提交 ce807d5f 编写于 作者: D David Daney 提交者: Ralf Baechle

MIPS: Optimize uasm insn lookup.

Instead of doing a linear search through the insn_table for each
instruction, use the opcode as direct index into the table.  This will
give constant time lookup performance as the number of supported
opcodes increases.  Make the tables const as they are only ever read.
For uasm-mips.c sort the table alphabetically, and remove duplicate
entries, uasm-micromips.c was already sorted and duplicate free.
There is a small savings in object size as struct insn loses a field:

$ size arch/mips/mm/uasm-mips.o arch/mips/mm/uasm-mips.o.save
   text	   data	    bss	    dec	    hex	filename
  10040	      0	      0	  10040	   2738	arch/mips/mm/uasm-mips.o
   9240	   1120	      0	  10360	   2878	arch/mips/mm/uasm-mips.o.save
Signed-off-by: NDavid Daney <david.daney@cavium.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: netdev@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/16365/Signed-off-by: NRalf Baechle <ralf@linux-mips.org>
上级 430d0b88
......@@ -40,93 +40,92 @@
#include "uasm.c"
static struct insn insn_table_MM[] = {
{ insn_addu, M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD },
{ insn_addiu, M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
{ insn_and, M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD },
{ insn_andi, M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM },
{ insn_beq, M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_beql, 0, 0 },
{ insn_bgez, M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM },
{ insn_bgezl, 0, 0 },
{ insn_bltz, M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM },
{ insn_bltzl, 0, 0 },
{ insn_bne, M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM },
{ insn_cache, M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM },
{ insn_cfc1, M(mm_pool32f_op, 0, 0, 0, mm_cfc1_op, mm_32f_73_op), RT | RS },
{ insn_cfcmsa, M(mm_pool32s_op, 0, msa_cfc_op, 0, 0, mm_32s_elm_op), RD | RE },
{ insn_ctc1, M(mm_pool32f_op, 0, 0, 0, mm_ctc1_op, mm_32f_73_op), RT | RS },
{ insn_ctcmsa, M(mm_pool32s_op, 0, msa_ctc_op, 0, 0, mm_32s_elm_op), RD | RE },
{ insn_daddu, 0, 0 },
{ insn_daddiu, 0, 0 },
{ insn_di, M(mm_pool32a_op, 0, 0, 0, mm_di_op, mm_pool32axf_op), RS },
{ insn_divu, M(mm_pool32a_op, 0, 0, 0, mm_divu_op, mm_pool32axf_op), RT | RS },
{ insn_dmfc0, 0, 0 },
{ insn_dmtc0, 0, 0 },
{ insn_dsll, 0, 0 },
{ insn_dsll32, 0, 0 },
{ insn_dsra, 0, 0 },
{ insn_dsrl, 0, 0 },
{ insn_dsrl32, 0, 0 },
{ insn_drotr, 0, 0 },
{ insn_drotr32, 0, 0 },
{ insn_dsubu, 0, 0 },
{ insn_eret, M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0 },
{ insn_ins, M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE },
{ insn_ext, M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE },
{ insn_j, M(mm_j32_op, 0, 0, 0, 0, 0), JIMM },
{ insn_jal, M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM },
{ insn_jalr, M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RT | RS },
{ insn_jr, M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS },
{ insn_lb, M(mm_lb32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
{ insn_ld, 0, 0 },
{ insn_lh, M(mm_lh32_op, 0, 0, 0, 0, 0), RS | RS | SIMM },
{ insn_ll, M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM },
{ insn_lld, 0, 0 },
{ insn_lui, M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM },
{ insn_lw, M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
{ insn_mfc0, M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD },
{ insn_mfhi, M(mm_pool32a_op, 0, 0, 0, mm_mfhi32_op, mm_pool32axf_op), RS },
{ insn_mflo, M(mm_pool32a_op, 0, 0, 0, mm_mflo32_op, mm_pool32axf_op), RS },
{ insn_mtc0, M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD },
{ insn_mthi, M(mm_pool32a_op, 0, 0, 0, mm_mthi32_op, mm_pool32axf_op), RS },
{ insn_mtlo, M(mm_pool32a_op, 0, 0, 0, mm_mtlo32_op, mm_pool32axf_op), RS },
{ insn_mul, M(mm_pool32a_op, 0, 0, 0, 0, mm_mul_op), RT | RS | RD },
{ insn_or, M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD },
{ insn_ori, M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM },
{ insn_pref, M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM },
{ insn_rfe, 0, 0 },
{ insn_sc, M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM },
{ insn_scd, 0, 0 },
{ insn_sd, 0, 0 },
{ insn_sll, M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD },
{ insn_sllv, M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD },
{ insn_slt, M(mm_pool32a_op, 0, 0, 0, 0, mm_slt_op), RT | RS | RD },
{ insn_sltiu, M(mm_sltiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
{ insn_sltu, M(mm_pool32a_op, 0, 0, 0, 0, mm_sltu_op), RT | RS | RD },
{ insn_sra, M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD },
{ insn_srl, M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD },
{ insn_srlv, M(mm_pool32a_op, 0, 0, 0, 0, mm_srlv32_op), RT | RS | RD },
{ insn_rotr, M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD },
{ insn_subu, M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD },
{ insn_sw, M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
{ insn_sync, M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS },
{ insn_tlbp, M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0 },
{ insn_tlbr, M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0 },
{ insn_tlbwi, M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0 },
{ insn_tlbwr, M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0 },
{ insn_wait, M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM },
{ insn_wsbh, M(mm_pool32a_op, 0, 0, 0, mm_wsbh_op, mm_pool32axf_op), RT | RS },
{ insn_xor, M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD },
{ insn_xori, M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM },
{ insn_dins, 0, 0 },
{ insn_dinsm, 0, 0 },
{ insn_syscall, M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM},
{ insn_bbit0, 0, 0 },
{ insn_bbit1, 0, 0 },
{ insn_lwx, 0, 0 },
{ insn_ldx, 0, 0 },
{ insn_invalid, 0, 0 }
static const struct insn const insn_table_MM[insn_invalid] = {
[insn_addu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD},
[insn_addiu] = {M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_and] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD},
[insn_andi] = {M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
[insn_beq] = {M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
[insn_beql] = {0, 0},
[insn_bgez] = {M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM},
[insn_bgezl] = {0, 0},
[insn_bltz] = {M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM},
[insn_bltzl] = {0, 0},
[insn_bne] = {M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM},
[insn_cache] = {M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM},
[insn_cfc1] = {M(mm_pool32f_op, 0, 0, 0, mm_cfc1_op, mm_32f_73_op), RT | RS},
[insn_cfcmsa] = {M(mm_pool32s_op, 0, msa_cfc_op, 0, 0, mm_32s_elm_op), RD | RE},
[insn_ctc1] = {M(mm_pool32f_op, 0, 0, 0, mm_ctc1_op, mm_32f_73_op), RT | RS},
[insn_ctcmsa] = {M(mm_pool32s_op, 0, msa_ctc_op, 0, 0, mm_32s_elm_op), RD | RE},
[insn_daddu] = {0, 0},
[insn_daddiu] = {0, 0},
[insn_di] = {M(mm_pool32a_op, 0, 0, 0, mm_di_op, mm_pool32axf_op), RS},
[insn_divu] = {M(mm_pool32a_op, 0, 0, 0, mm_divu_op, mm_pool32axf_op), RT | RS},
[insn_dmfc0] = {0, 0},
[insn_dmtc0] = {0, 0},
[insn_dsll] = {0, 0},
[insn_dsll32] = {0, 0},
[insn_dsra] = {0, 0},
[insn_dsrl] = {0, 0},
[insn_dsrl32] = {0, 0},
[insn_drotr] = {0, 0},
[insn_drotr32] = {0, 0},
[insn_dsubu] = {0, 0},
[insn_eret] = {M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0},
[insn_ins] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE},
[insn_ext] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE},
[insn_j] = {M(mm_j32_op, 0, 0, 0, 0, 0), JIMM},
[insn_jal] = {M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM},
[insn_jalr] = {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RT | RS},
[insn_jr] = {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS},
[insn_lb] = {M(mm_lb32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_ld] = {0, 0},
[insn_lh] = {M(mm_lh32_op, 0, 0, 0, 0, 0), RS | RS | SIMM},
[insn_ll] = {M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM},
[insn_lld] = {0, 0},
[insn_lui] = {M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM},
[insn_lw] = {M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_mfc0] = {M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD},
[insn_mfhi] = {M(mm_pool32a_op, 0, 0, 0, mm_mfhi32_op, mm_pool32axf_op), RS},
[insn_mflo] = {M(mm_pool32a_op, 0, 0, 0, mm_mflo32_op, mm_pool32axf_op), RS},
[insn_mtc0] = {M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD},
[insn_mthi] = {M(mm_pool32a_op, 0, 0, 0, mm_mthi32_op, mm_pool32axf_op), RS},
[insn_mtlo] = {M(mm_pool32a_op, 0, 0, 0, mm_mtlo32_op, mm_pool32axf_op), RS},
[insn_mul] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_mul_op), RT | RS | RD},
[insn_or] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD},
[insn_ori] = {M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
[insn_pref] = {M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM},
[insn_rfe] = {0, 0},
[insn_sc] = {M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM},
[insn_scd] = {0, 0},
[insn_sd] = {0, 0},
[insn_sll] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD},
[insn_sllv] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD},
[insn_slt] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_slt_op), RT | RS | RD},
[insn_sltiu] = {M(mm_sltiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_sltu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sltu_op), RT | RS | RD},
[insn_sra] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD},
[insn_srl] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD},
[insn_srlv] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srlv32_op), RT | RS | RD},
[insn_rotr] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD},
[insn_subu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD},
[insn_sw] = {M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_sync] = {M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS},
[insn_tlbp] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0},
[insn_tlbr] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0},
[insn_tlbwi] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0},
[insn_tlbwr] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0},
[insn_wait] = {M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM},
[insn_wsbh] = {M(mm_pool32a_op, 0, 0, 0, mm_wsbh_op, mm_pool32axf_op), RT | RS},
[insn_xor] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD},
[insn_xori] = {M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
[insn_dins] = {0, 0},
[insn_dinsm] = {0, 0},
[insn_syscall] = {M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM},
[insn_bbit0] = {0, 0},
[insn_bbit1] = {0, 0},
[insn_lwx] = {0, 0},
[insn_ldx] = {0, 0},
};
#undef M
......@@ -156,20 +155,17 @@ static inline u32 build_jimm(u32 arg)
*/
static void build_insn(u32 **buf, enum opcode opc, ...)
{
struct insn *ip = NULL;
unsigned int i;
const struct insn *ip;
va_list ap;
u32 op;
for (i = 0; insn_table_MM[i].opcode != insn_invalid; i++)
if (insn_table_MM[i].opcode == opc) {
ip = &insn_table_MM[i];
break;
}
if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
if (opc < 0 || opc >= insn_invalid ||
(opc == insn_daddiu && r4k_daddiu_bug()) ||
(insn_table_MM[opc].match == 0 && insn_table_MM[opc].fields == 0))
panic("Unsupported Micro-assembler instruction %d", opc);
ip = &insn_table_MM[opc];
op = ip->match;
va_start(ap, opc);
if (ip->fields & RS) {
......
......@@ -48,126 +48,124 @@
#include "uasm.c"
static struct insn insn_table[] = {
{ insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
{ insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
{ insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
{ insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
{ insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
{ insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
{ insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
{ insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
static const struct insn const insn_table[insn_invalid] = {
[insn_addiu] = {M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_addu] = {M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD},
[insn_and] = {M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD},
[insn_andi] = {M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
[insn_bbit0] = {M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
[insn_bbit1] = {M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
[insn_beq] = {M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
[insn_beql] = {M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
[insn_bgez] = {M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM},
[insn_bgezl] = {M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM},
[insn_bltz] = {M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM},
[insn_bltzl] = {M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM},
[insn_bne] = {M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
#ifndef CONFIG_CPU_MIPSR6
{ insn_cache, M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
[insn_cache] = {M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
#else
{ insn_cache, M6(spec3_op, 0, 0, 0, cache6_op), RS | RT | SIMM9 },
[insn_cache] = {M6(spec3_op, 0, 0, 0, cache6_op), RS | RT | SIMM9},
#endif
{ insn_cfc1, M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD },
{ insn_cfcmsa, M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE },
{ insn_ctc1, M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD },
{ insn_ctcmsa, M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE },
{ insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
{ insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE },
{ insn_di, M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT },
{ insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE },
{ insn_divu, M(spec_op, 0, 0, 0, 0, divu_op), RS | RT },
{ insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE },
{ insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE },
{ insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
{ insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
{ insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
{ insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
{ insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
{ insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
{ insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 },
{ insn_ext, M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE },
{ insn_ins, M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE },
{ insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
{ insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM },
{ insn_jalr, M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD },
{ insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
[insn_cfc1] = {M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD},
[insn_cfcmsa] = {M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE},
[insn_ctc1] = {M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD},
[insn_ctcmsa] = {M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE},
[insn_daddiu] = {M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_daddu] = {M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD},
[insn_di] = {M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT},
[insn_dins] = {M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE},
[insn_dinsm] = {M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE},
[insn_divu] = {M(spec_op, 0, 0, 0, 0, divu_op), RS | RT},
[insn_dmfc0] = {M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
[insn_dmtc0] = {M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
[insn_drotr] = {M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE},
[insn_drotr32] = {M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE},
[insn_dsll] = {M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE},
[insn_dsll32] = {M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE},
[insn_dsra] = {M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE},
[insn_dsrl] = {M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE},
[insn_dsrl32] = {M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE},
[insn_dsubu] = {M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD},
[insn_eret] = {M(cop0_op, cop_op, 0, 0, 0, eret_op), 0},
[insn_ext] = {M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE},
[insn_ins] = {M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE},
[insn_j] = {M(j_op, 0, 0, 0, 0, 0), JIMM},
[insn_jal] = {M(jal_op, 0, 0, 0, 0, 0), JIMM},
[insn_jalr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD},
#ifndef CONFIG_CPU_MIPSR6
{ insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS },
[insn_jr] = {M(spec_op, 0, 0, 0, 0, jr_op), RS},
#else
{ insn_jr, M(spec_op, 0, 0, 0, 0, jalr_op), RS },
[insn_jr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS},
#endif
{ insn_lb, M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD },
{ insn_lh, M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_lhu, M(lhu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
[insn_lb] = {M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_ld] = {M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_lddir] = {M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD},
[insn_ldpte] = {M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD},
[insn_ldx] = {M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD},
[insn_lh] = {M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_lhu] = {M(lhu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
#ifndef CONFIG_CPU_MIPSR6
{ insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
[insn_ll] = {M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_lld] = {M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
#else
{ insn_lld, M6(spec3_op, 0, 0, 0, lld6_op), RS | RT | SIMM9 },
{ insn_ll, M6(spec3_op, 0, 0, 0, ll6_op), RS | RT | SIMM9 },
[insn_ll] = {M6(spec3_op, 0, 0, 0, ll6_op), RS | RT | SIMM9},
[insn_lld] = {M6(spec3_op, 0, 0, 0, lld6_op), RS | RT | SIMM9},
#endif
{ insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM },
{ insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD },
{ insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_mfhc0, M(cop0_op, mfhc0_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_mfhi, M(spec_op, 0, 0, 0, 0, mfhi_op), RD },
{ insn_mflo, M(spec_op, 0, 0, 0, 0, mflo_op), RD },
{ insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_mthc0, M(cop0_op, mthc0_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_mthi, M(spec_op, 0, 0, 0, 0, mthi_op), RS },
{ insn_mtlo, M(spec_op, 0, 0, 0, 0, mtlo_op), RS },
[insn_lui] = {M(lui_op, 0, 0, 0, 0, 0), RT | SIMM},
[insn_lw] = {M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_lwx] = {M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD},
[insn_mfc0] = {M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
[insn_mfhc0] = {M(cop0_op, mfhc0_op, 0, 0, 0, 0), RT | RD | SET},
[insn_mfhi] = {M(spec_op, 0, 0, 0, 0, mfhi_op), RD},
[insn_mflo] = {M(spec_op, 0, 0, 0, 0, mflo_op), RD},
[insn_mtc0] = {M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
[insn_mthc0] = {M(cop0_op, mthc0_op, 0, 0, 0, 0), RT | RD | SET},
[insn_mthi] = {M(spec_op, 0, 0, 0, 0, mthi_op), RS},
[insn_mtlo] = {M(spec_op, 0, 0, 0, 0, mtlo_op), RS},
#ifndef CONFIG_CPU_MIPSR6
{ insn_mul, M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
[insn_mul] = {M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
#else
{ insn_mul, M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
[insn_mul] = {M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
#endif
{ insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
{ insn_or, M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD },
[insn_or] = {M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD},
[insn_ori] = {M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
#ifndef CONFIG_CPU_MIPSR6
{ insn_pref, M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
[insn_pref] = {M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
#else
{ insn_pref, M6(spec3_op, 0, 0, 0, pref6_op), RS | RT | SIMM9 },
[insn_pref] = {M6(spec3_op, 0, 0, 0, pref6_op), RS | RT | SIMM9},
#endif
{ insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 },
{ insn_rotr, M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE },
[insn_rfe] = {M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0},
[insn_rotr] = {M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE},
#ifndef CONFIG_CPU_MIPSR6
{ insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
[insn_sc] = {M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_scd] = {M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
#else
{ insn_scd, M6(spec3_op, 0, 0, 0, scd6_op), RS | RT | SIMM9 },
{ insn_sc, M6(spec3_op, 0, 0, 0, sc6_op), RS | RT | SIMM9 },
[insn_sc] = {M6(spec3_op, 0, 0, 0, sc6_op), RS | RT | SIMM9},
[insn_scd] = {M6(spec3_op, 0, 0, 0, scd6_op), RS | RT | SIMM9},
#endif
{ insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE },
{ insn_sllv, M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD },
{ insn_slt, M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD },
{ insn_sltiu, M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_sltu, M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD },
{ insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE },
{ insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE },
{ insn_srlv, M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD },
{ insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD },
{ insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_sync, M(spec_op, 0, 0, 0, 0, sync_op), RE },
{ insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
{ insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 },
{ insn_tlbr, M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0 },
{ insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 },
{ insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 },
{ insn_wait, M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM },
{ insn_wsbh, M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD },
{ insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
{ insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD },
{ insn_yield, M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD },
{ insn_ldpte, M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD },
{ insn_lddir, M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD },
{ insn_invalid, 0, 0 }
[insn_sd] = {M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_sll] = {M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE},
[insn_sllv] = {M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD},
[insn_slt] = {M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD},
[insn_sltiu] = {M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_sltu] = {M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD},
[insn_sra] = {M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE},
[insn_srl] = {M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE},
[insn_srlv] = {M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD},
[insn_subu] = {M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD},
[insn_sw] = {M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_sync] = {M(spec_op, 0, 0, 0, 0, sync_op), RE},
[insn_syscall] = {M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
[insn_tlbp] = {M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0},
[insn_tlbr] = {M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0},
[insn_tlbwi] = {M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0},
[insn_tlbwr] = {M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0},
[insn_wait] = {M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM},
[insn_wsbh] = {M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD},
[insn_xor] = {M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD},
[insn_xori] = {M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
[insn_yield] = {M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD},
};
#undef M
......@@ -196,20 +194,17 @@ static inline u32 build_jimm(u32 arg)
*/
static void build_insn(u32 **buf, enum opcode opc, ...)
{
struct insn *ip = NULL;
unsigned int i;
const struct insn *ip;
va_list ap;
u32 op;
for (i = 0; insn_table[i].opcode != insn_invalid; i++)
if (insn_table[i].opcode == opc) {
ip = &insn_table[i];
break;
}
if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
if (opc < 0 || opc >= insn_invalid ||
(opc == insn_daddiu && r4k_daddiu_bug()) ||
(insn_table[opc].match == 0 && insn_table[opc].fields == 0))
panic("Unsupported Micro-assembler instruction %d", opc);
ip = &insn_table[opc];
op = ip->match;
va_start(ap, opc);
if (ip->fields & RS)
......
......@@ -46,7 +46,6 @@ enum fields {
#define SIMM9_MASK 0x1ff
enum opcode {
insn_invalid,
insn_addiu, insn_addu, insn_and, insn_andi, insn_bbit0, insn_bbit1,
insn_beq, insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
insn_bne, insn_cache, insn_cfc1, insn_cfcmsa, insn_ctc1, insn_ctcmsa,
......@@ -62,10 +61,10 @@ enum opcode {
insn_srlv, insn_subu, insn_sw, insn_sync, insn_syscall, insn_tlbp,
insn_tlbr, insn_tlbwi, insn_tlbwr, insn_wait, insn_wsbh, insn_xor,
insn_xori, insn_yield, insn_lddir, insn_ldpte, insn_lhu,
insn_invalid /* insn_invalid must be last */
};
struct insn {
enum opcode opcode;
u32 match;
enum fields fields;
};
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册