1. 02 9月, 2020 32 次提交
  2. 29 6月, 2020 5 次提交
  3. 28 5月, 2020 1 次提交
    • A
      open: introduce openat2(2) syscall · 5b9369e5
      Aleksa Sarai 提交于
      to #26323588
      
      commit fddb5d430ad9fa91b49b1d34d0202ffe2fa0e179 upstream.
      
      /* Background. */
      For a very long time, extending openat(2) with new features has been
      incredibly frustrating. This stems from the fact that openat(2) is
      possibly the most famous counter-example to the mantra "don't silently
      accept garbage from userspace" -- it doesn't check whether unknown flags
      are present[1].
      
      This means that (generally) the addition of new flags to openat(2) has
      been fraught with backwards-compatibility issues (O_TMPFILE has to be
      defined as __O_TMPFILE|O_DIRECTORY|[O_RDWR or O_WRONLY] to ensure old
      kernels gave errors, since it's insecure to silently ignore the
      flag[2]). All new security-related flags therefore have a tough road to
      being added to openat(2).
      
      Userspace also has a hard time figuring out whether a particular flag is
      supported on a particular kernel. While it is now possible with
      contemporary kernels (thanks to [3]), older kernels will expose unknown
      flag bits through fcntl(F_GETFL). Giving a clear -EINVAL during
      openat(2) time matches modern syscall designs and is far more
      fool-proof.
      
      In addition, the newly-added path resolution restriction LOOKUP flags
      (which we would like to expose to user-space) don't feel related to the
      pre-existing O_* flag set -- they affect all components of path lookup.
      We'd therefore like to add a new flag argument.
      
      Adding a new syscall allows us to finally fix the flag-ignoring problem,
      and we can make it extensible enough so that we will hopefully never
      need an openat3(2).
      
      /* Syscall Prototype. */
        /*
         * open_how is an extensible structure (similar in interface to
         * clone3(2) or sched_setattr(2)). The size parameter must be set to
         * sizeof(struct open_how), to allow for future extensions. All future
         * extensions will be appended to open_how, with their zero value
         * acting as a no-op default.
         */
        struct open_how { /* ... */ };
      
        int openat2(int dfd, const char *pathname,
                    struct open_how *how, size_t size);
      
      /* Description. */
      The initial version of 'struct open_how' contains the following fields:
      
        flags
          Used to specify openat(2)-style flags. However, any unknown flag
          bits or otherwise incorrect flag combinations (like O_PATH|O_RDWR)
          will result in -EINVAL. In addition, this field is 64-bits wide to
          allow for more O_ flags than currently permitted with openat(2).
      
        mode
          The file mode for O_CREAT or O_TMPFILE.
      
          Must be set to zero if flags does not contain O_CREAT or O_TMPFILE.
      
        resolve
          Restrict path resolution (in contrast to O_* flags they affect all
          path components). The current set of flags are as follows (at the
          moment, all of the RESOLVE_ flags are implemented as just passing
          the corresponding LOOKUP_ flag).
      
          RESOLVE_NO_XDEV       => LOOKUP_NO_XDEV
          RESOLVE_NO_SYMLINKS   => LOOKUP_NO_SYMLINKS
          RESOLVE_NO_MAGICLINKS => LOOKUP_NO_MAGICLINKS
          RESOLVE_BENEATH       => LOOKUP_BENEATH
          RESOLVE_IN_ROOT       => LOOKUP_IN_ROOT
      
      open_how does not contain an embedded size field, because it is of
      little benefit (userspace can figure out the kernel open_how size at
      runtime fairly easily without it). It also only contains u64s (even
      though ->mode arguably should be a u16) to avoid having padding fields
      which are never used in the future.
      
      Note that as a result of the new how->flags handling, O_PATH|O_TMPFILE
      is no longer permitted for openat(2). As far as I can tell, this has
      always been a bug and appears to not be used by userspace (and I've not
      seen any problems on my machines by disallowing it). If it turns out
      this breaks something, we can special-case it and only permit it for
      openat(2) but not openat2(2).
      
      After input from Florian Weimer, the new open_how and flag definitions
      are inside a separate header from uapi/linux/fcntl.h, to avoid problems
      that glibc has with importing that header.
      
      /* Testing. */
      In a follow-up patch there are over 200 selftests which ensure that this
      syscall has the correct semantics and will correctly handle several
      attack scenarios.
      
      In addition, I've written a userspace library[4] which provides
      convenient wrappers around openat2(RESOLVE_IN_ROOT) (this is necessary
      because no other syscalls support RESOLVE_IN_ROOT, and thus lots of care
      must be taken when using RESOLVE_IN_ROOT'd file descriptors with other
      syscalls). During the development of this patch, I've run numerous
      verification tests using libpathrs (showing that the API is reasonably
      usable by userspace).
      
      /* Future Work. */
      Additional RESOLVE_ flags have been suggested during the review period.
      These can be easily implemented separately (such as blocking auto-mount
      during resolution).
      
      Furthermore, there are some other proposed changes to the openat(2)
      interface (the most obvious example is magic-link hardening[5]) which
      would be a good opportunity to add a way for userspace to restrict how
      O_PATH file descriptors can be re-opened.
      
      Another possible avenue of future work would be some kind of
      CHECK_FIELDS[6] flag which causes the kernel to indicate to userspace
      which openat2(2) flags and fields are supported by the current kernel
      (to avoid userspace having to go through several guesses to figure it
      out).
      
      [1]: https://lwn.net/Articles/588444/
      [2]: https://lore.kernel.org/lkml/CA+55aFyyxJL1LyXZeBsf2ypriraj5ut1XkNDsunRBqgVjZU_6Q@mail.gmail.com
      [3]: commit 629e014b ("fs: completely ignore unknown open flags")
      [4]: https://sourceware.org/bugzilla/show_bug.cgi?id=17523
      [5]: https://lore.kernel.org/lkml/20190930183316.10190-2-cyphar@cyphar.com/
      [6]: https://youtu.be/ggD-eb3yPVsSuggested-by: NChristian Brauner <christian.brauner@ubuntu.com>
      Signed-off-by: NAleksa Sarai <cyphar@cyphar.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
      Acked-by: NXiaoguang Wang <xiaoguang.wang@linux.alibaba.com>
      5b9369e5
  4. 28 4月, 2020 2 次提交
    • R
      arm64/lib: improve CRC32 performance for deep pipelines · acc2d05a
      Rongwei Wang 提交于
      to #26730415
      
      commit efdb25efc7645b326cd5eb82be5feeabe167c24e upstream.
      
      Improve the performance of the crc32() asm routines by getting rid of
      most of the branches and small sized loads on the common path.
      
      Instead, use a branchless code path involving overlapping 16 byte
      loads to process the first (length % 32) bytes, and process the
      remainder using a loop that processes 32 bytes at a time.
      
      Tested using the following test program:
      
        #include <stdlib.h>
      
        extern void crc32_le(unsigned short, char const*, int);
      
        int main(void)
        {
          static const char buf[4096];
      
          srand(20181126);
      
          for (int i = 0; i < 100 * 1000 * 1000; i++)
            crc32_le(0, buf, rand() % 1024);
      
          return 0;
        }
      
      On Cortex-A53 and Cortex-A57, the performance regresses but only very
      slightly. On Cortex-A72 however, the performance improves from
      
        $ time ./crc32
      
        real  0m10.149s
        user  0m10.149s
        sys   0m0.000s
      
      to
      
        $ time ./crc32
      
        real  0m7.915s
        user  0m7.915s
        sys   0m0.000s
      
      Cc: Rui Sun <sunrui26@huawei.com>
      Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      Signed-off-by: NRongwei Wang <rongwei.wang@linux.alibaba.com>
      Acked-by: NZou Cao <zoucao@linux.alibaba.com>
      acc2d05a
    • R
      arm64/lib: add accelerated crc32 routines · 19473a51
      Rongwei Wang 提交于
      to #26730415
      
      commit 7481cddf29ede204b475facc40e6f65459939881 upstream.
      
      Unlike crc32c(), which is wired up to the crypto API internally so the
      optimal driver is selected based on the platform's capabilities,
      crc32_le() is implemented as a library function using a slice-by-8 table
      based C implementation. Even though few of the call sites may be
      bottlenecks, calling a time variant implementation with a non-negligible
      D-cache footprint is a bit of a waste, given that ARMv8.1 and up
      mandates
      support for the CRC32 instructions that were optional in ARMv8.0, but
      are
      already widely available, even on the Cortex-A53 based Raspberry Pi.
      
      So implement routines that use these instructions if available, and fall
      back to the existing generic routines otherwise. The selection is based
      on alternatives patching.
      
      Note that this unconditionally selects CONFIG_CRC32 as a builtin. Since
      CRC32 is relied upon by core functionality such as CONFIG_OF_FLATTREE,
      this just codifies the status quo.
      Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      Signed-off-by: NRongwei Wang <rongwei.wang@linux.alibaba.com>
      Acked-by: NZou Cao <zoucao@linux.alibaba.com>
      19473a51