提交 f0be44f4 编写于 作者: D David McCullough 提交者: Herbert Xu

arm/crypto: Add optimized AES and SHA1 routines

Add assembler versions of AES and SHA1 for ARM platforms.  This has provided
up to a 50% improvement in IPsec/TCP throughout for tunnels using AES128/SHA1.

Platform   CPU SPeed    Endian   Before (bps)   After (bps)   Improvement

IXP425      533 MHz      big     11217042        15566294        ~38%
KS8695      166 MHz     little    3828549         5795373        ~51%
Signed-off-by: NDavid McCullough <ucdevel@gmail.com>
Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
上级 956c203c
...@@ -255,6 +255,7 @@ core-$(CONFIG_VFP) += arch/arm/vfp/ ...@@ -255,6 +255,7 @@ core-$(CONFIG_VFP) += arch/arm/vfp/
# If we have a machine-specific directory, then include it in the build. # If we have a machine-specific directory, then include it in the build.
core-y += arch/arm/kernel/ arch/arm/mm/ arch/arm/common/ core-y += arch/arm/kernel/ arch/arm/mm/ arch/arm/common/
core-y += arch/arm/net/ core-y += arch/arm/net/
core-y += arch/arm/crypto/
core-y += $(machdirs) $(platdirs) core-y += $(machdirs) $(platdirs)
drivers-$(CONFIG_OPROFILE) += arch/arm/oprofile/ drivers-$(CONFIG_OPROFILE) += arch/arm/oprofile/
......
#
# Arch-specific CryptoAPI modules.
#
obj-$(CONFIG_CRYPTO_AES_ARM) += aes-arm.o
obj-$(CONFIG_CRYPTO_SHA1_ARM) += sha1-arm.o
aes-arm-y := aes-armv4.o aes_glue.o
sha1-arm-y := sha1-armv4-large.o sha1_glue.o
此差异已折叠。
/*
* Glue Code for the asm optimized version of the AES Cipher Algorithm
*/
#include <linux/module.h>
#include <linux/crypto.h>
#include <crypto/aes.h>
#define AES_MAXNR 14
typedef struct {
unsigned int rd_key[4 *(AES_MAXNR + 1)];
int rounds;
} AES_KEY;
struct AES_CTX {
AES_KEY enc_key;
AES_KEY dec_key;
};
asmlinkage void AES_encrypt(const u8 *in, u8 *out, AES_KEY *ctx);
asmlinkage void AES_decrypt(const u8 *in, u8 *out, AES_KEY *ctx);
asmlinkage int private_AES_set_decrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key);
asmlinkage int private_AES_set_encrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key);
static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct AES_CTX *ctx = crypto_tfm_ctx(tfm);
AES_encrypt(src, dst, &ctx->enc_key);
}
static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct AES_CTX *ctx = crypto_tfm_ctx(tfm);
AES_decrypt(src, dst, &ctx->dec_key);
}
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
struct AES_CTX *ctx = crypto_tfm_ctx(tfm);
switch (key_len) {
case AES_KEYSIZE_128:
key_len = 128;
break;
case AES_KEYSIZE_192:
key_len = 192;
break;
case AES_KEYSIZE_256:
key_len = 256;
break;
default:
tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
if (private_AES_set_encrypt_key(in_key, key_len, &ctx->enc_key) == -1) {
tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
/* private_AES_set_decrypt_key expects an encryption key as input */
ctx->dec_key = ctx->enc_key;
if (private_AES_set_decrypt_key(in_key, key_len, &ctx->dec_key) == -1) {
tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
return 0;
}
static struct crypto_alg aes_alg = {
.cra_name = "aes",
.cra_driver_name = "aes-asm",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct AES_CTX),
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = aes_encrypt,
.cia_decrypt = aes_decrypt
}
}
};
static int __init aes_init(void)
{
return crypto_register_alg(&aes_alg);
}
static void __exit aes_fini(void)
{
crypto_unregister_alg(&aes_alg);
}
module_init(aes_init);
module_exit(aes_fini);
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm (ASM)");
MODULE_LICENSE("GPL");
MODULE_ALIAS("aes");
MODULE_ALIAS("aes-asm");
MODULE_AUTHOR("David McCullough <ucdevel@gmail.com>");
#define __ARM_ARCH__ __LINUX_ARM_ARCH__
@ ====================================================================
@ Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
@ project. The module is, however, dual licensed under OpenSSL and
@ CRYPTOGAMS licenses depending on where you obtain it. For further
@ details see http://www.openssl.org/~appro/cryptogams/.
@ ====================================================================
@ sha1_block procedure for ARMv4.
@
@ January 2007.
@ Size/performance trade-off
@ ====================================================================
@ impl size in bytes comp cycles[*] measured performance
@ ====================================================================
@ thumb 304 3212 4420
@ armv4-small 392/+29% 1958/+64% 2250/+96%
@ armv4-compact 740/+89% 1552/+26% 1840/+22%
@ armv4-large 1420/+92% 1307/+19% 1370/+34%[***]
@ full unroll ~5100/+260% ~1260/+4% ~1300/+5%
@ ====================================================================
@ thumb = same as 'small' but in Thumb instructions[**] and
@ with recurring code in two private functions;
@ small = detached Xload/update, loops are folded;
@ compact = detached Xload/update, 5x unroll;
@ large = interleaved Xload/update, 5x unroll;
@ full unroll = interleaved Xload/update, full unroll, estimated[!];
@
@ [*] Manually counted instructions in "grand" loop body. Measured
@ performance is affected by prologue and epilogue overhead,
@ i-cache availability, branch penalties, etc.
@ [**] While each Thumb instruction is twice smaller, they are not as
@ diverse as ARM ones: e.g., there are only two arithmetic
@ instructions with 3 arguments, no [fixed] rotate, addressing
@ modes are limited. As result it takes more instructions to do
@ the same job in Thumb, therefore the code is never twice as
@ small and always slower.
@ [***] which is also ~35% better than compiler generated code. Dual-
@ issue Cortex A8 core was measured to process input block in
@ ~990 cycles.
@ August 2010.
@
@ Rescheduling for dual-issue pipeline resulted in 13% improvement on
@ Cortex A8 core and in absolute terms ~870 cycles per input block
@ [or 13.6 cycles per byte].
@ February 2011.
@
@ Profiler-assisted and platform-specific optimization resulted in 10%
@ improvement on Cortex A8 core and 12.2 cycles per byte.
.text
.global sha1_block_data_order
.type sha1_block_data_order,%function
.align 2
sha1_block_data_order:
stmdb sp!,{r4-r12,lr}
add r2,r1,r2,lsl#6 @ r2 to point at the end of r1
ldmia r0,{r3,r4,r5,r6,r7}
.Lloop:
ldr r8,.LK_00_19
mov r14,sp
sub sp,sp,#15*4
mov r5,r5,ror#30
mov r6,r6,ror#30
mov r7,r7,ror#30 @ [6]
.L_00_15:
#if __ARM_ARCH__<7
ldrb r10,[r1,#2]
ldrb r9,[r1,#3]
ldrb r11,[r1,#1]
add r7,r8,r7,ror#2 @ E+=K_00_19
ldrb r12,[r1],#4
orr r9,r9,r10,lsl#8
eor r10,r5,r6 @ F_xx_xx
orr r9,r9,r11,lsl#16
add r7,r7,r3,ror#27 @ E+=ROR(A,27)
orr r9,r9,r12,lsl#24
#else
ldr r9,[r1],#4 @ handles unaligned
add r7,r8,r7,ror#2 @ E+=K_00_19
eor r10,r5,r6 @ F_xx_xx
add r7,r7,r3,ror#27 @ E+=ROR(A,27)
#ifdef __ARMEL__
rev r9,r9 @ byte swap
#endif
#endif
and r10,r4,r10,ror#2
add r7,r7,r9 @ E+=X[i]
eor r10,r10,r6,ror#2 @ F_00_19(B,C,D)
str r9,[r14,#-4]!
add r7,r7,r10 @ E+=F_00_19(B,C,D)
#if __ARM_ARCH__<7
ldrb r10,[r1,#2]
ldrb r9,[r1,#3]
ldrb r11,[r1,#1]
add r6,r8,r6,ror#2 @ E+=K_00_19
ldrb r12,[r1],#4
orr r9,r9,r10,lsl#8
eor r10,r4,r5 @ F_xx_xx
orr r9,r9,r11,lsl#16
add r6,r6,r7,ror#27 @ E+=ROR(A,27)
orr r9,r9,r12,lsl#24
#else
ldr r9,[r1],#4 @ handles unaligned
add r6,r8,r6,ror#2 @ E+=K_00_19
eor r10,r4,r5 @ F_xx_xx
add r6,r6,r7,ror#27 @ E+=ROR(A,27)
#ifdef __ARMEL__
rev r9,r9 @ byte swap
#endif
#endif
and r10,r3,r10,ror#2
add r6,r6,r9 @ E+=X[i]
eor r10,r10,r5,ror#2 @ F_00_19(B,C,D)
str r9,[r14,#-4]!
add r6,r6,r10 @ E+=F_00_19(B,C,D)
#if __ARM_ARCH__<7
ldrb r10,[r1,#2]
ldrb r9,[r1,#3]
ldrb r11,[r1,#1]
add r5,r8,r5,ror#2 @ E+=K_00_19
ldrb r12,[r1],#4
orr r9,r9,r10,lsl#8
eor r10,r3,r4 @ F_xx_xx
orr r9,r9,r11,lsl#16
add r5,r5,r6,ror#27 @ E+=ROR(A,27)
orr r9,r9,r12,lsl#24
#else
ldr r9,[r1],#4 @ handles unaligned
add r5,r8,r5,ror#2 @ E+=K_00_19
eor r10,r3,r4 @ F_xx_xx
add r5,r5,r6,ror#27 @ E+=ROR(A,27)
#ifdef __ARMEL__
rev r9,r9 @ byte swap
#endif
#endif
and r10,r7,r10,ror#2
add r5,r5,r9 @ E+=X[i]
eor r10,r10,r4,ror#2 @ F_00_19(B,C,D)
str r9,[r14,#-4]!
add r5,r5,r10 @ E+=F_00_19(B,C,D)
#if __ARM_ARCH__<7
ldrb r10,[r1,#2]
ldrb r9,[r1,#3]
ldrb r11,[r1,#1]
add r4,r8,r4,ror#2 @ E+=K_00_19
ldrb r12,[r1],#4
orr r9,r9,r10,lsl#8
eor r10,r7,r3 @ F_xx_xx
orr r9,r9,r11,lsl#16
add r4,r4,r5,ror#27 @ E+=ROR(A,27)
orr r9,r9,r12,lsl#24
#else
ldr r9,[r1],#4 @ handles unaligned
add r4,r8,r4,ror#2 @ E+=K_00_19
eor r10,r7,r3 @ F_xx_xx
add r4,r4,r5,ror#27 @ E+=ROR(A,27)
#ifdef __ARMEL__
rev r9,r9 @ byte swap
#endif
#endif
and r10,r6,r10,ror#2
add r4,r4,r9 @ E+=X[i]
eor r10,r10,r3,ror#2 @ F_00_19(B,C,D)
str r9,[r14,#-4]!
add r4,r4,r10 @ E+=F_00_19(B,C,D)
#if __ARM_ARCH__<7
ldrb r10,[r1,#2]
ldrb r9,[r1,#3]
ldrb r11,[r1,#1]
add r3,r8,r3,ror#2 @ E+=K_00_19
ldrb r12,[r1],#4
orr r9,r9,r10,lsl#8
eor r10,r6,r7 @ F_xx_xx
orr r9,r9,r11,lsl#16
add r3,r3,r4,ror#27 @ E+=ROR(A,27)
orr r9,r9,r12,lsl#24
#else
ldr r9,[r1],#4 @ handles unaligned
add r3,r8,r3,ror#2 @ E+=K_00_19
eor r10,r6,r7 @ F_xx_xx
add r3,r3,r4,ror#27 @ E+=ROR(A,27)
#ifdef __ARMEL__
rev r9,r9 @ byte swap
#endif
#endif
and r10,r5,r10,ror#2
add r3,r3,r9 @ E+=X[i]
eor r10,r10,r7,ror#2 @ F_00_19(B,C,D)
str r9,[r14,#-4]!
add r3,r3,r10 @ E+=F_00_19(B,C,D)
teq r14,sp
bne .L_00_15 @ [((11+4)*5+2)*3]
#if __ARM_ARCH__<7
ldrb r10,[r1,#2]
ldrb r9,[r1,#3]
ldrb r11,[r1,#1]
add r7,r8,r7,ror#2 @ E+=K_00_19
ldrb r12,[r1],#4
orr r9,r9,r10,lsl#8
eor r10,r5,r6 @ F_xx_xx
orr r9,r9,r11,lsl#16
add r7,r7,r3,ror#27 @ E+=ROR(A,27)
orr r9,r9,r12,lsl#24
#else
ldr r9,[r1],#4 @ handles unaligned
add r7,r8,r7,ror#2 @ E+=K_00_19
eor r10,r5,r6 @ F_xx_xx
add r7,r7,r3,ror#27 @ E+=ROR(A,27)
#ifdef __ARMEL__
rev r9,r9 @ byte swap
#endif
#endif
and r10,r4,r10,ror#2
add r7,r7,r9 @ E+=X[i]
eor r10,r10,r6,ror#2 @ F_00_19(B,C,D)
str r9,[r14,#-4]!
add r7,r7,r10 @ E+=F_00_19(B,C,D)
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r6,r8,r6,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r4,r5 @ F_xx_xx
mov r9,r9,ror#31
add r6,r6,r7,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
and r10,r3,r10,ror#2 @ F_xx_xx
@ F_xx_xx
add r6,r6,r9 @ E+=X[i]
eor r10,r10,r5,ror#2 @ F_00_19(B,C,D)
add r6,r6,r10 @ E+=F_00_19(B,C,D)
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r5,r8,r5,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r3,r4 @ F_xx_xx
mov r9,r9,ror#31
add r5,r5,r6,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
and r10,r7,r10,ror#2 @ F_xx_xx
@ F_xx_xx
add r5,r5,r9 @ E+=X[i]
eor r10,r10,r4,ror#2 @ F_00_19(B,C,D)
add r5,r5,r10 @ E+=F_00_19(B,C,D)
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r4,r8,r4,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r7,r3 @ F_xx_xx
mov r9,r9,ror#31
add r4,r4,r5,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
and r10,r6,r10,ror#2 @ F_xx_xx
@ F_xx_xx
add r4,r4,r9 @ E+=X[i]
eor r10,r10,r3,ror#2 @ F_00_19(B,C,D)
add r4,r4,r10 @ E+=F_00_19(B,C,D)
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r3,r8,r3,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r6,r7 @ F_xx_xx
mov r9,r9,ror#31
add r3,r3,r4,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
and r10,r5,r10,ror#2 @ F_xx_xx
@ F_xx_xx
add r3,r3,r9 @ E+=X[i]
eor r10,r10,r7,ror#2 @ F_00_19(B,C,D)
add r3,r3,r10 @ E+=F_00_19(B,C,D)
ldr r8,.LK_20_39 @ [+15+16*4]
sub sp,sp,#25*4
cmn sp,#0 @ [+3], clear carry to denote 20_39
.L_20_39_or_60_79:
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r7,r8,r7,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r5,r6 @ F_xx_xx
mov r9,r9,ror#31
add r7,r7,r3,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
eor r10,r4,r10,ror#2 @ F_xx_xx
@ F_xx_xx
add r7,r7,r9 @ E+=X[i]
add r7,r7,r10 @ E+=F_20_39(B,C,D)
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r6,r8,r6,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r4,r5 @ F_xx_xx
mov r9,r9,ror#31
add r6,r6,r7,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
eor r10,r3,r10,ror#2 @ F_xx_xx
@ F_xx_xx
add r6,r6,r9 @ E+=X[i]
add r6,r6,r10 @ E+=F_20_39(B,C,D)
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r5,r8,r5,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r3,r4 @ F_xx_xx
mov r9,r9,ror#31
add r5,r5,r6,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
eor r10,r7,r10,ror#2 @ F_xx_xx
@ F_xx_xx
add r5,r5,r9 @ E+=X[i]
add r5,r5,r10 @ E+=F_20_39(B,C,D)
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r4,r8,r4,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r7,r3 @ F_xx_xx
mov r9,r9,ror#31
add r4,r4,r5,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
eor r10,r6,r10,ror#2 @ F_xx_xx
@ F_xx_xx
add r4,r4,r9 @ E+=X[i]
add r4,r4,r10 @ E+=F_20_39(B,C,D)
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r3,r8,r3,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r6,r7 @ F_xx_xx
mov r9,r9,ror#31
add r3,r3,r4,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
eor r10,r5,r10,ror#2 @ F_xx_xx
@ F_xx_xx
add r3,r3,r9 @ E+=X[i]
add r3,r3,r10 @ E+=F_20_39(B,C,D)
teq r14,sp @ preserve carry
bne .L_20_39_or_60_79 @ [+((12+3)*5+2)*4]
bcs .L_done @ [+((12+3)*5+2)*4], spare 300 bytes
ldr r8,.LK_40_59
sub sp,sp,#20*4 @ [+2]
.L_40_59:
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r7,r8,r7,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r5,r6 @ F_xx_xx
mov r9,r9,ror#31
add r7,r7,r3,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
and r10,r4,r10,ror#2 @ F_xx_xx
and r11,r5,r6 @ F_xx_xx
add r7,r7,r9 @ E+=X[i]
add r7,r7,r10 @ E+=F_40_59(B,C,D)
add r7,r7,r11,ror#2
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r6,r8,r6,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r4,r5 @ F_xx_xx
mov r9,r9,ror#31
add r6,r6,r7,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
and r10,r3,r10,ror#2 @ F_xx_xx
and r11,r4,r5 @ F_xx_xx
add r6,r6,r9 @ E+=X[i]
add r6,r6,r10 @ E+=F_40_59(B,C,D)
add r6,r6,r11,ror#2
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r5,r8,r5,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r3,r4 @ F_xx_xx
mov r9,r9,ror#31
add r5,r5,r6,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
and r10,r7,r10,ror#2 @ F_xx_xx
and r11,r3,r4 @ F_xx_xx
add r5,r5,r9 @ E+=X[i]
add r5,r5,r10 @ E+=F_40_59(B,C,D)
add r5,r5,r11,ror#2
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r4,r8,r4,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r7,r3 @ F_xx_xx
mov r9,r9,ror#31
add r4,r4,r5,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
and r10,r6,r10,ror#2 @ F_xx_xx
and r11,r7,r3 @ F_xx_xx
add r4,r4,r9 @ E+=X[i]
add r4,r4,r10 @ E+=F_40_59(B,C,D)
add r4,r4,r11,ror#2
ldr r9,[r14,#15*4]
ldr r10,[r14,#13*4]
ldr r11,[r14,#7*4]
add r3,r8,r3,ror#2 @ E+=K_xx_xx
ldr r12,[r14,#2*4]
eor r9,r9,r10
eor r11,r11,r12 @ 1 cycle stall
eor r10,r6,r7 @ F_xx_xx
mov r9,r9,ror#31
add r3,r3,r4,ror#27 @ E+=ROR(A,27)
eor r9,r9,r11,ror#31
str r9,[r14,#-4]!
and r10,r5,r10,ror#2 @ F_xx_xx
and r11,r6,r7 @ F_xx_xx
add r3,r3,r9 @ E+=X[i]
add r3,r3,r10 @ E+=F_40_59(B,C,D)
add r3,r3,r11,ror#2
teq r14,sp
bne .L_40_59 @ [+((12+5)*5+2)*4]
ldr r8,.LK_60_79
sub sp,sp,#20*4
cmp sp,#0 @ set carry to denote 60_79
b .L_20_39_or_60_79 @ [+4], spare 300 bytes
.L_done:
add sp,sp,#80*4 @ "deallocate" stack frame
ldmia r0,{r8,r9,r10,r11,r12}
add r3,r8,r3
add r4,r9,r4
add r5,r10,r5,ror#2
add r6,r11,r6,ror#2
add r7,r12,r7,ror#2
stmia r0,{r3,r4,r5,r6,r7}
teq r1,r2
bne .Lloop @ [+18], total 1307
#if __ARM_ARCH__>=5
ldmia sp!,{r4-r12,pc}
#else
ldmia sp!,{r4-r12,lr}
tst lr,#1
moveq pc,lr @ be binary compatible with V4, yet
.word 0xe12fff1e @ interoperable with Thumb ISA:-)
#endif
.align 2
.LK_00_19: .word 0x5a827999
.LK_20_39: .word 0x6ed9eba1
.LK_40_59: .word 0x8f1bbcdc
.LK_60_79: .word 0xca62c1d6
.size sha1_block_data_order,.-sha1_block_data_order
.asciz "SHA1 block transform for ARMv4, CRYPTOGAMS by <appro@openssl.org>"
.align 2
/*
* Cryptographic API.
* Glue code for the SHA1 Secure Hash Algorithm assembler implementation
*
* This file is based on sha1_generic.c and sha1_ssse3_glue.c
*
* Copyright (c) Alan Smithee.
* Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
* Copyright (c) Jean-Francois Dive <jef@linuxbe.org>
* Copyright (c) Mathias Krause <minipli@googlemail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/cryptohash.h>
#include <linux/types.h>
#include <crypto/sha.h>
#include <asm/byteorder.h>
struct SHA1_CTX {
uint32_t h0,h1,h2,h3,h4;
u64 count;
u8 data[SHA1_BLOCK_SIZE];
};
asmlinkage void sha1_block_data_order(struct SHA1_CTX *digest,
const unsigned char *data, unsigned int rounds);
static int sha1_init(struct shash_desc *desc)
{
struct SHA1_CTX *sctx = shash_desc_ctx(desc);
memset(sctx, 0, sizeof(*sctx));
sctx->h0 = SHA1_H0;
sctx->h1 = SHA1_H1;
sctx->h2 = SHA1_H2;
sctx->h3 = SHA1_H3;
sctx->h4 = SHA1_H4;
return 0;
}
static int __sha1_update(struct SHA1_CTX *sctx, const u8 *data,
unsigned int len, unsigned int partial)
{
unsigned int done = 0;
sctx->count += len;
if (partial) {
done = SHA1_BLOCK_SIZE - partial;
memcpy(sctx->data + partial, data, done);
sha1_block_data_order(sctx, sctx->data, 1);
}
if (len - done >= SHA1_BLOCK_SIZE) {
const unsigned int rounds = (len - done) / SHA1_BLOCK_SIZE;
sha1_block_data_order(sctx, data + done, rounds);
done += rounds * SHA1_BLOCK_SIZE;
}
memcpy(sctx->data, data + done, len - done);
return 0;
}
static int sha1_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct SHA1_CTX *sctx = shash_desc_ctx(desc);
unsigned int partial = sctx->count % SHA1_BLOCK_SIZE;
int res;
/* Handle the fast case right here */
if (partial + len < SHA1_BLOCK_SIZE) {
sctx->count += len;
memcpy(sctx->data + partial, data, len);
return 0;
}
res = __sha1_update(sctx, data, len, partial);
return res;
}
/* Add padding and return the message digest. */
static int sha1_final(struct shash_desc *desc, u8 *out)
{
struct SHA1_CTX *sctx = shash_desc_ctx(desc);
unsigned int i, index, padlen;
__be32 *dst = (__be32 *)out;
__be64 bits;
static const u8 padding[SHA1_BLOCK_SIZE] = { 0x80, };
bits = cpu_to_be64(sctx->count << 3);
/* Pad out to 56 mod 64 and append length */
index = sctx->count % SHA1_BLOCK_SIZE;
padlen = (index < 56) ? (56 - index) : ((SHA1_BLOCK_SIZE+56) - index);
/* We need to fill a whole block for __sha1_update() */
if (padlen <= 56) {
sctx->count += padlen;
memcpy(sctx->data + index, padding, padlen);
} else {
__sha1_update(sctx, padding, padlen, index);
}
__sha1_update(sctx, (const u8 *)&bits, sizeof(bits), 56);
/* Store state in digest */
for (i = 0; i < 5; i++)
dst[i] = cpu_to_be32(((u32 *)sctx)[i]);
/* Wipe context */
memset(sctx, 0, sizeof(*sctx));
return 0;
}
static int sha1_export(struct shash_desc *desc, void *out)
{
struct SHA1_CTX *sctx = shash_desc_ctx(desc);
memcpy(out, sctx, sizeof(*sctx));
return 0;
}
static int sha1_import(struct shash_desc *desc, const void *in)
{
struct SHA1_CTX *sctx = shash_desc_ctx(desc);
memcpy(sctx, in, sizeof(*sctx));
return 0;
}
static struct shash_alg alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = sha1_init,
.update = sha1_update,
.final = sha1_final,
.export = sha1_export,
.import = sha1_import,
.descsize = sizeof(struct SHA1_CTX),
.statesize = sizeof(struct SHA1_CTX),
.base = {
.cra_name = "sha1",
.cra_driver_name= "sha1-asm",
.cra_priority = 150,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static int __init sha1_mod_init(void)
{
return crypto_register_shash(&alg);
}
static void __exit sha1_mod_fini(void)
{
crypto_unregister_shash(&alg);
}
module_init(sha1_mod_init);
module_exit(sha1_mod_fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm (ARM)");
MODULE_ALIAS("sha1");
MODULE_AUTHOR("David McCullough <ucdevel@gmail.com>");
...@@ -433,6 +433,15 @@ config CRYPTO_SHA1_SSSE3 ...@@ -433,6 +433,15 @@ config CRYPTO_SHA1_SSSE3
using Supplemental SSE3 (SSSE3) instructions or Advanced Vector using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
Extensions (AVX), when available. Extensions (AVX), when available.
config CRYPTO_SHA1_ARM
tristate "SHA1 digest algorithm (ARM-asm)"
depends on ARM
select CRYPTO_SHA1
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
using optimized ARM assembler.
config CRYPTO_SHA256 config CRYPTO_SHA256
tristate "SHA224 and SHA256 digest algorithm" tristate "SHA224 and SHA256 digest algorithm"
select CRYPTO_HASH select CRYPTO_HASH
...@@ -590,6 +599,30 @@ config CRYPTO_AES_NI_INTEL ...@@ -590,6 +599,30 @@ config CRYPTO_AES_NI_INTEL
ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
acceleration for CTR. acceleration for CTR.
config CRYPTO_AES_ARM
tristate "AES cipher algorithms (ARM-asm)"
depends on ARM
select CRYPTO_ALGAPI
select CRYPTO_AES
help
Use optimized AES assembler routines for ARM platforms.
AES cipher algorithms (FIPS-197). AES uses the Rijndael
algorithm.
Rijndael appears to be consistently a very good performer in
both hardware and software across a wide range of computing
environments regardless of its use in feedback or non-feedback
modes. Its key setup time is excellent, and its key agility is
good. Rijndael's very low memory requirements make it very well
suited for restricted-space environments, in which it also
demonstrates excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
The AES specifies three key sizes: 128, 192 and 256 bits
See <http://csrc.nist.gov/encryption/aes/> for more information.
config CRYPTO_ANUBIS config CRYPTO_ANUBIS
tristate "Anubis cipher algorithm" tristate "Anubis cipher algorithm"
select CRYPTO_ALGAPI select CRYPTO_ALGAPI
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册