提交 cf78f8ee 编写于 作者: D David S. Miller
......@@ -74,9 +74,8 @@ extern int efx_filter_insert_filter(struct efx_nic *efx,
bool replace);
extern int efx_filter_remove_filter(struct efx_nic *efx,
struct efx_filter_spec *spec);
extern void efx_filter_table_clear(struct efx_nic *efx,
enum efx_filter_table_id table_id,
enum efx_filter_priority priority);
extern void efx_filter_clear_rx(struct efx_nic *efx,
enum efx_filter_priority priority);
/* Channels */
extern void efx_process_channel_now(struct efx_channel *channel);
......
......@@ -11,6 +11,7 @@
#include <linux/netdevice.h>
#include <linux/ethtool.h>
#include <linux/rtnetlink.h>
#include <linux/in.h>
#include "net_driver.h"
#include "workarounds.h"
#include "selftest.h"
......@@ -558,12 +559,8 @@ static int efx_ethtool_set_flags(struct net_device *net_dev, u32 data)
if (rc)
return rc;
if (!(data & ETH_FLAG_NTUPLE)) {
efx_filter_table_clear(efx, EFX_FILTER_TABLE_RX_IP,
EFX_FILTER_PRI_MANUAL);
efx_filter_table_clear(efx, EFX_FILTER_TABLE_RX_MAC,
EFX_FILTER_PRI_MANUAL);
}
if (!(data & ETH_FLAG_NTUPLE))
efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
return 0;
}
......@@ -582,6 +579,9 @@ static void efx_ethtool_self_test(struct net_device *net_dev,
goto fail1;
}
netif_info(efx, drv, efx->net_dev, "starting %sline testing\n",
(test->flags & ETH_TEST_FL_OFFLINE) ? "off" : "on");
/* We need rx buffers and interrupts. */
already_up = (efx->net_dev->flags & IFF_UP);
if (!already_up) {
......@@ -600,9 +600,9 @@ static void efx_ethtool_self_test(struct net_device *net_dev,
if (!already_up)
dev_close(efx->net_dev);
netif_dbg(efx, drv, efx->net_dev, "%s %sline self-tests\n",
rc == 0 ? "passed" : "failed",
(test->flags & ETH_TEST_FL_OFFLINE) ? "off" : "on");
netif_info(efx, drv, efx->net_dev, "%s %sline self-tests\n",
rc == 0 ? "passed" : "failed",
(test->flags & ETH_TEST_FL_OFFLINE) ? "off" : "on");
fail2:
fail1:
......@@ -921,6 +921,7 @@ static int efx_ethtool_set_rx_ntuple(struct net_device *net_dev,
struct ethhdr *mac_entry = &ntuple->fs.h_u.ether_spec;
struct ethhdr *mac_mask = &ntuple->fs.m_u.ether_spec;
struct efx_filter_spec filter;
int rc;
/* Range-check action */
if (ntuple->fs.action < ETHTOOL_RXNTUPLE_ACTION_CLEAR ||
......@@ -930,9 +931,16 @@ static int efx_ethtool_set_rx_ntuple(struct net_device *net_dev,
if (~ntuple->fs.data_mask)
return -EINVAL;
efx_filter_init_rx(&filter, EFX_FILTER_PRI_MANUAL, 0,
(ntuple->fs.action == ETHTOOL_RXNTUPLE_ACTION_DROP) ?
0xfff : ntuple->fs.action);
switch (ntuple->fs.flow_type) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case UDP_V4_FLOW: {
u8 proto = (ntuple->fs.flow_type == TCP_V4_FLOW ?
IPPROTO_TCP : IPPROTO_UDP);
/* Must match all of destination, */
if (ip_mask->ip4dst | ip_mask->pdst)
return -EINVAL;
......@@ -944,7 +952,22 @@ static int efx_ethtool_set_rx_ntuple(struct net_device *net_dev,
/* and nothing else */
if ((u8)~ip_mask->tos | (u16)~ntuple->fs.vlan_tag_mask)
return -EINVAL;
if (!ip_mask->ip4src)
rc = efx_filter_set_ipv4_full(&filter, proto,
ip_entry->ip4dst,
ip_entry->pdst,
ip_entry->ip4src,
ip_entry->psrc);
else
rc = efx_filter_set_ipv4_local(&filter, proto,
ip_entry->ip4dst,
ip_entry->pdst);
if (rc)
return rc;
break;
}
case ETHER_FLOW:
/* Must match all of destination, */
if (!is_zero_ether_addr(mac_mask->h_dest))
......@@ -957,58 +980,24 @@ static int efx_ethtool_set_rx_ntuple(struct net_device *net_dev,
if (!is_broadcast_ether_addr(mac_mask->h_source) ||
mac_mask->h_proto != htons(0xffff))
return -EINVAL;
rc = efx_filter_set_eth_local(
&filter,
(ntuple->fs.vlan_tag_mask == 0xf000) ?
ntuple->fs.vlan_tag : EFX_FILTER_VID_UNSPEC,
mac_entry->h_dest);
if (rc)
return rc;
break;
default:
return -EINVAL;
}
filter.priority = EFX_FILTER_PRI_MANUAL;
filter.flags = 0;
switch (ntuple->fs.flow_type) {
case TCP_V4_FLOW:
if (!ip_mask->ip4src)
efx_filter_set_rx_tcp_full(&filter,
htonl(ip_entry->ip4src),
htons(ip_entry->psrc),
htonl(ip_entry->ip4dst),
htons(ip_entry->pdst));
else
efx_filter_set_rx_tcp_wild(&filter,
htonl(ip_entry->ip4dst),
htons(ip_entry->pdst));
break;
case UDP_V4_FLOW:
if (!ip_mask->ip4src)
efx_filter_set_rx_udp_full(&filter,
htonl(ip_entry->ip4src),
htons(ip_entry->psrc),
htonl(ip_entry->ip4dst),
htons(ip_entry->pdst));
else
efx_filter_set_rx_udp_wild(&filter,
htonl(ip_entry->ip4dst),
htons(ip_entry->pdst));
break;
case ETHER_FLOW:
if (ntuple->fs.vlan_tag_mask == 0xf000)
efx_filter_set_rx_mac_full(&filter,
ntuple->fs.vlan_tag & 0xfff,
mac_entry->h_dest);
else
efx_filter_set_rx_mac_wild(&filter, mac_entry->h_dest);
break;
}
if (ntuple->fs.action == ETHTOOL_RXNTUPLE_ACTION_CLEAR) {
if (ntuple->fs.action == ETHTOOL_RXNTUPLE_ACTION_CLEAR)
return efx_filter_remove_filter(efx, &filter);
} else {
if (ntuple->fs.action == ETHTOOL_RXNTUPLE_ACTION_DROP)
filter.dmaq_id = 0xfff;
else
filter.dmaq_id = ntuple->fs.action;
else
return efx_filter_insert_filter(efx, &filter, true);
}
}
static int efx_ethtool_get_rxfh_indir(struct net_device *net_dev,
......
......@@ -7,6 +7,7 @@
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/in.h>
#include "efx.h"
#include "filter.h"
#include "io.h"
......@@ -26,19 +27,26 @@
*/
#define FILTER_CTL_SRCH_MAX 200
enum efx_filter_table_id {
EFX_FILTER_TABLE_RX_IP = 0,
EFX_FILTER_TABLE_RX_MAC,
EFX_FILTER_TABLE_COUNT,
};
struct efx_filter_table {
enum efx_filter_table_id id;
u32 offset; /* address of table relative to BAR */
unsigned size; /* number of entries */
unsigned step; /* step between entries */
unsigned used; /* number currently used */
unsigned long *used_bitmap;
struct efx_filter_spec *spec;
unsigned search_depth[EFX_FILTER_TYPE_COUNT];
};
struct efx_filter_state {
spinlock_t lock;
struct efx_filter_table table[EFX_FILTER_TABLE_COUNT];
unsigned search_depth[EFX_FILTER_TYPE_COUNT];
};
/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
......@@ -65,68 +73,203 @@ static u16 efx_filter_increment(u32 key)
}
static enum efx_filter_table_id
efx_filter_type_table_id(enum efx_filter_type type)
efx_filter_spec_table_id(const struct efx_filter_spec *spec)
{
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_TCP_FULL >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_TCP_WILD >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_UDP_FULL >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_UDP_WILD >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_MAC != (EFX_FILTER_MAC_FULL >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_MAC != (EFX_FILTER_MAC_WILD >> 2));
EFX_BUG_ON_PARANOID(spec->type == EFX_FILTER_UNSPEC);
return spec->type >> 2;
}
static struct efx_filter_table *
efx_filter_spec_table(struct efx_filter_state *state,
const struct efx_filter_spec *spec)
{
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_RX_TCP_FULL >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_RX_TCP_WILD >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_RX_UDP_FULL >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_RX_UDP_WILD >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_MAC != (EFX_FILTER_RX_MAC_FULL >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_MAC != (EFX_FILTER_RX_MAC_WILD >> 2));
return type >> 2;
if (spec->type == EFX_FILTER_UNSPEC)
return NULL;
else
return &state->table[efx_filter_spec_table_id(spec)];
}
static void
efx_filter_table_reset_search_depth(struct efx_filter_state *state,
enum efx_filter_table_id table_id)
static void efx_filter_table_reset_search_depth(struct efx_filter_table *table)
{
memset(state->search_depth + (table_id << 2), 0,
sizeof(state->search_depth[0]) << 2);
memset(table->search_depth, 0, sizeof(table->search_depth));
}
static void efx_filter_push_rx_limits(struct efx_nic *efx)
{
struct efx_filter_state *state = efx->filter_state;
struct efx_filter_table *table;
efx_oword_t filter_ctl;
efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
table = &state->table[EFX_FILTER_TABLE_RX_IP];
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
state->search_depth[EFX_FILTER_RX_TCP_FULL] +
table->search_depth[EFX_FILTER_TCP_FULL] +
FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
state->search_depth[EFX_FILTER_RX_TCP_WILD] +
table->search_depth[EFX_FILTER_TCP_WILD] +
FILTER_CTL_SRCH_FUDGE_WILD);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
state->search_depth[EFX_FILTER_RX_UDP_FULL] +
table->search_depth[EFX_FILTER_UDP_FULL] +
FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
state->search_depth[EFX_FILTER_RX_UDP_WILD] +
table->search_depth[EFX_FILTER_UDP_WILD] +
FILTER_CTL_SRCH_FUDGE_WILD);
if (state->table[EFX_FILTER_TABLE_RX_MAC].size) {
table = &state->table[EFX_FILTER_TABLE_RX_MAC];
if (table->size) {
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
state->search_depth[EFX_FILTER_RX_MAC_FULL] +
table->search_depth[EFX_FILTER_MAC_FULL] +
FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
state->search_depth[EFX_FILTER_RX_MAC_WILD] +
table->search_depth[EFX_FILTER_MAC_WILD] +
FILTER_CTL_SRCH_FUDGE_WILD);
}
efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
}
static inline void __efx_filter_set_ipv4(struct efx_filter_spec *spec,
__be32 host1, __be16 port1,
__be32 host2, __be16 port2)
{
spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
spec->data[2] = ntohl(host2);
}
/**
* efx_filter_set_ipv4_local - specify IPv4 host, transport protocol and port
* @spec: Specification to initialise
* @proto: Transport layer protocol number
* @host: Local host address (network byte order)
* @port: Local port (network byte order)
*/
int efx_filter_set_ipv4_local(struct efx_filter_spec *spec, u8 proto,
__be32 host, __be16 port)
{
__be32 host1;
__be16 port1;
EFX_BUG_ON_PARANOID(!(spec->flags & EFX_FILTER_FLAG_RX));
/* This cannot currently be combined with other filtering */
if (spec->type != EFX_FILTER_UNSPEC)
return -EPROTONOSUPPORT;
if (port == 0)
return -EINVAL;
switch (proto) {
case IPPROTO_TCP:
spec->type = EFX_FILTER_TCP_WILD;
break;
case IPPROTO_UDP:
spec->type = EFX_FILTER_UDP_WILD;
break;
default:
return -EPROTONOSUPPORT;
}
/* Filter is constructed in terms of source and destination,
* with the odd wrinkle that the ports are swapped in a UDP
* wildcard filter. We need to convert from local and remote
* (= zero for wildcard) addresses.
*/
host1 = 0;
if (proto != IPPROTO_UDP) {
port1 = 0;
} else {
port1 = port;
port = 0;
}
__efx_filter_set_ipv4(spec, host1, port1, host, port);
return 0;
}
/**
* efx_filter_set_ipv4_full - specify IPv4 hosts, transport protocol and ports
* @spec: Specification to initialise
* @proto: Transport layer protocol number
* @host: Local host address (network byte order)
* @port: Local port (network byte order)
* @rhost: Remote host address (network byte order)
* @rport: Remote port (network byte order)
*/
int efx_filter_set_ipv4_full(struct efx_filter_spec *spec, u8 proto,
__be32 host, __be16 port,
__be32 rhost, __be16 rport)
{
EFX_BUG_ON_PARANOID(!(spec->flags & EFX_FILTER_FLAG_RX));
/* This cannot currently be combined with other filtering */
if (spec->type != EFX_FILTER_UNSPEC)
return -EPROTONOSUPPORT;
if (port == 0 || rport == 0)
return -EINVAL;
switch (proto) {
case IPPROTO_TCP:
spec->type = EFX_FILTER_TCP_FULL;
break;
case IPPROTO_UDP:
spec->type = EFX_FILTER_UDP_FULL;
break;
default:
return -EPROTONOSUPPORT;
}
__efx_filter_set_ipv4(spec, rhost, rport, host, port);
return 0;
}
/**
* efx_filter_set_eth_local - specify local Ethernet address and optional VID
* @spec: Specification to initialise
* @vid: VLAN ID to match, or %EFX_FILTER_VID_UNSPEC
* @addr: Local Ethernet MAC address
*/
int efx_filter_set_eth_local(struct efx_filter_spec *spec,
u16 vid, const u8 *addr)
{
EFX_BUG_ON_PARANOID(!(spec->flags & EFX_FILTER_FLAG_RX));
/* This cannot currently be combined with other filtering */
if (spec->type != EFX_FILTER_UNSPEC)
return -EPROTONOSUPPORT;
if (vid == EFX_FILTER_VID_UNSPEC) {
spec->type = EFX_FILTER_MAC_WILD;
spec->data[0] = 0;
} else {
spec->type = EFX_FILTER_MAC_FULL;
spec->data[0] = vid;
}
spec->data[1] = addr[2] << 24 | addr[3] << 16 | addr[4] << 8 | addr[5];
spec->data[2] = addr[0] << 8 | addr[1];
return 0;
}
/* Build a filter entry and return its n-tuple key. */
static u32 efx_filter_build(efx_oword_t *filter, struct efx_filter_spec *spec)
{
u32 data3;
switch (efx_filter_type_table_id(spec->type)) {
switch (efx_filter_spec_table_id(spec)) {
case EFX_FILTER_TABLE_RX_IP: {
bool is_udp = (spec->type == EFX_FILTER_RX_UDP_FULL ||
spec->type == EFX_FILTER_RX_UDP_WILD);
bool is_udp = (spec->type == EFX_FILTER_UDP_FULL ||
spec->type == EFX_FILTER_UDP_WILD);
EFX_POPULATE_OWORD_7(
*filter,
FRF_BZ_RSS_EN,
......@@ -143,7 +286,7 @@ static u32 efx_filter_build(efx_oword_t *filter, struct efx_filter_spec *spec)
}
case EFX_FILTER_TABLE_RX_MAC: {
bool is_wild = spec->type == EFX_FILTER_RX_MAC_WILD;
bool is_wild = spec->type == EFX_FILTER_MAC_WILD;
EFX_POPULATE_OWORD_8(
*filter,
FRF_CZ_RMFT_RSS_EN,
......@@ -206,6 +349,14 @@ static int efx_filter_search(struct efx_filter_table *table,
return filter_idx;
}
/* Construct/deconstruct external filter IDs */
static inline int
efx_filter_make_id(enum efx_filter_table_id table_id, unsigned index)
{
return table_id << 16 | index;
}
/**
* efx_filter_insert_filter - add or replace a filter
* @efx: NIC in which to insert the filter
......@@ -213,30 +364,28 @@ static int efx_filter_search(struct efx_filter_table *table,
* @replace: Flag for whether the specified filter may replace a filter
* with an identical match expression and equal or lower priority
*
* On success, return the filter index within its table.
* On success, return the filter ID.
* On failure, return a negative error code.
*/
int efx_filter_insert_filter(struct efx_nic *efx, struct efx_filter_spec *spec,
bool replace)
{
struct efx_filter_state *state = efx->filter_state;
enum efx_filter_table_id table_id =
efx_filter_type_table_id(spec->type);
struct efx_filter_table *table = &state->table[table_id];
struct efx_filter_table *table = efx_filter_spec_table(state, spec);
struct efx_filter_spec *saved_spec;
efx_oword_t filter;
int filter_idx, depth;
u32 key;
int rc;
if (table->size == 0)
if (!table || table->size == 0)
return -EINVAL;
key = efx_filter_build(&filter, spec);
netif_vdbg(efx, hw, efx->net_dev,
"%s: type %d search_depth=%d", __func__, spec->type,
state->search_depth[spec->type]);
table->search_depth[spec->type]);
spin_lock_bh(&state->lock);
......@@ -263,8 +412,8 @@ int efx_filter_insert_filter(struct efx_nic *efx, struct efx_filter_spec *spec,
}
*saved_spec = *spec;
if (state->search_depth[spec->type] < depth) {
state->search_depth[spec->type] = depth;
if (table->search_depth[spec->type] < depth) {
table->search_depth[spec->type] = depth;
efx_filter_push_rx_limits(efx);
}
......@@ -273,6 +422,7 @@ int efx_filter_insert_filter(struct efx_nic *efx, struct efx_filter_spec *spec,
netif_vdbg(efx, hw, efx->net_dev,
"%s: filter type %d index %d rxq %u set",
__func__, spec->type, filter_idx, spec->dmaq_id);
rc = efx_filter_make_id(table->id, filter_idx);
out:
spin_unlock_bh(&state->lock);
......@@ -306,15 +456,16 @@ static void efx_filter_table_clear_entry(struct efx_nic *efx,
int efx_filter_remove_filter(struct efx_nic *efx, struct efx_filter_spec *spec)
{
struct efx_filter_state *state = efx->filter_state;
enum efx_filter_table_id table_id =
efx_filter_type_table_id(spec->type);
struct efx_filter_table *table = &state->table[table_id];
struct efx_filter_table *table = efx_filter_spec_table(state, spec);
struct efx_filter_spec *saved_spec;
efx_oword_t filter;
int filter_idx, depth;
u32 key;
int rc;
if (!table)
return -EINVAL;
key = efx_filter_build(&filter, spec);
spin_lock_bh(&state->lock);
......@@ -332,7 +483,7 @@ int efx_filter_remove_filter(struct efx_nic *efx, struct efx_filter_spec *spec)
efx_filter_table_clear_entry(efx, table, filter_idx);
if (table->used == 0)
efx_filter_table_reset_search_depth(state, table_id);
efx_filter_table_reset_search_depth(table);
rc = 0;
out:
......@@ -340,15 +491,9 @@ int efx_filter_remove_filter(struct efx_nic *efx, struct efx_filter_spec *spec)
return rc;
}
/**
* efx_filter_table_clear - remove filters from a table by priority
* @efx: NIC from which to remove the filters
* @table_id: Table from which to remove the filters
* @priority: Maximum priority to remove
*/
void efx_filter_table_clear(struct efx_nic *efx,
enum efx_filter_table_id table_id,
enum efx_filter_priority priority)
static void efx_filter_table_clear(struct efx_nic *efx,
enum efx_filter_table_id table_id,
enum efx_filter_priority priority)
{
struct efx_filter_state *state = efx->filter_state;
struct efx_filter_table *table = &state->table[table_id];
......@@ -360,11 +505,22 @@ void efx_filter_table_clear(struct efx_nic *efx,
if (table->spec[filter_idx].priority <= priority)
efx_filter_table_clear_entry(efx, table, filter_idx);
if (table->used == 0)
efx_filter_table_reset_search_depth(state, table_id);
efx_filter_table_reset_search_depth(table);
spin_unlock_bh(&state->lock);
}
/**
* efx_filter_clear_rx - remove RX filters by priority
* @efx: NIC from which to remove the filters
* @priority: Maximum priority to remove
*/
void efx_filter_clear_rx(struct efx_nic *efx, enum efx_filter_priority priority)
{
efx_filter_table_clear(efx, EFX_FILTER_TABLE_RX_IP, priority);
efx_filter_table_clear(efx, EFX_FILTER_TABLE_RX_MAC, priority);
}
/* Restore filter stater after reset */
void efx_restore_filters(struct efx_nic *efx)
{
......@@ -407,6 +563,7 @@ int efx_probe_filters(struct efx_nic *efx)
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
table = &state->table[EFX_FILTER_TABLE_RX_IP];
table->id = EFX_FILTER_TABLE_RX_IP;
table->offset = FR_BZ_RX_FILTER_TBL0;
table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
table->step = FR_BZ_RX_FILTER_TBL0_STEP;
......@@ -414,6 +571,7 @@ int efx_probe_filters(struct efx_nic *efx)
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
table = &state->table[EFX_FILTER_TABLE_RX_MAC];
table->id = EFX_FILTER_TABLE_RX_MAC;
table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
......
......@@ -12,31 +12,27 @@
#include <linux/types.h>
enum efx_filter_table_id {
EFX_FILTER_TABLE_RX_IP = 0,
EFX_FILTER_TABLE_RX_MAC,
EFX_FILTER_TABLE_COUNT,
};
/**
* enum efx_filter_type - type of hardware filter
* @EFX_FILTER_RX_TCP_FULL: RX, matching TCP/IPv4 4-tuple
* @EFX_FILTER_RX_TCP_WILD: RX, matching TCP/IPv4 destination (host, port)
* @EFX_FILTER_RX_UDP_FULL: RX, matching UDP/IPv4 4-tuple
* @EFX_FILTER_RX_UDP_WILD: RX, matching UDP/IPv4 destination (host, port)
* @EFX_FILTER_RX_MAC_FULL: RX, matching Ethernet destination MAC address, VID
* @EFX_FILTER_RX_MAC_WILD: RX, matching Ethernet destination MAC address
* @EFX_FILTER_TCP_FULL: Matching TCP/IPv4 4-tuple
* @EFX_FILTER_TCP_WILD: Matching TCP/IPv4 destination (host, port)
* @EFX_FILTER_UDP_FULL: Matching UDP/IPv4 4-tuple
* @EFX_FILTER_UDP_WILD: Matching UDP/IPv4 destination (host, port)
* @EFX_FILTER_MAC_FULL: Matching Ethernet destination MAC address, VID
* @EFX_FILTER_MAC_WILD: Matching Ethernet destination MAC address
* @EFX_FILTER_UNSPEC: Match type is unspecified
*
* Falcon NICs only support the RX TCP/IPv4 and UDP/IPv4 filter types.
* Falcon NICs only support the TCP/IPv4 and UDP/IPv4 filter types.
*/
enum efx_filter_type {
EFX_FILTER_RX_TCP_FULL = 0,
EFX_FILTER_RX_TCP_WILD,
EFX_FILTER_RX_UDP_FULL,
EFX_FILTER_RX_UDP_WILD,
EFX_FILTER_RX_MAC_FULL = 4,
EFX_FILTER_RX_MAC_WILD,
EFX_FILTER_TYPE_COUNT,
EFX_FILTER_TCP_FULL = 0,
EFX_FILTER_TCP_WILD,
EFX_FILTER_UDP_FULL,
EFX_FILTER_UDP_WILD,
EFX_FILTER_MAC_FULL = 4,
EFX_FILTER_MAC_WILD,
EFX_FILTER_TYPE_COUNT, /* number of specific types */
EFX_FILTER_UNSPEC = 0xf,
};
/**
......@@ -63,13 +59,13 @@ enum efx_filter_priority {
* @EFX_FILTER_FLAG_RX_OVERRIDE_IP: Enables a MAC filter to override
* any IP filter that matches the same packet. By default, IP
* filters take precedence.
*
* Currently, no flags are defined for TX filters.
* @EFX_FILTER_FLAG_RX: Filter is for RX
*/
enum efx_filter_flags {
EFX_FILTER_FLAG_RX_RSS = 0x01,
EFX_FILTER_FLAG_RX_SCATTER = 0x02,
EFX_FILTER_FLAG_RX_OVERRIDE_IP = 0x04,
EFX_FILTER_FLAG_RX = 0x08,
};
/**
......@@ -91,99 +87,26 @@ struct efx_filter_spec {
u32 data[3];
};
/**
* efx_filter_set_rx_tcp_full - specify RX filter with TCP/IPv4 full match
* @spec: Specification to initialise
* @shost: Source host address (host byte order)
* @sport: Source port (host byte order)
* @dhost: Destination host address (host byte order)
* @dport: Destination port (host byte order)
*/
static inline void
efx_filter_set_rx_tcp_full(struct efx_filter_spec *spec,
u32 shost, u16 sport, u32 dhost, u16 dport)
{
spec->type = EFX_FILTER_RX_TCP_FULL;
spec->data[0] = sport | shost << 16;
spec->data[1] = dport << 16 | shost >> 16;
spec->data[2] = dhost;
}
/**
* efx_filter_set_rx_tcp_wild - specify RX filter with TCP/IPv4 wildcard match
* @spec: Specification to initialise
* @dhost: Destination host address (host byte order)
* @dport: Destination port (host byte order)
*/
static inline void
efx_filter_set_rx_tcp_wild(struct efx_filter_spec *spec, u32 dhost, u16 dport)
{
spec->type = EFX_FILTER_RX_TCP_WILD;
spec->data[0] = 0;
spec->data[1] = dport << 16;
spec->data[2] = dhost;
}
/**
* efx_filter_set_rx_udp_full - specify RX filter with UDP/IPv4 full match
* @spec: Specification to initialise
* @shost: Source host address (host byte order)
* @sport: Source port (host byte order)
* @dhost: Destination host address (host byte order)
* @dport: Destination port (host byte order)
*/
static inline void
efx_filter_set_rx_udp_full(struct efx_filter_spec *spec,
u32 shost, u16 sport, u32 dhost, u16 dport)
{
spec->type = EFX_FILTER_RX_UDP_FULL;
spec->data[0] = sport | shost << 16;
spec->data[1] = dport << 16 | shost >> 16;
spec->data[2] = dhost;
}
/**
* efx_filter_set_rx_udp_wild - specify RX filter with UDP/IPv4 wildcard match
* @spec: Specification to initialise
* @dhost: Destination host address (host byte order)
* @dport: Destination port (host byte order)
*/
static inline void
efx_filter_set_rx_udp_wild(struct efx_filter_spec *spec, u32 dhost, u16 dport)
static inline void efx_filter_init_rx(struct efx_filter_spec *spec,
enum efx_filter_priority priority,
enum efx_filter_flags flags,
unsigned rxq_id)
{
spec->type = EFX_FILTER_RX_UDP_WILD;
spec->data[0] = dport;
spec->data[1] = 0;
spec->data[2] = dhost;
spec->type = EFX_FILTER_UNSPEC;
spec->priority = priority;
spec->flags = EFX_FILTER_FLAG_RX | flags;
spec->dmaq_id = rxq_id;
}
/**
* efx_filter_set_rx_mac_full - specify RX filter with MAC full match
* @spec: Specification to initialise
* @vid: VLAN ID
* @addr: Destination MAC address
*/
static inline void efx_filter_set_rx_mac_full(struct efx_filter_spec *spec,
u16 vid, const u8 *addr)
{
spec->type = EFX_FILTER_RX_MAC_FULL;
spec->data[0] = vid;
spec->data[1] = addr[2] << 24 | addr[3] << 16 | addr[4] << 8 | addr[5];
spec->data[2] = addr[0] << 8 | addr[1];
}
/**
* efx_filter_set_rx_mac_full - specify RX filter with MAC wildcard match
* @spec: Specification to initialise
* @addr: Destination MAC address
*/
static inline void efx_filter_set_rx_mac_wild(struct efx_filter_spec *spec,
const u8 *addr)
{
spec->type = EFX_FILTER_RX_MAC_WILD;
spec->data[0] = 0;
spec->data[1] = addr[2] << 24 | addr[3] << 16 | addr[4] << 8 | addr[5];
spec->data[2] = addr[0] << 8 | addr[1];
}
extern int efx_filter_set_ipv4_local(struct efx_filter_spec *spec, u8 proto,
__be32 host, __be16 port);
extern int efx_filter_set_ipv4_full(struct efx_filter_spec *spec, u8 proto,
__be32 host, __be16 port,
__be32 rhost, __be16 rport);
extern int efx_filter_set_eth_local(struct efx_filter_spec *spec,
u16 vid, const u8 *addr);
enum {
EFX_FILTER_VID_UNSPEC = 0xffff,
};
#endif /* EFX_FILTER_H */
......@@ -22,28 +22,39 @@
*
* Notes on locking strategy:
*
* Most NIC registers require 16-byte (or 8-byte, for SRAM) atomic writes
* which necessitates locking.
* Under normal operation few writes to NIC registers are made and these
* registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and TX_DESC_UPD_REG) are special
* cased to allow 4-byte (hence lockless) accesses.
* Most CSRs are 128-bit (oword) and therefore cannot be read or
* written atomically. Access from the host is buffered by the Bus
* Interface Unit (BIU). Whenever the host reads from the lowest
* address of such a register, or from the address of a different such
* register, the BIU latches the register's value. Subsequent reads
* from higher addresses of the same register will read the latched
* value. Whenever the host writes part of such a register, the BIU
* collects the written value and does not write to the underlying
* register until all 4 dwords have been written. A similar buffering
* scheme applies to host access to the NIC's 64-bit SRAM.
*
* It *is* safe to write to these 4-byte registers in the middle of an
* access to an 8-byte or 16-byte register. We therefore use a
* spinlock to protect accesses to the larger registers, but no locks
* for the 4-byte registers.
* Access to different CSRs and 64-bit SRAM words must be serialised,
* since interleaved access can result in lost writes or lost
* information from read-to-clear fields. We use efx_nic::biu_lock
* for this. (We could use separate locks for read and write, but
* this is not normally a performance bottleneck.)
*
* A write barrier is needed to ensure that DW3 is written after DW0/1/2
* due to the way the 16byte registers are "collected" in the BIU.
* The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
* 128-bit but are special-cased in the BIU to avoid the need for
* locking in the host:
*
* We also lock when carrying out reads, to ensure consistency of the
* data (made possible since the BIU reads all 128 bits into a cache).
* Reads are very rare, so this isn't a significant performance
* impact. (Most data transferred from NIC to host is DMAed directly
* into host memory).
*
* I/O BAR access uses locks for both reads and writes (but is only provided
* for testing purposes).
* - They are write-only.
* - The semantics of writing to these registers are such that
* replacing the low 96 bits with zero does not affect functionality.
* - If the host writes to the last dword address of such a register
* (i.e. the high 32 bits) the underlying register will always be
* written. If the collector does not hold values for the low 96
* bits of the register, they will be written as zero. Writing to
* the last qword does not have this effect and must not be done.
* - If the host writes to the address of any other part of such a
* register while the collector already holds values for some other
* register, the write is discarded and the collector maintains its
* current state.
*/
#if BITS_PER_LONG == 64
......@@ -72,7 +83,7 @@ static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
return (__force __le32)__raw_readl(efx->membase + reg);
}
/* Writes to a normal 16-byte Efx register, locking as appropriate. */
/* Write a normal 128-bit CSR, locking as appropriate. */
static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg)
{
......@@ -85,21 +96,18 @@ static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value,
spin_lock_irqsave(&efx->biu_lock, flags);
#ifdef EFX_USE_QWORD_IO
_efx_writeq(efx, value->u64[0], reg + 0);
wmb();
_efx_writeq(efx, value->u64[1], reg + 8);
#else
_efx_writed(efx, value->u32[0], reg + 0);
_efx_writed(efx, value->u32[1], reg + 4);
_efx_writed(efx, value->u32[2], reg + 8);
wmb();
_efx_writed(efx, value->u32[3], reg + 12);
#endif
mmiowb();
spin_unlock_irqrestore(&efx->biu_lock, flags);
}
/* Write an 8-byte NIC SRAM entry through the supplied mapping,
* locking as appropriate. */
/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
efx_qword_t *value, unsigned int index)
{
......@@ -115,36 +123,25 @@ static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
__raw_writeq((__force u64)value->u64[0], membase + addr);
#else
__raw_writel((__force u32)value->u32[0], membase + addr);
wmb();
__raw_writel((__force u32)value->u32[1], membase + addr + 4);
#endif
mmiowb();
spin_unlock_irqrestore(&efx->biu_lock, flags);
}
/* Write dword to NIC register that allows partial writes
*
* Some registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and
* TX_DESC_UPD_REG) can be written to as a single dword. This allows
* for lockless writes.
*/
/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
static inline void efx_writed(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg)
{
netif_vdbg(efx, hw, efx->net_dev,
"writing partial register %x with "EFX_DWORD_FMT"\n",
"writing register %x with "EFX_DWORD_FMT"\n",
reg, EFX_DWORD_VAL(*value));
/* No lock required */
_efx_writed(efx, value->u32[0], reg);
}
/* Read from a NIC register
*
* This reads an entire 16-byte register in one go, locking as
* appropriate. It is essential to read the first dword first, as this
* prompts the NIC to load the current value into the shadow register.
*/
/* Read a 128-bit CSR, locking as appropriate. */
static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg)
{
......@@ -152,7 +149,6 @@ static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
spin_lock_irqsave(&efx->biu_lock, flags);
value->u32[0] = _efx_readd(efx, reg + 0);
rmb();
value->u32[1] = _efx_readd(efx, reg + 4);
value->u32[2] = _efx_readd(efx, reg + 8);
value->u32[3] = _efx_readd(efx, reg + 12);
......@@ -163,8 +159,7 @@ static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
EFX_OWORD_VAL(*value));
}
/* Read an 8-byte SRAM entry through supplied mapping,
* locking as appropriate. */
/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
efx_qword_t *value, unsigned int index)
{
......@@ -176,7 +171,6 @@ static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
value->u64[0] = (__force __le64)__raw_readq(membase + addr);
#else
value->u32[0] = (__force __le32)__raw_readl(membase + addr);
rmb();
value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
#endif
spin_unlock_irqrestore(&efx->biu_lock, flags);
......@@ -186,7 +180,7 @@ static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
addr, EFX_QWORD_VAL(*value));
}
/* Read dword from register that allows partial writes (sic) */
/* Read a 32-bit CSR or SRAM */
static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg)
{
......@@ -196,28 +190,28 @@ static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
reg, EFX_DWORD_VAL(*value));
}
/* Write to a register forming part of a table */
/* Write a 128-bit CSR forming part of a table */
static inline void efx_writeo_table(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg, unsigned int index)
{
efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
}
/* Read to a register forming part of a table */
/* Read a 128-bit CSR forming part of a table */
static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg, unsigned int index)
{
efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
}
/* Write to a dword register forming part of a table */
/* Write a 32-bit CSR forming part of a table, or 32-bit SRAM */
static inline void efx_writed_table(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg, unsigned int index)
{
efx_writed(efx, value, reg + index * sizeof(efx_oword_t));
}
/* Read from a dword register forming part of a table */
/* Read a 32-bit CSR forming part of a table, or 32-bit SRAM */
static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg, unsigned int index)
{
......@@ -231,29 +225,54 @@ static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value,
#define EFX_PAGED_REG(page, reg) \
((page) * EFX_PAGE_BLOCK_SIZE + (reg))
/* As for efx_writeo(), but for a page-mapped register. */
static inline void efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg, unsigned int page)
/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg, unsigned int page)
{
efx_writeo(efx, value, EFX_PAGED_REG(page, reg));
}
reg = EFX_PAGED_REG(page, reg);
/* As for efx_writed(), but for a page-mapped register. */
static inline void efx_writed_page(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg, unsigned int page)
netif_vdbg(efx, hw, efx->net_dev,
"writing register %x with " EFX_OWORD_FMT "\n", reg,
EFX_OWORD_VAL(*value));
#ifdef EFX_USE_QWORD_IO
_efx_writeq(efx, value->u64[0], reg + 0);
#else
_efx_writed(efx, value->u32[0], reg + 0);
_efx_writed(efx, value->u32[1], reg + 4);
#endif
_efx_writed(efx, value->u32[2], reg + 8);
_efx_writed(efx, value->u32[3], reg + 12);
}
#define efx_writeo_page(efx, value, reg, page) \
_efx_writeo_page(efx, value, \
reg + \
BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
page)
/* Write a page-mapped 32-bit CSR (EVQ_RPTR or the high bits of
* RX_DESC_UPD or TX_DESC_UPD)
*/
static inline void _efx_writed_page(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg, unsigned int page)
{
efx_writed(efx, value, EFX_PAGED_REG(page, reg));
}
/* Write dword to page-mapped register with an extra lock.
*
* As for efx_writed_page(), but for a register that suffers from
* SFC bug 3181. Take out a lock so the BIU collector cannot be
* confused. */
static inline void efx_writed_page_locked(struct efx_nic *efx,
efx_dword_t *value,
unsigned int reg,
unsigned int page)
#define efx_writed_page(efx, value, reg, page) \
_efx_writed_page(efx, value, \
reg + \
BUILD_BUG_ON_ZERO((reg) != 0x400 && (reg) != 0x83c \
&& (reg) != 0xa1c), \
page)
/* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug
* in the BIU means that writes to TIMER_COMMAND[0] invalidate the
* collector register.
*/
static inline void _efx_writed_page_locked(struct efx_nic *efx,
efx_dword_t *value,
unsigned int reg,
unsigned int page)
{
unsigned long flags __attribute__ ((unused));
......@@ -265,5 +284,9 @@ static inline void efx_writed_page_locked(struct efx_nic *efx,
efx_writed(efx, value, EFX_PAGED_REG(page, reg));
}
}
#define efx_writed_page_locked(efx, value, reg, page) \
_efx_writed_page_locked(efx, value, \
reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
page)
#endif /* EFX_IO_H */
......@@ -142,6 +142,12 @@ struct efx_tx_buffer {
* @flushed: Used when handling queue flushing
* @read_count: Current read pointer.
* This is the number of buffers that have been removed from both rings.
* @old_write_count: The value of @write_count when last checked.
* This is here for performance reasons. The xmit path will
* only get the up-to-date value of @write_count if this
* variable indicates that the queue is empty. This is to
* avoid cache-line ping-pong between the xmit path and the
* completion path.
* @stopped: Stopped count.
* Set if this TX queue is currently stopping its port.
* @insert_count: Current insert pointer
......@@ -163,6 +169,10 @@ struct efx_tx_buffer {
* @tso_long_headers: Number of packets with headers too long for standard
* blocks
* @tso_packets: Number of packets via the TSO xmit path
* @pushes: Number of times the TX push feature has been used
* @empty_read_count: If the completion path has seen the queue as empty
* and the transmission path has not yet checked this, the value of
* @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
*/
struct efx_tx_queue {
/* Members which don't change on the fast path */
......@@ -177,6 +187,7 @@ struct efx_tx_queue {
/* Members used mainly on the completion path */
unsigned int read_count ____cacheline_aligned_in_smp;
unsigned int old_write_count;
int stopped;
/* Members used only on the xmit path */
......@@ -187,6 +198,11 @@ struct efx_tx_queue {
unsigned int tso_bursts;
unsigned int tso_long_headers;
unsigned int tso_packets;
unsigned int pushes;
/* Members shared between paths and sometimes updated */
unsigned int empty_read_count ____cacheline_aligned_in_smp;
#define EFX_EMPTY_COUNT_VALID 0x80000000
};
/**
......@@ -626,10 +642,8 @@ struct efx_filter_state;
* Work items do not hold and must not acquire RTNL.
* @workqueue_name: Name of workqueue
* @reset_work: Scheduled reset workitem
* @monitor_work: Hardware monitor workitem
* @membase_phys: Memory BAR value as physical address
* @membase: Memory BAR value
* @biu_lock: BIU (bus interface unit) lock
* @interrupt_mode: Interrupt mode
* @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
* @irq_rx_moderation: IRQ moderation time for RX event queues
......@@ -653,14 +667,9 @@ struct efx_filter_state;
* @int_error_count: Number of internal errors seen recently
* @int_error_expire: Time at which error count will be expired
* @irq_status: Interrupt status buffer
* @last_irq_cpu: Last CPU to handle interrupt.
* This register is written with the SMP processor ID whenever an
* interrupt is handled. It is used by efx_nic_test_interrupt()
* to verify that an interrupt has occurred.
* @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
* @fatal_irq_level: IRQ level (bit number) used for serious errors
* @mtd_list: List of MTDs attached to the NIC
* @n_rx_nodesc_drop_cnt: RX no descriptor drop count
* @nic_data: Hardware dependant state
* @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
* @port_inhibited, efx_monitor() and efx_reconfigure_port()
......@@ -673,11 +682,7 @@ struct efx_filter_state;
* @port_initialized: Port initialized?
* @net_dev: Operating system network device. Consider holding the rtnl lock
* @rx_checksum_enabled: RX checksumming enabled
* @mac_stats: MAC statistics. These include all statistics the MACs
* can provide. Generic code converts these into a standard
* &struct net_device_stats.
* @stats_buffer: DMA buffer for statistics
* @stats_lock: Statistics update lock. Serialises statistics fetches
* @mac_op: MAC interface
* @phy_type: PHY type
* @phy_op: PHY interface
......@@ -695,10 +700,23 @@ struct efx_filter_state;
* @loopback_mode: Loopback status
* @loopback_modes: Supported loopback mode bitmask
* @loopback_selftest: Offline self-test private state
* @monitor_work: Hardware monitor workitem
* @biu_lock: BIU (bus interface unit) lock
* @last_irq_cpu: Last CPU to handle interrupt.
* This register is written with the SMP processor ID whenever an
* interrupt is handled. It is used by efx_nic_test_interrupt()
* to verify that an interrupt has occurred.
* @n_rx_nodesc_drop_cnt: RX no descriptor drop count
* @mac_stats: MAC statistics. These include all statistics the MACs
* can provide. Generic code converts these into a standard
* &struct net_device_stats.
* @stats_lock: Statistics update lock. Serialises statistics fetches
*
* This is stored in the private area of the &struct net_device.
*/
struct efx_nic {
/* The following fields should be written very rarely */
char name[IFNAMSIZ];
struct pci_dev *pci_dev;
const struct efx_nic_type *type;
......@@ -707,10 +725,9 @@ struct efx_nic {
struct workqueue_struct *workqueue;
char workqueue_name[16];
struct work_struct reset_work;
struct delayed_work monitor_work;
resource_size_t membase_phys;
void __iomem *membase;
spinlock_t biu_lock;
enum efx_int_mode interrupt_mode;
bool irq_rx_adaptive;
unsigned int irq_rx_moderation;
......@@ -737,7 +754,6 @@ struct efx_nic {
unsigned long int_error_expire;
struct efx_buffer irq_status;
volatile signed int last_irq_cpu;
unsigned irq_zero_count;
unsigned fatal_irq_level;
......@@ -745,8 +761,6 @@ struct efx_nic {
struct list_head mtd_list;
#endif
unsigned n_rx_nodesc_drop_cnt;
void *nic_data;
struct mutex mac_lock;
......@@ -758,9 +772,7 @@ struct efx_nic {
struct net_device *net_dev;
bool rx_checksum_enabled;
struct efx_mac_stats mac_stats;
struct efx_buffer stats_buffer;
spinlock_t stats_lock;
struct efx_mac_operations *mac_op;
......@@ -786,6 +798,15 @@ struct efx_nic {
void *loopback_selftest;
struct efx_filter_state *filter_state;
/* The following fields may be written more often */
struct delayed_work monitor_work ____cacheline_aligned_in_smp;
spinlock_t biu_lock;
volatile signed int last_irq_cpu;
unsigned n_rx_nodesc_drop_cnt;
struct efx_mac_stats mac_stats;
spinlock_t stats_lock;
};
static inline int efx_dev_registered(struct efx_nic *efx)
......
......@@ -362,6 +362,35 @@ static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
}
/* Write pointer and first descriptor for TX descriptor ring */
static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
const efx_qword_t *txd)
{
unsigned write_ptr;
efx_oword_t reg;
BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
FRF_AZ_TX_DESC_WPTR, write_ptr);
reg.qword[0] = *txd;
efx_writeo_page(tx_queue->efx, &reg,
FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
}
static inline bool
efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
{
unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
if (empty_read_count == 0)
return false;
tx_queue->empty_read_count = 0;
return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
}
/* For each entry inserted into the software descriptor ring, create a
* descriptor in the hardware TX descriptor ring (in host memory), and
......@@ -373,6 +402,7 @@ void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
struct efx_tx_buffer *buffer;
efx_qword_t *txd;
unsigned write_ptr;
unsigned old_write_count = tx_queue->write_count;
BUG_ON(tx_queue->write_count == tx_queue->insert_count);
......@@ -391,7 +421,15 @@ void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
} while (tx_queue->write_count != tx_queue->insert_count);
wmb(); /* Ensure descriptors are written before they are fetched */
efx_notify_tx_desc(tx_queue);
if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
txd = efx_tx_desc(tx_queue,
old_write_count & tx_queue->ptr_mask);
efx_push_tx_desc(tx_queue, txd);
++tx_queue->pushes;
} else {
efx_notify_tx_desc(tx_queue);
}
}
/* Allocate hardware resources for a TX queue */
......@@ -1632,7 +1670,7 @@ void efx_nic_init_common(struct efx_nic *efx)
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
/* Enable SW_EV to inherit in char driver - assume harmless here */
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
......
......@@ -240,8 +240,7 @@ netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
* of read_count. */
smp_mb();
tx_queue->old_read_count =
*(volatile unsigned *)
&tx_queue->read_count;
ACCESS_ONCE(tx_queue->read_count);
fill_level = (tx_queue->insert_count
- tx_queue->old_read_count);
q_space = efx->txq_entries - 1 - fill_level;
......@@ -429,6 +428,16 @@ void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
__netif_tx_unlock(queue);
}
}
/* Check whether the hardware queue is now empty */
if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
if (tx_queue->read_count == tx_queue->old_write_count) {
smp_mb();
tx_queue->empty_read_count =
tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
}
}
}
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
......@@ -474,8 +483,10 @@ void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
tx_queue->insert_count = 0;
tx_queue->write_count = 0;
tx_queue->old_write_count = 0;
tx_queue->read_count = 0;
tx_queue->old_read_count = 0;
tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
BUG_ON(tx_queue->stopped);
/* Set up TX descriptor ring */
......@@ -764,7 +775,7 @@ static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
* stopped from the access of read_count. */
smp_mb();
tx_queue->old_read_count =
*(volatile unsigned *)&tx_queue->read_count;
ACCESS_ONCE(tx_queue->read_count);
fill_level = (tx_queue->insert_count
- tx_queue->old_read_count);
q_space = efx->txq_entries - 1 - fill_level;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册