提交 d6c64a4f 编写于 作者: V Vikas Shivappa 提交者: Thomas Gleixner

x86/intel_rdt/mba_sc: Documentation for MBA software controller(mba_sc)

Add documentation about the feedback loop mechanism (MBA software
controller) which lets the user specify the memory bandwidth allocation
in MBps. This includes some changes to "schemata" formati with
examples.
Signed-off-by: NVikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1524263781-14267-2-git-send-email-vikas.shivappa@linux.intel.com
上级 73fcb1a3
......@@ -17,12 +17,14 @@ MBA (Memory Bandwidth Allocation) - "mba"
To use the feature mount the file system:
# mount -t resctrl resctrl [-o cdp[,cdpl2]] /sys/fs/resctrl
# mount -t resctrl resctrl [-o cdp[,cdpl2][,mba_MBps]] /sys/fs/resctrl
mount options are:
"cdp": Enable code/data prioritization in L3 cache allocations.
"cdpl2": Enable code/data prioritization in L2 cache allocations.
"mba_MBps": Enable the MBA Software Controller(mba_sc) to specify MBA
bandwidth in MBps
L2 and L3 CDP are controlled seperately.
......@@ -270,10 +272,11 @@ and 0xA are not. On a system with a 20-bit mask each bit represents 5%
of the capacity of the cache. You could partition the cache into four
equal parts with masks: 0x1f, 0x3e0, 0x7c00, 0xf8000.
Memory bandwidth(b/w) percentage
--------------------------------
For Memory b/w resource, user controls the resource by indicating the
percentage of total memory b/w.
Memory bandwidth Allocation and monitoring
------------------------------------------
For Memory bandwidth resource, by default the user controls the resource
by indicating the percentage of total memory bandwidth.
The minimum bandwidth percentage value for each cpu model is predefined
and can be looked up through "info/MB/min_bandwidth". The bandwidth
......@@ -285,7 +288,47 @@ to the next control step available on the hardware.
The bandwidth throttling is a core specific mechanism on some of Intel
SKUs. Using a high bandwidth and a low bandwidth setting on two threads
sharing a core will result in both threads being throttled to use the
low bandwidth.
low bandwidth. The fact that Memory bandwidth allocation(MBA) is a core
specific mechanism where as memory bandwidth monitoring(MBM) is done at
the package level may lead to confusion when users try to apply control
via the MBA and then monitor the bandwidth to see if the controls are
effective. Below are such scenarios:
1. User may *not* see increase in actual bandwidth when percentage
values are increased:
This can occur when aggregate L2 external bandwidth is more than L3
external bandwidth. Consider an SKL SKU with 24 cores on a package and
where L2 external is 10GBps (hence aggregate L2 external bandwidth is
240GBps) and L3 external bandwidth is 100GBps. Now a workload with '20
threads, having 50% bandwidth, each consuming 5GBps' consumes the max L3
bandwidth of 100GBps although the percentage value specified is only 50%
<< 100%. Hence increasing the bandwidth percentage will not yeild any
more bandwidth. This is because although the L2 external bandwidth still
has capacity, the L3 external bandwidth is fully used. Also note that
this would be dependent on number of cores the benchmark is run on.
2. Same bandwidth percentage may mean different actual bandwidth
depending on # of threads:
For the same SKU in #1, a 'single thread, with 10% bandwidth' and '4
thread, with 10% bandwidth' can consume upto 10GBps and 40GBps although
they have same percentage bandwidth of 10%. This is simply because as
threads start using more cores in an rdtgroup, the actual bandwidth may
increase or vary although user specified bandwidth percentage is same.
In order to mitigate this and make the interface more user friendly,
resctrl added support for specifying the bandwidth in MBps as well. The
kernel underneath would use a software feedback mechanism or a "Software
Controller(mba_sc)" which reads the actual bandwidth using MBM counters
and adjust the memowy bandwidth percentages to ensure
"actual bandwidth < user specified bandwidth".
By default, the schemata would take the bandwidth percentage values
where as user can switch to the "MBA software controller" mode using
a mount option 'mba_MBps'. The schemata format is specified in the below
sections.
L3 schemata file details (code and data prioritization disabled)
----------------------------------------------------------------
......@@ -308,13 +351,20 @@ schemata format is always:
L2:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
Memory b/w Allocation details
-----------------------------
Memory bandwidth Allocation (default mode)
------------------------------------------
Memory b/w domain is L3 cache.
MB:<cache_id0>=bandwidth0;<cache_id1>=bandwidth1;...
Memory bandwidth Allocation specified in MBps
---------------------------------------------
Memory bandwidth domain is L3 cache.
MB:<cache_id0>=bw_MBps0;<cache_id1>=bw_MBps1;...
Reading/writing the schemata file
---------------------------------
Reading the schemata file will show the state of all resources
......@@ -358,6 +408,15 @@ allocations can overlap or not. The allocations specifies the maximum
b/w that the group may be able to use and the system admin can configure
the b/w accordingly.
If the MBA is specified in MB(megabytes) then user can enter the max b/w in MB
rather than the percentage values.
# echo "L3:0=3;1=c\nMB:0=1024;1=500" > /sys/fs/resctrl/p0/schemata
# echo "L3:0=3;1=3\nMB:0=1024;1=500" > /sys/fs/resctrl/p1/schemata
In the above example the tasks in "p1" and "p0" on socket 0 would use a max b/w
of 1024MB where as on socket 1 they would use 500MB.
Example 2
---------
Again two sockets, but this time with a more realistic 20-bit mask.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册