback argument, since it is unused.
      @match_timer_function_unused_data@
      expression _E;
      identifier _timer;
      identifier _callback;
      @@
      
      (
      -setup_timer(&_E->_timer, _callback, 0);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, _callback, 0L);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, _callback, 0UL);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, 0);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, 0L);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, 0UL);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_timer, _callback, 0);
      +timer_setup(&_timer, _callback, 0);
      |
      -setup_timer(&_timer, _callback, 0L);
      +timer_setup(&_timer, _callback, 0);
      |
      -setup_timer(&_timer, _callback, 0UL);
      +timer_setup(&_timer, _callback, 0);
      |
      -setup_timer(_timer, _callback, 0);
      +timer_setup(_timer, _callback, 0);
      |
      -setup_timer(_timer, _callback, 0L);
      +timer_setup(_timer, _callback, 0);
      |
      -setup_timer(_timer, _callback, 0UL);
      +timer_setup(_timer, _callback, 0);
      )
      
      @change_callback_unused_data
       depends on match_timer_function_unused_data@
      identifier match_timer_function_unused_data._callback;
      type _origtype;
      identifier _origarg;
      @@
      
       void _callback(
      -_origtype _origarg
      +struct timer_list *unused
       )
       {
      	... when != _origarg
       }
      Signed-off-by: NKees Cook <keescook@chromium.org>
      e99e88a9
    • K
      treewide: init_timer() -> setup_timer() · b9eaf187
      Kees Cook 提交于
      This mechanically converts all remaining cases of ancient open-coded timer
      setup with the old setup_timer() API, which is the first step in timer
      conversions. This has no behavioral changes, since it ultimately just
      changes the order of assignment to fields of struct timer_list when
      finding variations of:
      
          init_timer(&t);
          f.function = timer_callback;
          t.data = timer_callback_arg;
      
      to be converted into:
      
          setup_timer(&t, timer_callback, timer_callback_arg);
      
      The conversion is done with the following Coccinelle script, which
      is an improved version of scripts/cocci/api/setup_timer.cocci, in the
      following ways:
       - assignments-before-init_timer() cases
       - limit the .data case removal to the specific struct timer_list instance
       - handling calls by dereference (timer->field vs timer.field)
      
      spatch --very-quiet --all-includes --include-headers \
      	-I ./arch/x86/include -I ./arch/x86/include/generated \
      	-I ./include -I ./arch/x86/include/uapi \
      	-I ./arch/x86/include/generated/uapi -I ./include/uapi \
      	-I ./include/generated/uapi --include ./include/linux/kconfig.h \
      	--dir . \
      	--cocci-file ~/src/data/setup_timer.cocci
      
      @fix_address_of@
      expression e;
      @@
      
       init_timer(
      -&(e)
      +&e
       , ...)
      
      // Match the common cases first to avoid Coccinelle parsing loops with
      // "... when" clauses.
      
      @match_immediate_function_data_after_init_timer@
      expression e, func, da;
      @@
      
      -init_timer
      +setup_timer
       ( \(&e\|e\)
      +, func, da
       );
      (
      -\(e.function\|e->function\) = func;
      -\(e.data\|e->data\) = da;
      |
      -\(e.data\|e->data\) = da;
      -\(e.function\|e->function\) = func;
      )
      
      @match_immediate_function_data_before_init_timer@
      expression e, func, da;
      @@
      
      (
      -\(e.function\|e->function\) = func;
      -\(e.data\|e->data\) = da;
      |
      -\(e.data\|e->data\) = da;
      -\(e.function\|e->function\) = func;
      )
      -init_timer
      +setup_timer
       ( \(&e\|e\)
      +, func, da
       );
      
      @match_function_and_data_after_init_timer@
      expression e, e2, e3, e4, e5, func, da;
      @@
      
      -init_timer
      +setup_timer
       ( \(&e\|e\)
      +, func, da
       );
       ... when != func = e2
           when != da = e3
      (
      -e.function = func;
      ... when != da = e4
      -e.data = da;
      |
      -e->function = func;
      ... when != da = e4
      -e->data = da;
      |
      -e.data = da;
      ... when != func = e5
      -e.function = func;
      |
      -e->data = da;
      ... when != func = e5
      -e->function = func;
      )
      
      @match_function_and_data_before_init_timer@
      expression e, e2, e3, e4, e5, func, da;
      @@
      (
      -e.function = func;
      ... when != da = e4
      -e.data = da;
      |
      -e->function = func;
      ... when != da = e4
      -e->data = da;
      |
      -e.data = da;
      ... when != func = e5
      -e.function = func;
      |
      -e->data = da;
      ... when != func = e5
      -e->function = func;
      )
      ... when != func = e2
          when != da = e3
      -init_timer
      +setup_timer
       ( \(&e\|e\)
      +, func, da
       );
      
      @r1 exists@
      expression t;
      identifier f;
      position p;
      @@
      
      f(...) { ... when any
        init_timer@p(\(&t\|t\))
        ... when any
      }
      
      @r2 exists@
      expression r1.t;
      identifier g != r1.f;
      expression e8;
      @@
      
      g(...) { ... when any
        \(t.data\|t->data\) = e8
        ... when any
      }
      
      // It is dangerous to use setup_timer if data field is initialized
      // in another function.
      @script:python depends on r2@
      p << r1.p;
      @@
      
      cocci.include_match(False)
      
      @r3@
      expression r1.t, func, e7;
      position r1.p;
      @@
      
      (
      -init_timer@p(&t);
      +setup_timer(&t, func, 0UL);
      ... when != func = e7
      -t.function = func;
      |
      -t.function = func;
      ... when != func = e7
      -init_timer@p(&t);
      +setup_timer(&t, func, 0UL);
      |
      -init_timer@p(t);
      +setup_timer(t, func, 0UL);
      ... when != func = e7
      -t->function = func;
      |
      -t->function = func;
      ... when != func = e7
      -init_timer@p(t);
      +setup_timer(t, func, 0UL);
      )
      Signed-off-by: NKees Cook <keescook@chromium.org>
      b9eaf187
  4. 18 11月, 2017 2 次提交
  5. 16 11月, 2017 3 次提交
  6. 13 11月, 2017 1 次提交
    • M
      sh: select KBUILD_DEFCONFIG depending on ARCH · 859fd586
      Masahiro Yamada 提交于
      You can not select KBUILD_DEFCONFIG depending on any CONFIG option
      because include/config/auto.conf is not included when building config
      targets.  So, CONFIG_SUPERH32 is never set during the configuration,
      then cayman_defconfig is always chosen.
      
      This commit provides a sensible way to choose shx3/cayman_defconfig.
      
      arch/sh/Kconfig sets either SUPERH32 or SUPERH64 depending on ARCH
      environment, like follows:
      
        config SUPERH32
                def_bool ARCH = "sh"
      
                ...
      
        config SUPERH64
                def_bool ARCH = "sh64"
      
      It should make sense to choose the default defconfig by ARCH,
      like arch/sparc/Makefile.
      Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com>
      859fd586
  7. 09 11月, 2017 1 次提交
  8. 08 11月, 2017 2 次提交
  9. 02 11月, 2017 3 次提交
    • G
      License cleanup: add SPDX license identifier to uapi header files with a license · e2be04c7
      Greg Kroah-Hartman 提交于
      Many user space API headers have licensing information, which is either
      incomplete, badly formatted or just a shorthand for referring to the
      license under which the file is supposed to be.  This makes it hard for
      compliance tools to determine the correct license.
      
      Update these files with an SPDX license identifier.  The identifier was
      chosen based on the license information in the file.
      
      GPL/LGPL licensed headers get the matching GPL/LGPL SPDX license
      identifier with the added 'WITH Linux-syscall-note' exception, which is
      the officially assigned exception identifier for the kernel syscall
      exception:
      
         NOTE! This copyright does *not* cover user programs that use kernel
         services by normal system calls - this is merely considered normal use
         of the kernel, and does *not* fall under the heading of "derived work".
      
      This exception makes it possible to include GPL headers into non GPL
      code, without confusing license compliance tools.
      
      Headers which have either explicit dual licensing or are just licensed
      under a non GPL license are updated with the corresponding SPDX
      identifier and the GPLv2 with syscall exception identifier.  The format
      is:
              ((GPL-2.0 WITH Linux-syscall-note) OR SPDX-ID-OF-OTHER-LICENSE)
      
      SPDX license identifiers are a legally binding shorthand, which can be
      used instead of the full boiler plate text.  The update does not remove
      existing license information as this has to be done on a case by case
      basis and the copyright holders might have to be consulted. This will
      happen in a separate step.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.  See the previous patch in this series for the
      methodology of how this patch was researched.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      e2be04c7
    • G
      License cleanup: add SPDX license identifier to uapi header files with no license · 6f52b16c
      Greg Kroah-Hartman 提交于
      Many user space API headers are missing licensing information, which
      makes it hard for compliance tools to determine the correct license.
      
      By default are files without license information under the default
      license of the kernel, which is GPLV2.  Marking them GPLV2 would exclude
      them from being included in non GPLV2 code, which is obviously not
      intended. The user space API headers fall under the syscall exception
      which is in the kernels COPYING file:
      
         NOTE! This copyright does *not* cover user programs that use kernel
         services by normal system calls - this is merely considered normal use
         of the kernel, and does *not* fall under the heading of "derived work".
      
      otherwise syscall usage would not be possible.
      
      Update the files which contain no license information with an SPDX
      license identifier.  The chosen identifier is 'GPL-2.0 WITH
      Linux-syscall-note' which is the officially assigned identifier for the
      Linux syscall exception.  SPDX license identifiers are a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.  See the previous patch in this series for the
      methodology of how this patch was researched.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      6f52b16c
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  10. 19 10月, 2017 2 次提交
    • C
      dma-mapping: turn dma_cache_sync into a dma_map_ops method · c9eb6172
      Christoph Hellwig 提交于
      After we removed all the dead wood it turns out only two architectures
      actually implement dma_cache_sync as a real op: mips and parisc.  Add
      a cache_sync method to struct dma_map_ops and implement it for the
      mips defualt DMA ops, and the parisc pa11 ops.
      
      Note that arm, arc and openrisc support DMA_ATTR_NON_CONSISTENT, but
      never provided a functional dma_cache_sync implementations, which
      seems somewhat odd.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NRobin Murphy <robin.murphy@arm.com>
      c9eb6172
    • C
      sh: make dma_cache_sync a no-op · e0c6584d
      Christoph Hellwig 提交于
      sh does not implement DMA_ATTR_NON_CONSISTENT allocations, so it doesn't
      make any sense to do any work in dma_cache_sync given that it
      must be a no-op when dma_alloc_attrs returns coherent memory.
      
      On the other hand sh uses dma_cache_sync internally in the dma_ops
      implementation and for the maple bus that does not use the DMA API,
      so a the old functionality for dma_cache_sync is still provided under
      the name sh_sync_dma_for_device, and without the redundant dev
      argument.  While at it two of the syncing dma_ops also go the proper
      _for_device postfix.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NRobin Murphy <robin.murphy@arm.com>
      e0c6584d
  11. 10 10月, 2017 3 次提交
  12. 04 10月, 2017 4 次提交
  13. 23 9月, 2017 1 次提交
  14. 09 9月, 2017 1 次提交
  15. 04 9月, 2017 1 次提交
  16. 01 9月, 2017 1 次提交
  17. 26 8月, 2017 1 次提交
    • J
      futex: Remove duplicated code and fix undefined behaviour · 30d6e0a4
      Jiri Slaby 提交于
      There is code duplicated over all architecture's headers for
      futex_atomic_op_inuser. Namely op decoding, access_ok check for uaddr,
      and comparison of the result.
      
      Remove this duplication and leave up to the arches only the needed
      assembly which is now in arch_futex_atomic_op_inuser.
      
      This effectively distributes the Will Deacon's arm64 fix for undefined
      behaviour reported by UBSAN to all architectures. The fix was done in
      commit 5f16a046 (arm64: futex: Fix undefined behaviour with
      FUTEX_OP_OPARG_SHIFT usage). Look there for an example dump.
      
      And as suggested by Thomas, check for negative oparg too, because it was
      also reported to cause undefined behaviour report.
      
      Note that s390 removed access_ok check in d12a2970 ("s390/uaccess:
      remove pointless access_ok() checks") as access_ok there returns true.
      We introduce it back to the helper for the sake of simplicity (it gets
      optimized away anyway).
      Signed-off-by: NJiri Slaby <jslaby@suse.cz>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Acked-by: NRussell King <rmk+kernel@armlinux.org.uk>
      Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
      Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390]
      Acked-by: Chris Metcalf <cmetcalf@mellanox.com> [for tile]
      Reviewed-by: NDarren Hart (VMware) <dvhart@infradead.org>
      Reviewed-by: Will Deacon <will.deacon@arm.com> [core/arm64]
      Cc: linux-mips@linux-mips.org
      Cc: Rich Felker <dalias@libc.org>
      Cc: linux-ia64@vger.kernel.org
      Cc: linux-sh@vger.kernel.org
      Cc: peterz@infradead.org
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Max Filippov <jcmvbkbc@gmail.com>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: sparclinux@vger.kernel.org
      Cc: Jonas Bonn <jonas@southpole.se>
      Cc: linux-s390@vger.kernel.org
      Cc: linux-arch@vger.kernel.org
      Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
      Cc: linux-hexagon@vger.kernel.org
      Cc: Helge Deller <deller@gmx.de>
      Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Matt Turner <mattst88@gmail.com>
      Cc: linux-snps-arc@lists.infradead.org
      Cc: Fenghua Yu <fenghua.yu@intel.com>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: linux-xtensa@linux-xtensa.org
      Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
      Cc: openrisc@lists.librecores.org
      Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
      Cc: Stafford Horne <shorne@gmail.com>
      Cc: linux-arm-kernel@lists.infradead.org
      Cc: Richard Henderson <rth@twiddle.net>
      Cc: Chris Zankel <chris@zankel.net>
      Cc: Michal Simek <monstr@monstr.eu>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: linux-parisc@vger.kernel.org
      Cc: Vineet Gupta <vgupta@synopsys.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Richard Kuo <rkuo@codeaurora.org>
      Cc: linux-alpha@vger.kernel.org
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: linuxppc-dev@lists.ozlabs.org
      Cc: "David S. Miller" <davem@davemloft.net>
      Link: http://lkml.kernel.org/r/20170824073105.3901-1-jslaby@suse.cz
      30d6e0a4
  18. 17 8月, 2017 1 次提交
  19. 13 8月, 2017 1 次提交
  20. 11 8月, 2017 2 次提交
    • M
      mm: fix MADV_[FREE|DONTNEED] TLB flush miss problem · 99baac21
      Minchan Kim 提交于
      Nadav reported parallel MADV_DONTNEED on same range has a stale TLB
      problem and Mel fixed it[1] and found same problem on MADV_FREE[2].
      
      Quote from Mel Gorman:
       "The race in question is CPU 0 running madv_free and updating some PTEs
        while CPU 1 is also running madv_free and looking at the same PTEs.
        CPU 1 may have writable TLB entries for a page but fail the pte_dirty
        check (because CPU 0 has updated it already) and potentially fail to
        flush.
      
        Hence, when madv_free on CPU 1 returns, there are still potentially
        writable TLB entries and the underlying PTE is still present so that a
        subsequent write does not necessarily propagate the dirty bit to the
        underlying PTE any more. Reclaim at some unknown time at the future
        may then see that the PTE is still clean and discard the page even
        though a write has happened in the meantime. I think this is possible
        but I could have missed some protection in madv_free that prevents it
        happening."
      
      This patch aims for solving both problems all at once and is ready for
      other problem with KSM, MADV_FREE and soft-dirty story[3].
      
      TLB batch API(tlb_[gather|finish]_mmu] uses [inc|dec]_tlb_flush_pending
      and mmu_tlb_flush_pending so that when tlb_finish_mmu is called, we can
      catch there are parallel threads going on.  In that case, forcefully,
      flush TLB to prevent for user to access memory via stale TLB entry
      although it fail to gather page table entry.
      
      I confirmed this patch works with [4] test program Nadav gave so this
      patch supersedes "mm: Always flush VMA ranges affected by zap_page_range
      v2" in current mmotm.
      
      NOTE:
      
      This patch modifies arch-specific TLB gathering interface(x86, ia64,
      s390, sh, um).  It seems most of architecture are straightforward but
      s390 need to be careful because tlb_flush_mmu works only if
      mm->context.flush_mm is set to non-zero which happens only a pte entry
      really is cleared by ptep_get_and_clear and friends.  However, this
      problem never changes the pte entries but need to flush to prevent
      memory access from stale tlb.
      
      [1] http://lkml.kernel.org/r/20170725101230.5v7gvnjmcnkzzql3@techsingularity.net
      [2] http://lkml.kernel.org/r/20170725100722.2dxnmgypmwnrfawp@suse.de
      [3] http://lkml.kernel.org/r/BD3A0EBE-ECF4-41D4-87FA-C755EA9AB6BD@gmail.com
      [4] https://patchwork.kernel.org/patch/9861621/
      
      [minchan@kernel.org: decrease tlb flush pending count in tlb_finish_mmu]
        Link: http://lkml.kernel.org/r/20170808080821.GA31730@bbox
      Link: http://lkml.kernel.org/r/20170802000818.4760-7-namit@vmware.comSigned-off-by: NMinchan Kim <minchan@kernel.org>
      Signed-off-by: NNadav Amit <namit@vmware.com>
      Reported-by: NNadav Amit <namit@vmware.com>
      Reported-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NMel Gorman <mgorman@techsingularity.net>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Russell King <linux@armlinux.org.uk>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
      Cc: Jeff Dike <jdike@addtoit.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Nadav Amit <nadav.amit@gmail.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      99baac21
    • M
      mm: refactor TLB gathering API · 56236a59
      Minchan Kim 提交于
      This patch is a preparatory patch for solving race problems caused by
      TLB batch.  For that, we will increase/decrease TLB flush pending count
      of mm_struct whenever tlb_[gather|finish]_mmu is called.
      
      Before making it simple, this patch separates architecture specific part
      and rename it to arch_tlb_[gather|finish]_mmu and generic part just
      calls it.
      
      It shouldn't change any behavior.
      
      Link: http://lkml.kernel.org/r/20170802000818.4760-5-namit@vmware.comSigned-off-by: NMinchan Kim <minchan@kernel.org>
      Signed-off-by: NNadav Amit <namit@vmware.com>
      Acked-by: NMel Gorman <mgorman@techsingularity.net>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Russell King <linux@armlinux.org.uk>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
      Cc: Jeff Dike <jdike@addtoit.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Nadav Amit <nadav.amit@gmail.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      56236a59
  21. 04 8月, 2017 2 次提交
    • L
      sh/PCI: Replace pci_fixup_irqs() call with host bridge IRQ mapping hooks · 20d69322
      Lorenzo Pieralisi 提交于
      The pci_fixup_irqs() function allocates IRQs for all PCI devices present in
      a system; those PCI devices possibly belong to different PCI bus trees (and
      possibly rooted at different host bridges) and may well be enabled (ie
      probed and bound to a driver) by the time pci_fixup_irqs() is called when
      probing a given host bridge driver.
      
      Furthermore, current kernel code relying on pci_fixup_irqs() to assign
      legacy PCI IRQs to devices does not work at all for hotplugged devices in
      that the code carrying out the IRQ fixup is called at host bridge driver
      probe time, which just cannot take into account devices hotplugged after
      the system has booted.
      
      The introduction of map/swizzle function hooks in struct pci_host_bridge
      allows us to define per-bridge map/swizzle functions that can be used at
      device probe time in PCI core code to allocate IRQs for a given device
      (through pci_assign_irq()).
      
      Convert PCI host bridge initialization code to the
      pci_scan_root_bus_bridge() API (that allows to pass a struct
      pci_host_bridge with initialized map/swizzle pointers) and remove the
      pci_fixup_irqs() call from arch code.
      Signed-off-by: NLorenzo Pieralisi <lorenzo.pieralisi@arm.com>
      Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
      Cc: Rich Felker <dalias@libc.org>
      Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
      20d69322
    • M
      sh/PCI: Remove __init optimisations from IRQ mapping functions/data · 2b8ff9f2
      Matthew Minter 提交于
      Currently many IRQ mapping functions and data structures use the __init and
      __initdata optimisations. These result in the relevant functions being
      innaccessible after boot time.
      
      However for deferred IRQ assignment it is important to have access to these
      functions at PCI device enable time.
      
      Therefore, remove the optimisation from the relevant data structures and
      functions to prepare for deferred IRQ assignment.
      Signed-off-by: NMatthew Minter <matt@masarand.com>
      Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
      Cc: Rich Felker <dalias@libc.org>
      Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
      2b8ff9f2
  22. 03 8月, 2017 1 次提交
  23. 20 7月, 2017 1 次提交
  24. 17 7月, 2017 1 次提交
  25. 13 7月, 2017 1 次提交