- 20 5月, 2016 1 次提交
-
-
由 Du, Changbin 提交于
Update the return type to use bool instead of int, corresponding to change (debugobjects: make fixup functions return bool instead of int) Signed-off-by: NDu, Changbin <changbin.du@intel.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Triplett <josh@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tejun Heo <tj@kernel.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 5月, 2016 1 次提交
-
-
由 Wanpeng Li 提交于
------------[ cut here ]------------ WARNING: CPU: 0 PID: 16 at kernel/workqueue.c:4559 rebind_workers+0x1c0/0x1d0 Modules linked in: CPU: 0 PID: 16 Comm: cpuhp/0 Not tainted 4.6.0-rc4+ #31 Hardware name: IBM IBM System x3550 M4 Server -[7914IUW]-/00Y8603, BIOS -[D7E128FUS-1.40]- 07/23/2013 0000000000000000 ffff881037babb58 ffffffff8139d885 0000000000000010 0000000000000000 0000000000000000 0000000000000000 ffff881037babba8 ffffffff8108505d ffff881037ba0000 000011cf3e7d6e60 0000000000000046 Call Trace: dump_stack+0x89/0xd4 __warn+0xfd/0x120 warn_slowpath_null+0x1d/0x20 rebind_workers+0x1c0/0x1d0 workqueue_cpu_up_callback+0xf5/0x1d0 notifier_call_chain+0x64/0x90 ? trace_hardirqs_on_caller+0xf2/0x220 ? notify_prepare+0x80/0x80 __raw_notifier_call_chain+0xe/0x10 __cpu_notify+0x35/0x50 notify_down_prepare+0x5e/0x80 ? notify_prepare+0x80/0x80 cpuhp_invoke_callback+0x73/0x330 ? __schedule+0x33e/0x8a0 cpuhp_down_callbacks+0x51/0xc0 cpuhp_thread_fun+0xc1/0xf0 smpboot_thread_fn+0x159/0x2a0 ? smpboot_create_threads+0x80/0x80 kthread+0xef/0x110 ? wait_for_completion+0xf0/0x120 ? schedule_tail+0x35/0xf0 ret_from_fork+0x22/0x50 ? __init_kthread_worker+0x70/0x70 ---[ end trace eb12ae47d2382d8f ]--- notify_down_prepare: attempt to take down CPU 0 failed This bug can be reproduced by below config w/ nohz_full= all cpus: CONFIG_BOOTPARAM_HOTPLUG_CPU0=y CONFIG_DEBUG_HOTPLUG_CPU0=y CONFIG_NO_HZ_FULL=y As Thomas pointed out: | If a down prepare callback fails, then DOWN_FAILED is invoked for all | callbacks which have successfully executed DOWN_PREPARE. | | But, workqueue has actually two notifiers. One which handles | UP/DOWN_FAILED/ONLINE and one which handles DOWN_PREPARE. | | Now look at the priorities of those callbacks: | | CPU_PRI_WORKQUEUE_UP = 5 | CPU_PRI_WORKQUEUE_DOWN = -5 | | So the call order on DOWN_PREPARE is: | | CB 1 | CB ... | CB workqueue_up() -> Ignores DOWN_PREPARE | CB ... | CB X ---> Fails | | So we call up to CB X with DOWN_FAILED | | CB 1 | CB ... | CB workqueue_up() -> Handles DOWN_FAILED | CB ... | CB X-1 | | So the problem is that the workqueue stuff handles DOWN_FAILED in the up | callback, while it should do it in the down callback. Which is not a good idea | either because it wants to be called early on rollback... | | Brilliant stuff, isn't it? The hotplug rework will solve this problem because | the callbacks become symetric, but for the existing mess, we need some | workaround in the workqueue code. The boot CPU handles housekeeping duty(unbound timers, workqueues, timekeeping, ...) on behalf of full dynticks CPUs. It must remain online when nohz full is enabled. There is a priority set to every notifier_blocks: workqueue_cpu_up > tick_nohz_cpu_down > workqueue_cpu_down So tick_nohz_cpu_down callback failed when down prepare cpu 0, and notifier_blocks behind tick_nohz_cpu_down will not be called any more, which leads to workers are actually not unbound. Then hotplug state machine will fallback to undo and online cpu 0 again. Workers will be rebound unconditionally even if they are not unbound and trigger the warning in this progress. This patch fix it by catching !DISASSOCIATED to avoid rebind bound workers. Cc: Tejun Heo <tj@kernel.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: stable@vger.kernel.org Suggested-by: NLai Jiangshan <jiangshanlai@gmail.com> Signed-off-by: NWanpeng Li <wanpeng.li@hotmail.com>
-
- 26 4月, 2016 1 次提交
-
-
由 Roman Pen 提交于
The bug in a workqueue leads to a stalled IO request in MQ ctx->rq_list with the following backtrace: [ 601.347452] INFO: task kworker/u129:5:1636 blocked for more than 120 seconds. [ 601.347574] Tainted: G O 4.4.5-1-storage+ #6 [ 601.347651] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 601.348142] kworker/u129:5 D ffff880803077988 0 1636 2 0x00000000 [ 601.348519] Workqueue: ibnbd_server_fileio_wq ibnbd_dev_file_submit_io_worker [ibnbd_server] [ 601.348999] ffff880803077988 ffff88080466b900 ffff8808033f9c80 ffff880803078000 [ 601.349662] ffff880807c95000 7fffffffffffffff ffffffff815b0920 ffff880803077ad0 [ 601.350333] ffff8808030779a0 ffffffff815b01d5 0000000000000000 ffff880803077a38 [ 601.350965] Call Trace: [ 601.351203] [<ffffffff815b0920>] ? bit_wait+0x60/0x60 [ 601.351444] [<ffffffff815b01d5>] schedule+0x35/0x80 [ 601.351709] [<ffffffff815b2dd2>] schedule_timeout+0x192/0x230 [ 601.351958] [<ffffffff812d43f7>] ? blk_flush_plug_list+0xc7/0x220 [ 601.352208] [<ffffffff810bd737>] ? ktime_get+0x37/0xa0 [ 601.352446] [<ffffffff815b0920>] ? bit_wait+0x60/0x60 [ 601.352688] [<ffffffff815af784>] io_schedule_timeout+0xa4/0x110 [ 601.352951] [<ffffffff815b3a4e>] ? _raw_spin_unlock_irqrestore+0xe/0x10 [ 601.353196] [<ffffffff815b093b>] bit_wait_io+0x1b/0x70 [ 601.353440] [<ffffffff815b056d>] __wait_on_bit+0x5d/0x90 [ 601.353689] [<ffffffff81127bd0>] wait_on_page_bit+0xc0/0xd0 [ 601.353958] [<ffffffff81096db0>] ? autoremove_wake_function+0x40/0x40 [ 601.354200] [<ffffffff81127cc4>] __filemap_fdatawait_range+0xe4/0x140 [ 601.354441] [<ffffffff81127d34>] filemap_fdatawait_range+0x14/0x30 [ 601.354688] [<ffffffff81129a9f>] filemap_write_and_wait_range+0x3f/0x70 [ 601.354932] [<ffffffff811ced3b>] blkdev_fsync+0x1b/0x50 [ 601.355193] [<ffffffff811c82d9>] vfs_fsync_range+0x49/0xa0 [ 601.355432] [<ffffffff811cf45a>] blkdev_write_iter+0xca/0x100 [ 601.355679] [<ffffffff81197b1a>] __vfs_write+0xaa/0xe0 [ 601.355925] [<ffffffff81198379>] vfs_write+0xa9/0x1a0 [ 601.356164] [<ffffffff811c59d8>] kernel_write+0x38/0x50 The underlying device is a null_blk, with default parameters: queue_mode = MQ submit_queues = 1 Verification that nullb0 has something inflight: root@pserver8:~# cat /sys/block/nullb0/inflight 0 1 root@pserver8:~# find /sys/block/nullb0/mq/0/cpu* -name rq_list -print -exec cat {} \; ... /sys/block/nullb0/mq/0/cpu2/rq_list CTX pending: ffff8838038e2400 ... During debug it became clear that stalled request is always inserted in the rq_list from the following path: save_stack_trace_tsk + 34 blk_mq_insert_requests + 231 blk_mq_flush_plug_list + 281 blk_flush_plug_list + 199 wait_on_page_bit + 192 __filemap_fdatawait_range + 228 filemap_fdatawait_range + 20 filemap_write_and_wait_range + 63 blkdev_fsync + 27 vfs_fsync_range + 73 blkdev_write_iter + 202 __vfs_write + 170 vfs_write + 169 kernel_write + 56 So blk_flush_plug_list() was called with from_schedule == true. If from_schedule is true, that means that finally blk_mq_insert_requests() offloads execution of __blk_mq_run_hw_queue() and uses kblockd workqueue, i.e. it calls kblockd_schedule_delayed_work_on(). That means, that we race with another CPU, which is about to execute __blk_mq_run_hw_queue() work. Further debugging shows the following traces from different CPUs: CPU#0 CPU#1 ---------------------------------- ------------------------------- reqeust A inserted STORE hctx->ctx_map[0] bit marked kblockd_schedule...() returns 1 <schedule to kblockd workqueue> request B inserted STORE hctx->ctx_map[1] bit marked kblockd_schedule...() returns 0 *** WORK PENDING bit is cleared *** flush_busy_ctxs() is executed, but bit 1, set by CPU#1, is not observed As a result request B pended forever. This behaviour can be explained by speculative LOAD of hctx->ctx_map on CPU#0, which is reordered with clear of PENDING bit and executed _before_ actual STORE of bit 1 on CPU#1. The proper fix is an explicit full barrier <mfence>, which guarantees that clear of PENDING bit is to be executed before all possible speculative LOADS or STORES inside actual work function. Signed-off-by: NRoman Pen <roman.penyaev@profitbricks.com> Cc: Gioh Kim <gi-oh.kim@profitbricks.com> Cc: Michael Wang <yun.wang@profitbricks.com> Cc: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: linux-block@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: stable@vger.kernel.org Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 16 3月, 2016 1 次提交
-
-
由 Peter Zijlstra 提交于
$ make tags GEN tags ctags: Warning: drivers/acpi/processor_idle.c:64: null expansion of name pattern "\1" ctags: Warning: drivers/xen/events/events_2l.c:41: null expansion of name pattern "\1" ctags: Warning: kernel/locking/lockdep.c:151: null expansion of name pattern "\1" ctags: Warning: kernel/rcu/rcutorture.c:133: null expansion of name pattern "\1" ctags: Warning: kernel/rcu/rcutorture.c:135: null expansion of name pattern "\1" ctags: Warning: kernel/workqueue.c:323: null expansion of name pattern "\1" ctags: Warning: net/ipv4/syncookies.c:53: null expansion of name pattern "\1" ctags: Warning: net/ipv6/syncookies.c:44: null expansion of name pattern "\1" ctags: Warning: net/rds/page.c:45: null expansion of name pattern "\1" Which are all the result of the DEFINE_PER_CPU pattern: scripts/tags.sh:200: '/\<DEFINE_PER_CPU([^,]*, *\([[:alnum:]_]*\)/\1/v/' scripts/tags.sh:201: '/\<DEFINE_PER_CPU_SHARED_ALIGNED([^,]*, *\([[:alnum:]_]*\)/\1/v/' The below cures them. All except the workqueue one are within reasonable distance of the 80 char limit. TJ do you have any preference on how to fix the wq one, or shall we just not care its too long? Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Tejun Heo <tj@kernel.org> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 3月, 2016 1 次提交
-
-
由 Anna-Maria Gleixner 提交于
Function is processed in thread context, not in user context. Cc: Tejun Heo <tj@kernel.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAnna-Maria Gleixner <anna-maria@linutronix.de> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 02 3月, 2016 1 次提交
-
-
由 Alexander Gordeev 提交于
Given that wq_worker_sleeping() could only be called for a CPU it is running on, we do not need passing a CPU ID as an argument. Suggested-by: NOleg Nesterov <oleg@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NAlexander Gordeev <agordeev@redhat.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 18 2月, 2016 1 次提交
-
-
由 Lars-Peter Clausen 提交于
The init_name property of the device struct is sort of a hack and should only be used for statically allocated devices. Since the device is dynamically allocated here it is safe to use the proper way to set a devices name by calling dev_set_name(). Signed-off-by: NLars-Peter Clausen <lars@metafoo.de> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 11 2月, 2016 1 次提交
-
-
由 Tejun Heo 提交于
When looking up the pool_workqueue to use for an unbound workqueue, workqueue assumes that the target CPU is always bound to a valid NUMA node. However, currently, when a CPU goes offline, the mapping is destroyed and cpu_to_node() returns NUMA_NO_NODE. This has always been broken but hasn't triggered often enough before 874bbfe6 ("workqueue: make sure delayed work run in local cpu"). After the commit, workqueue forcifully assigns the local CPU for delayed work items without explicit target CPU to fix a different issue. This widens the window where CPU can go offline while a delayed work item is pending causing delayed work items dispatched with target CPU set to an already offlined CPU. The resulting NUMA_NO_NODE mapping makes workqueue try to queue the work item on a NULL pool_workqueue and thus crash. While 874bbfe6 has been reverted for a different reason making the bug less visible again, it can still happen. Fix it by mapping NUMA_NO_NODE to the default pool_workqueue from unbound_pwq_by_node(). This is a temporary workaround. The long term solution is keeping CPU -> NODE mapping stable across CPU off/online cycles which is being worked on. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NMike Galbraith <umgwanakikbuti@gmail.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Rafael J. Wysocki <rafael@kernel.org> Cc: Len Brown <len.brown@intel.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/g/1454424264.11183.46.camel@gmail.com Link: http://lkml.kernel.org/g/1453702100-2597-1-git-send-email-tangchen@cn.fujitsu.com
-
- 10 2月, 2016 3 次提交
-
-
由 Tejun Heo 提交于
Workqueue used to guarantee local execution for work items queued without explicit target CPU. The guarantee is gone now which can break some usages in subtle ways. To flush out those cases, this patch implements a debug feature which forces round-robin CPU selection for all such work items. The debug feature defaults to off and can be enabled with a kernel parameter. The default can be flipped with a debug config option. If you hit this commit during bisection, please refer to 041bd12e ("Revert "workqueue: make sure delayed work run in local cpu"") for more information and ping me. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Mike Galbraith 提交于
WORK_CPU_UNBOUND work items queued to a bound workqueue always run locally. This is a good thing normally, but not when the user has asked us to keep unbound work away from certain CPUs. Round robin these to wq_unbound_cpumask CPUs instead, as perturbation avoidance trumps performance. tj: Cosmetic and comment changes. WARN_ON_ONCE() dropped from empty (wq_unbound_cpumask AND cpu_online_mask). If we want that, it should be done when config changes. Signed-off-by: NMike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
This reverts commit 874bbfe6. Workqueue used to implicity guarantee that work items queued without explicit CPU specified are put on the local CPU. Recent changes in timer broke the guarantee and led to vmstat breakage which was fixed by 176bed1d ("vmstat: explicitly schedule per-cpu work on the CPU we need it to run on"). vmstat is the most likely to expose the issue and it's quite possible that there are other similar problems which are a lot more difficult to trigger. As a preventive measure, 874bbfe6 ("workqueue: make sure delayed work run in local cpu") was applied to restore the local CPU guarnatee. Unfortunately, the change exposed a bug in timer code which got fixed by 22b886dd ("timers: Use proper base migration in add_timer_on()"). Due to code restructuring, the commit couldn't be backported beyond certain point and stable kernels which only had 874bbfe6 started crashing. The local CPU guarantee was accidental more than anything else and we want to get rid of it anyway. As, with the vmstat case fixed, 874bbfe6 is causing more problems than it's fixing, it has been decided to take the chance and officially break the guarantee by reverting the commit. A debug feature will be added to force foreign CPU assignment to expose cases relying on the guarantee and fixes for the individual cases will be backported to stable as necessary. Signed-off-by: NTejun Heo <tj@kernel.org> Fixes: 874bbfe6 ("workqueue: make sure delayed work run in local cpu") Link: http://lkml.kernel.org/g/20160120211926.GJ10810@quack.suse.cz Cc: stable@vger.kernel.org Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Henrique de Moraes Holschuh <hmh@hmh.eng.br> Cc: Daniel Bilik <daniel.bilik@neosystem.cz> Cc: Jan Kara <jack@suse.cz> Cc: Shaohua Li <shli@fb.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Daniel Bilik <daniel.bilik@neosystem.cz> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Michal Hocko <mhocko@kernel.org>
-
- 30 1月, 2016 1 次提交
-
-
由 Tejun Heo 提交于
fca839c0 ("workqueue: warn if memory reclaim tries to flush !WQ_MEM_RECLAIM workqueue") implemented flush dependency warning which triggers if a PF_MEMALLOC task or WQ_MEM_RECLAIM workqueue tries to flush a !WQ_MEM_RECLAIM workquee. This assumes that workqueues marked with WQ_MEM_RECLAIM sit in memory reclaim path and making it depend on something which may need more memory to make forward progress can lead to deadlocks. Unfortunately, workqueues created with the legacy create*_workqueue() interface always have WQ_MEM_RECLAIM regardless of whether they are depended upon memory reclaim or not. These spurious WQ_MEM_RECLAIM markings cause spurious triggering of the flush dependency checks. WARNING: CPU: 0 PID: 6 at kernel/workqueue.c:2361 check_flush_dependency+0x138/0x144() workqueue: WQ_MEM_RECLAIM deferwq:deferred_probe_work_func is flushing !WQ_MEM_RECLAIM events:lru_add_drain_per_cpu ... Workqueue: deferwq deferred_probe_work_func [<c0017acc>] (unwind_backtrace) from [<c0013134>] (show_stack+0x10/0x14) [<c0013134>] (show_stack) from [<c0245f18>] (dump_stack+0x94/0xd4) [<c0245f18>] (dump_stack) from [<c0026f9c>] (warn_slowpath_common+0x80/0xb0) [<c0026f9c>] (warn_slowpath_common) from [<c0026ffc>] (warn_slowpath_fmt+0x30/0x40) [<c0026ffc>] (warn_slowpath_fmt) from [<c00390b8>] (check_flush_dependency+0x138/0x144) [<c00390b8>] (check_flush_dependency) from [<c0039ca0>] (flush_work+0x50/0x15c) [<c0039ca0>] (flush_work) from [<c00c51b0>] (lru_add_drain_all+0x130/0x180) [<c00c51b0>] (lru_add_drain_all) from [<c00f728c>] (migrate_prep+0x8/0x10) [<c00f728c>] (migrate_prep) from [<c00bfbc4>] (alloc_contig_range+0xd8/0x338) [<c00bfbc4>] (alloc_contig_range) from [<c00f8f18>] (cma_alloc+0xe0/0x1ac) [<c00f8f18>] (cma_alloc) from [<c001cac4>] (__alloc_from_contiguous+0x38/0xd8) [<c001cac4>] (__alloc_from_contiguous) from [<c001ceb4>] (__dma_alloc+0x240/0x278) [<c001ceb4>] (__dma_alloc) from [<c001cf78>] (arm_dma_alloc+0x54/0x5c) [<c001cf78>] (arm_dma_alloc) from [<c0355ea4>] (dmam_alloc_coherent+0xc0/0xec) [<c0355ea4>] (dmam_alloc_coherent) from [<c039cc4c>] (ahci_port_start+0x150/0x1dc) [<c039cc4c>] (ahci_port_start) from [<c0384734>] (ata_host_start.part.3+0xc8/0x1c8) [<c0384734>] (ata_host_start.part.3) from [<c03898dc>] (ata_host_activate+0x50/0x148) [<c03898dc>] (ata_host_activate) from [<c039d558>] (ahci_host_activate+0x44/0x114) [<c039d558>] (ahci_host_activate) from [<c039f05c>] (ahci_platform_init_host+0x1d8/0x3c8) [<c039f05c>] (ahci_platform_init_host) from [<c039e6bc>] (tegra_ahci_probe+0x448/0x4e8) [<c039e6bc>] (tegra_ahci_probe) from [<c0347058>] (platform_drv_probe+0x50/0xac) [<c0347058>] (platform_drv_probe) from [<c03458cc>] (driver_probe_device+0x214/0x2c0) [<c03458cc>] (driver_probe_device) from [<c0343cc0>] (bus_for_each_drv+0x60/0x94) [<c0343cc0>] (bus_for_each_drv) from [<c03455d8>] (__device_attach+0xb0/0x114) [<c03455d8>] (__device_attach) from [<c0344ab8>] (bus_probe_device+0x84/0x8c) [<c0344ab8>] (bus_probe_device) from [<c0344f48>] (deferred_probe_work_func+0x68/0x98) [<c0344f48>] (deferred_probe_work_func) from [<c003b738>] (process_one_work+0x120/0x3f8) [<c003b738>] (process_one_work) from [<c003ba48>] (worker_thread+0x38/0x55c) [<c003ba48>] (worker_thread) from [<c0040f14>] (kthread+0xdc/0xf4) [<c0040f14>] (kthread) from [<c000f778>] (ret_from_fork+0x14/0x3c) Fix it by marking workqueues created via create*_workqueue() with __WQ_LEGACY and disabling flush dependency checks on them. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-and-tested-by: NThierry Reding <thierry.reding@gmail.com> Link: http://lkml.kernel.org/g/20160126173843.GA11115@ulmo.nvidia.com Fixes: fca839c0 ("workqueue: warn if memory reclaim tries to flush !WQ_MEM_RECLAIM workqueue")
-
- 08 1月, 2016 1 次提交
-
-
由 wanghaibin 提交于
If the apply_wqattrs_prepare() returns NULL, it has already cleaned up the related resources, so it can return directly and avoid calling the clean up function again. This doesn't introduce any functional changes. Signed-off-by: Nwanghaibin <wanghaibin.wang@huawei.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 09 12月, 2015 2 次提交
-
-
由 Tejun Heo 提交于
Workqueue stalls can happen from a variety of usage bugs such as missing WQ_MEM_RECLAIM flag or concurrency managed work item indefinitely staying RUNNING. These stalls can be extremely difficult to hunt down because the usual warning mechanisms can't detect workqueue stalls and the internal state is pretty opaque. To alleviate the situation, this patch implements workqueue lockup detector. It periodically monitors all worker_pools periodically and, if any pool failed to make forward progress longer than the threshold duration, triggers warning and dumps workqueue state as follows. BUG: workqueue lockup - pool cpus=0 node=0 flags=0x0 nice=0 stuck for 31s! Showing busy workqueues and worker pools: workqueue events: flags=0x0 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=17/256 pending: monkey_wrench_fn, e1000_watchdog, cache_reap, vmstat_shepherd, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, cgroup_release_agent workqueue events_power_efficient: flags=0x80 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=2/256 pending: check_lifetime, neigh_periodic_work workqueue cgroup_pidlist_destroy: flags=0x0 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/1 pending: cgroup_pidlist_destroy_work_fn ... The detection mechanism is controller through kernel parameter workqueue.watchdog_thresh and can be updated at runtime through the sysfs module parameter file. v2: Decoupled from softlockup control knobs. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NDon Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Andrew Morton <akpm@linux-foundation.org>
-
由 Tejun Heo 提交于
Task or work item involved in memory reclaim trying to flush a non-WQ_MEM_RECLAIM workqueue or one of its work items can lead to deadlock. Trigger WARN_ONCE() if such conditions are detected. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org>
-
- 13 10月, 2015 1 次提交
-
-
由 Xunlei Pang 提交于
Currently, get_unbound_pool() uses kzalloc() to allocate the worker pool. Actually, we can use the right node to do the allocation, achieving local memory access. This patch selects target node first, and uses kzalloc_node() instead. Signed-off-by: NXunlei Pang <pang.xunlei@linaro.org> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 01 10月, 2015 1 次提交
-
-
由 Shaohua Li 提交于
My system keeps crashing with below message. vmstat_update() schedules a delayed work in current cpu and expects the work runs in the cpu. schedule_delayed_work() is expected to make delayed work run in local cpu. The problem is timer can be migrated with NO_HZ. __queue_work() queues work in timer handler, which could run in a different cpu other than where the delayed work is scheduled. The end result is the delayed work runs in different cpu. The patch makes __queue_delayed_work records local cpu earlier. Where the timer runs doesn't change where the work runs with the change. [ 28.010131] ------------[ cut here ]------------ [ 28.010609] kernel BUG at ../mm/vmstat.c:1392! [ 28.011099] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC KASAN [ 28.011860] Modules linked in: [ 28.012245] CPU: 0 PID: 289 Comm: kworker/0:3 Tainted: G W4.3.0-rc3+ #634 [ 28.013065] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.7.5-20140709_153802- 04/01/2014 [ 28.014160] Workqueue: events vmstat_update [ 28.014571] task: ffff880117682580 ti: ffff8800ba428000 task.ti: ffff8800ba428000 [ 28.015445] RIP: 0010:[<ffffffff8115f921>] [<ffffffff8115f921>]vmstat_update+0x31/0x80 [ 28.016282] RSP: 0018:ffff8800ba42fd80 EFLAGS: 00010297 [ 28.016812] RAX: 0000000000000000 RBX: ffff88011a858dc0 RCX:0000000000000000 [ 28.017585] RDX: ffff880117682580 RSI: ffffffff81f14d8c RDI:ffffffff81f4df8d [ 28.018366] RBP: ffff8800ba42fd90 R08: 0000000000000001 R09:0000000000000000 [ 28.019169] R10: 0000000000000000 R11: 0000000000000121 R12:ffff8800baa9f640 [ 28.019947] R13: ffff88011a81e340 R14: ffff88011a823700 R15:0000000000000000 [ 28.020071] FS: 0000000000000000(0000) GS:ffff88011a800000(0000)knlGS:0000000000000000 [ 28.020071] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 28.020071] CR2: 00007ff6144b01d0 CR3: 00000000b8e93000 CR4:00000000000006f0 [ 28.020071] Stack: [ 28.020071] ffff88011a858dc0 ffff8800baa9f640 ffff8800ba42fe00ffffffff8106bd88 [ 28.020071] ffffffff8106bd0b 0000000000000096 0000000000000000ffffffff82f9b1e8 [ 28.020071] ffffffff829f0b10 0000000000000000 ffffffff81f18460ffff88011a81e340 [ 28.020071] Call Trace: [ 28.020071] [<ffffffff8106bd88>] process_one_work+0x1c8/0x540 [ 28.020071] [<ffffffff8106bd0b>] ? process_one_work+0x14b/0x540 [ 28.020071] [<ffffffff8106c214>] worker_thread+0x114/0x460 [ 28.020071] [<ffffffff8106c100>] ? process_one_work+0x540/0x540 [ 28.020071] [<ffffffff81071bf8>] kthread+0xf8/0x110 [ 28.020071] [<ffffffff81071b00>] ?kthread_create_on_node+0x200/0x200 [ 28.020071] [<ffffffff81a6522f>] ret_from_fork+0x3f/0x70 [ 28.020071] [<ffffffff81071b00>] ?kthread_create_on_node+0x200/0x200 Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NTejun Heo <tj@kernel.org> Cc: stable@vger.kernel.org # v2.6.31+
-
- 12 8月, 2015 1 次提交
-
-
由 Peter Zijlstra 提交于
Because sched_setscheduler() checks p->flags & PF_NO_SETAFFINITY without locks, a caller might observe an old value and race with the set_cpus_allowed_ptr() call from __kthread_bind() and effectively undo it: __kthread_bind() do_set_cpus_allowed() <SYSCALL> sched_setaffinity() if (p->flags & PF_NO_SETAFFINITIY) set_cpus_allowed_ptr() p->flags |= PF_NO_SETAFFINITY Fix the bug by putting everything under the regular scheduler locks. This also closes a hole in the serialization of task_struct::{nr_,}cpus_allowed. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NTejun Heo <tj@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dedekind1@gmail.com Cc: juri.lelli@arm.com Cc: mgorman@suse.de Cc: riel@redhat.com Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/20150515154833.545640346@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 05 8月, 2015 1 次提交
-
-
由 Tim Gardner 提交于
Commit 37b1ef31 ("workqueue: move flush_scheduled_work() to workqueue.h") moved the exported non GPL flush_scheduled_work() from a function to an inline wrapper. Unfortunately, it directly calls flush_workqueue() which is a GPL function. This has the effect of changing the licensing requirement for this function and makes it unavailable to non GPL modules. See commit ad7b1f84 ("workqueue: Make schedule_work() available again to non GPL modules") for precedent. Signed-off-by: NTim Gardner <tim.gardner@canonical.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 23 7月, 2015 1 次提交
-
-
由 Paul E. McKenney 提交于
This commit renames rcu_lockdep_assert() to RCU_LOCKDEP_WARN() for consistency with the WARN() series of macros. This also requires inverting the sense of the conditional, which this commit also does. Reported-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NIngo Molnar <mingo@kernel.org>
-
- 29 5月, 2015 1 次提交
-
-
由 Shailendra Verma 提交于
tj: dropped iff -> if, iff is if and only if not a typo. Spotted by Randy Dunlap. Signed-off-by: NShailendra Verma <shailendra.capricorn@gmail.com> Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org>
-
- 28 5月, 2015 1 次提交
-
-
由 Luis R. Rodriguez 提交于
We can avoid an ifdef over wq_power_efficient's declaration by just using IS_ENABLED(). Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Jani Nikula <jani.nikula@intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Kees Cook <keescook@chromium.org> Cc: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: linux-kernel@vger.kernel.org Cc: cocci@systeme.lip6.fr Signed-off-by: NLuis R. Rodriguez <mcgrof@suse.com> Signed-off-by: NRusty Russell <rusty@rustcorp.com.au>
-
- 22 5月, 2015 3 次提交
-
-
由 Lai Jiangshan 提交于
flush_scheduled_work() is just a simple call to flush_work(). Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Lai Jiangshan 提交于
Reading to wq->unbound_attrs requires protection of either wq_pool_mutex or wq->mutex, and wq_sysfs_prep_attrs() is called with wq_pool_mutex held, so we don't need to grab wq->mutex here. Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Lai Jiangshan 提交于
This pre-declaration was unneeded since a previous refactor patch 6ba94429 ("workqueue: Reorder sysfs code"). Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 20 5月, 2015 2 次提交
-
-
由 Lai Jiangshan 提交于
Current modification to attrs via sysfs is not fully synchronized. Process A (change cpumask) | Process B (change numa affinity) wq_cpumask_store() | wq_sysfs_prep_attrs() | | apply_workqueue_attrs() apply_workqueue_attrs() | It results that the Process B's operation is totally reverted without any notification, it is a buggy behavior. So this patch moves wq_sysfs_prep_attrs() into the protection under wq_pool_mutex to ensure attrs changes are properly synchronized. Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Lai Jiangshan 提交于
Applying attrs requires two locks: get_online_cpus() and wq_pool_mutex, and this code is duplicated at two places (apply_workqueue_attrs() and workqueue_set_unbound_cpumask()). So we separate out this locking code into apply_wqattrs_[un]lock() and do a minor refactor on apply_workqueue_attrs(). The apply_wqattrs_[un]lock() will be also used on later patch for ensuring attrs changes are properly synchronized. tj: minor updates to comments Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 19 5月, 2015 2 次提交
-
-
由 Lai Jiangshan 提交于
wq_update_unbound_numa() is known be called with wq_pool_mutex held. But wq_update_unbound_numa() requests wq->mutex before reading wq->unbound_attrs, wq->numa_pwq_tbl[] and wq->dfl_pwq. But these fields were changed to be allowed being read with wq_pool_mutex held. So we simply remove the mutex_lock(&wq->mutex). Without the dependence on the the mutex_lock(&wq->mutex), the test of wq->unbound_attrs->no_numa can also be moved upward. The old code need a long comment to describe the stableness of @wq->unbound_attrs which is also guaranteed by wq_pool_mutex now, so we don't need this such comment. Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Lai Jiangshan 提交于
Current wq_pool_mutex doesn't proctect the attrs-installation, it results that ->unbound_attrs, ->numa_pwq_tbl[] and ->dfl_pwq can only be accessed under wq->mutex and causes some inconveniences. Example, wq_update_unbound_numa() has to acquire wq->mutex before fetching the wq->unbound_attrs->no_numa and the old_pwq. attrs-installation is a short operation, so this change will no cause any latency for other operations which also acquire the wq_pool_mutex. The only unprotected attrs-installation code is in apply_workqueue_attrs(), so this patch touches code less than comments. It is also a preparation patch for next several patches which read wq->unbound_attrs, wq->numa_pwq_tbl[] and wq->dfl_pwq with only wq_pool_mutex held. Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 13 5月, 2015 1 次提交
-
-
由 Chen Hanxiao 提交于
s/detemined/determined Signed-off-by: NChen Hanxiao <chenhanxiao@cn.fujitsu.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 11 5月, 2015 1 次提交
-
-
由 Gong Zhaogang 提交于
modify wq_calc_node_mask to wq_calc_node_cpumask Signed-off-by: NGong Zhaogang <gongzhaogang@inspur.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 30 4月, 2015 1 次提交
-
-
由 Lai Jiangshan 提交于
Allow to modify the low-level unbound workqueues cpumask through sysfs. This is performed by traversing the entire workqueue list and calling apply_wqattrs_prepare() on the unbound workqueues with the new low level mask. Only after all the preparation are done, we commit them all together. Ordered workqueues are ignored from the low level unbound workqueue cpumask, it will be handled in near future. All the (default & per-node) pwqs are mandatorily controlled by the low level cpumask. If the user configured cpumask doesn't overlap with the low level cpumask, the low level cpumask will be used for the wq instead. The comment of wq_calc_node_cpumask() is updated and explicitly requires that its first argument should be the attrs of the default pwq. The default wq_unbound_cpumask is cpu_possible_mask. The workqueue subsystem doesn't know its best default value, let the system manager or the other subsystem set it when needed. Changed from V8: merge the calculating code for the attrs of the default pwq together. minor change the code&comments for saving the user configured attrs. remove unnecessary list_del(). minor update the comment of wq_calc_node_cpumask(). update the comment of workqueue_set_unbound_cpumask(); Cc: Christoph Lameter <cl@linux.com> Cc: Kevin Hilman <khilman@linaro.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Mike Galbraith <bitbucket@online.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Original-patch-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 27 4月, 2015 2 次提交
-
-
由 Frederic Weisbecker 提交于
Create a cpumask that limits the affinity of all unbound workqueues. This cpumask is controlled through a file at the root of the workqueue sysfs directory. It works on a lower-level than the per WQ_SYSFS workqueues cpumask files such that the effective cpumask applied for a given unbound workqueue is the intersection of /sys/devices/virtual/workqueue/$WORKQUEUE/cpumask and the new /sys/devices/virtual/workqueue/cpumask file. This patch implements the basic infrastructure and the read interface. wq_unbound_cpumask is initially set to cpu_possible_mask. Cc: Christoph Lameter <cl@linux.com> Cc: Kevin Hilman <khilman@linaro.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Mike Galbraith <bitbucket@online.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Lai Jiangshan 提交于
Current apply_workqueue_attrs() includes pwqs-allocation and pwqs-installation, so when we batch multiple apply_workqueue_attrs()s as a transaction, we can't ensure the transaction must succeed or fail as a complete unit. To solve this, we split apply_workqueue_attrs() into three stages. The first stage does the preparation: allocation memory, pwqs. The second stage does the attrs-installaion and pwqs-installation. The third stage frees the allocated memory and (old or unused) pwqs. As the result, batching multiple apply_workqueue_attrs()s can succeed or fail as a complete unit: 1) batch do all the first stage for all the workqueues 2) only commit all when all the above succeed. This patch is a preparation for the next patch ("Allow modifying low level unbound workqueue cpumask") which will do a multiple apply_workqueue_attrs(). The patch doesn't have functionality changed except two minor adjustment: 1) free_unbound_pwq() for the error path is removed, we use the heavier version put_pwq_unlocked() instead since the error path is rare. this adjustment simplifies the code. 2) the memory-allocation is also moved into wq_pool_mutex. this is needed to avoid to do the further splitting. tj: minor updates to comments. Suggested-by: NTejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Kevin Hilman <khilman@linaro.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Mike Galbraith <bitbucket@online.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 06 4月, 2015 1 次提交
-
-
由 Frederic Weisbecker 提交于
The sysfs code usually belongs to the botom of the file since it deals with high level objects. In the workqueue code it's misplaced and such that we'll need to work around functions references to allow the sysfs code to call APIs like apply_workqueue_attrs(). Lets move that block further in the file, almost the botom. And declare workqueue_sysfs_unregister() just before destroy_workqueue() which reference it. tj: Moved workqueue_sysfs_unregister() forward declaration where other forward declarations are. Suggested-by: NTejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Kevin Hilman <khilman@linaro.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Mike Galbraith <bitbucket@online.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 09 3月, 2015 3 次提交
-
-
由 Tejun Heo 提交于
Workqueues are used extensively throughout the kernel but sometimes it's difficult to debug stalls involving work items because visibility into its inner workings is fairly limited. Although sysrq-t task dump annotates each active worker task with the information on the work item being executed, it is challenging to find out which work items are pending or delayed on which queues and how pools are being managed. This patch implements show_workqueue_state() which dumps all busy workqueues and pools and is called from the sysrq-t handler. At the end of sysrq-t dump, something like the following is printed. Showing busy workqueues and worker pools: ... workqueue filler_wq: flags=0x0 pwq 2: cpus=1 node=0 flags=0x0 nice=0 active=2/256 in-flight: 491:filler_workfn, 507:filler_workfn pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=2/256 in-flight: 501:filler_workfn pending: filler_workfn ... workqueue test_wq: flags=0x8 pwq 2: cpus=1 node=0 flags=0x0 nice=0 active=1/1 in-flight: 510(RESCUER):test_workfn BAR(69) BAR(500) delayed: test_workfn1 BAR(492), test_workfn2 ... pool 0: cpus=0 node=0 flags=0x0 nice=0 workers=2 manager: 137 pool 2: cpus=1 node=0 flags=0x0 nice=0 workers=3 manager: 469 pool 3: cpus=1 node=0 flags=0x0 nice=-20 workers=2 idle: 16 pool 8: cpus=0-3 flags=0x4 nice=0 workers=2 manager: 62 The above shows that test_wq is executing test_workfn() on pid 510 which is the rescuer and also that there are two tasks 69 and 500 waiting for the work item to finish in flush_work(). As test_wq has max_active of 1, there are two work items for test_workfn1() and test_workfn2() which are delayed till the current work item is finished. In addition, pid 492 is flushing test_workfn1(). The work item for test_workfn() is being executed on pwq of pool 2 which is the normal priority per-cpu pool for CPU 1. The pool has three workers, two of which are executing filler_workfn() for filler_wq and the last one is assuming the manager role trying to create more workers. This extra workqueue state dump will hopefully help chasing down hangs involving workqueues. v3: cpulist_pr_cont() replaced with "%*pbl" printf formatting. v2: As suggested by Andrew, minor formatting change in pr_cont_work(), printk()'s replaced with pr_info()'s, and cpumask printing now uses cpulist_pr_cont(). Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> CC: Ingo Molnar <mingo@redhat.com>
-
由 Tejun Heo 提交于
Add wq_barrier->task and worker_pool->manager to keep track of the flushing task and pool manager respectively. These are purely informational and will be used to implement sysrq dump of workqueues. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
The workqueues list is protected by wq_pool_mutex and a workqueue and its subordinate data structures are freed directly on destruction. We want to add the ability dump workqueues from a sysrq callback which requires walking all workqueues without grabbing wq_pool_mutex. This patch makes freeing of workqueues RCU protected and makes the workqueues list walkable while holding RCU read lock. Note that pool_workqueues and pools are already sched-RCU protected. For consistency, workqueues are also protected with sched-RCU. While at it, reverse the workqueues list so that a workqueue which is created earlier comes before. The order of the list isn't significant functionally but this makes the planned sysrq dump list system workqueues first. Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 05 3月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
cancel[_delayed]_work_sync() are implemented using __cancel_work_timer() which grabs the PENDING bit using try_to_grab_pending() and then flushes the work item with PENDING set to prevent the on-going execution of the work item from requeueing itself. try_to_grab_pending() can always grab PENDING bit without blocking except when someone else is doing the above flushing during cancelation. In that case, try_to_grab_pending() returns -ENOENT. In this case, __cancel_work_timer() currently invokes flush_work(). The assumption is that the completion of the work item is what the other canceling task would be waiting for too and thus waiting for the same condition and retrying should allow forward progress without excessive busy looping Unfortunately, this doesn't work if preemption is disabled or the latter task has real time priority. Let's say task A just got woken up from flush_work() by the completion of the target work item. If, before task A starts executing, task B gets scheduled and invokes __cancel_work_timer() on the same work item, its try_to_grab_pending() will return -ENOENT as the work item is still being canceled by task A and flush_work() will also immediately return false as the work item is no longer executing. This puts task B in a busy loop possibly preventing task A from executing and clearing the canceling state on the work item leading to a hang. task A task B worker executing work __cancel_work_timer() try_to_grab_pending() set work CANCELING flush_work() block for work completion completion, wakes up A __cancel_work_timer() while (forever) { try_to_grab_pending() -ENOENT as work is being canceled flush_work() false as work is no longer executing } This patch removes the possible hang by updating __cancel_work_timer() to explicitly wait for clearing of CANCELING rather than invoking flush_work() after try_to_grab_pending() fails with -ENOENT. Link: http://lkml.kernel.org/g/20150206171156.GA8942@axis.com v3: bit_waitqueue() can't be used for work items defined in vmalloc area. Switched to custom wake function which matches the target work item and exclusive wait and wakeup. v2: v1 used wake_up() on bit_waitqueue() which leads to NULL deref if the target bit waitqueue has wait_bit_queue's on it. Use DEFINE_WAIT_BIT() and __wake_up_bit() instead. Reported by Tomeu Vizoso. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NRabin Vincent <rabin.vincent@axis.com> Cc: Tomeu Vizoso <tomeu.vizoso@gmail.com> Cc: stable@vger.kernel.org Tested-by: NJesper Nilsson <jesper.nilsson@axis.com> Tested-by: NRabin Vincent <rabin.vincent@axis.com>
-
- 14 2月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
printk and friends can now format bitmaps using '%*pb[l]'. cpumask and nodemask also provide cpumask_pr_args() and nodemask_pr_args() respectively which can be used to generate the two printf arguments necessary to format the specified cpu/nodemask. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-