提交 c520abad 编写于 作者: B Bob Moore 提交者: Len Brown

ACPICA: Fix writes to optional PM1B registers

On read, shift B register bits above the A bits. On write,
shift B bits down to zero before writing the B register. New:
acpi_hw_read_multiple, acpi_hw_write_multiple. These two functions now
transparently handle the (possible) split registers for PM1 Status,
Enable, and Control.
Signed-off-by: NBob Moore <robert.moore@intel.com>
Signed-off-by: NLin Ming <ming.m.lin@intel.com>
Signed-off-by: NLen Brown <len.brown@intel.com>
上级 d3319d17
...@@ -51,6 +51,17 @@ ...@@ -51,6 +51,17 @@
#define _COMPONENT ACPI_HARDWARE #define _COMPONENT ACPI_HARDWARE
ACPI_MODULE_NAME("hwregs") ACPI_MODULE_NAME("hwregs")
/* Local Prototypes */
static acpi_status
acpi_hw_read_multiple(u32 *value,
struct acpi_generic_address *register_a,
struct acpi_generic_address *register_b);
static acpi_status
acpi_hw_write_multiple(u32 value,
struct acpi_generic_address *register_a,
struct acpi_generic_address *register_b);
/******************************************************************************* /*******************************************************************************
* *
* FUNCTION: acpi_hw_clear_acpi_status * FUNCTION: acpi_hw_clear_acpi_status
...@@ -63,6 +74,7 @@ ACPI_MODULE_NAME("hwregs") ...@@ -63,6 +74,7 @@ ACPI_MODULE_NAME("hwregs")
* THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED
* *
******************************************************************************/ ******************************************************************************/
acpi_status acpi_hw_clear_acpi_status(void) acpi_status acpi_hw_clear_acpi_status(void)
{ {
acpi_status status; acpi_status status;
...@@ -143,64 +155,49 @@ struct acpi_bit_register_info *acpi_hw_get_bit_register_info(u32 register_id) ...@@ -143,64 +155,49 @@ struct acpi_bit_register_info *acpi_hw_get_bit_register_info(u32 register_id)
acpi_status acpi_status
acpi_hw_register_read(u32 register_id, u32 * return_value) acpi_hw_register_read(u32 register_id, u32 * return_value)
{ {
u32 value1 = 0; u32 value = 0;
u32 value2 = 0;
acpi_status status; acpi_status status;
ACPI_FUNCTION_TRACE(hw_register_read); ACPI_FUNCTION_TRACE(hw_register_read);
switch (register_id) { switch (register_id) {
case ACPI_REGISTER_PM1_STATUS: /* 16-bit access */ case ACPI_REGISTER_PM1_STATUS: /* PM1 A/B: 16-bit access each */
status = acpi_read(&value1, &acpi_gbl_xpm1a_status); status = acpi_hw_read_multiple(&value,
if (ACPI_FAILURE(status)) { &acpi_gbl_xpm1a_status,
goto exit; &acpi_gbl_xpm1b_status);
}
/* PM1B is optional */
status = acpi_read(&value2, &acpi_gbl_xpm1b_status);
value1 |= value2;
break; break;
case ACPI_REGISTER_PM1_ENABLE: /* 16-bit access */ case ACPI_REGISTER_PM1_ENABLE: /* PM1 A/B: 16-bit access each */
status = acpi_read(&value1, &acpi_gbl_xpm1a_enable); status = acpi_hw_read_multiple(&value,
if (ACPI_FAILURE(status)) { &acpi_gbl_xpm1a_enable,
goto exit; &acpi_gbl_xpm1b_enable);
}
/* PM1B is optional */
status = acpi_read(&value2, &acpi_gbl_xpm1b_enable);
value1 |= value2;
break; break;
case ACPI_REGISTER_PM1_CONTROL: /* 16-bit access */ case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */
status = acpi_read(&value1, &acpi_gbl_FADT.xpm1a_control_block);
if (ACPI_FAILURE(status)) {
goto exit;
}
status = acpi_read(&value2, &acpi_gbl_FADT.xpm1b_control_block); status = acpi_hw_read_multiple(&value,
value1 |= value2; &acpi_gbl_FADT.
xpm1a_control_block,
&acpi_gbl_FADT.
xpm1b_control_block);
break; break;
case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */ case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */
status = acpi_read(&value1, &acpi_gbl_FADT.xpm2_control_block); status = acpi_read(&value, &acpi_gbl_FADT.xpm2_control_block);
break; break;
case ACPI_REGISTER_PM_TIMER: /* 32-bit access */ case ACPI_REGISTER_PM_TIMER: /* 32-bit access */
status = acpi_read(&value1, &acpi_gbl_FADT.xpm_timer_block); status = acpi_read(&value, &acpi_gbl_FADT.xpm_timer_block);
break; break;
case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */ case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */
status = status =
acpi_os_read_port(acpi_gbl_FADT.smi_command, &value1, 8); acpi_os_read_port(acpi_gbl_FADT.smi_command, &value, 8);
break; break;
default: default:
...@@ -209,10 +206,8 @@ acpi_hw_register_read(u32 register_id, u32 * return_value) ...@@ -209,10 +206,8 @@ acpi_hw_register_read(u32 register_id, u32 * return_value)
break; break;
} }
exit:
if (ACPI_SUCCESS(status)) { if (ACPI_SUCCESS(status)) {
*return_value = value1; *return_value = value;
} }
return_ACPI_STATUS(status); return_ACPI_STATUS(status);
...@@ -252,12 +247,13 @@ acpi_status acpi_hw_register_write(u32 register_id, u32 value) ...@@ -252,12 +247,13 @@ acpi_status acpi_hw_register_write(u32 register_id, u32 value)
ACPI_FUNCTION_TRACE(hw_register_write); ACPI_FUNCTION_TRACE(hw_register_write);
switch (register_id) { switch (register_id) {
case ACPI_REGISTER_PM1_STATUS: /* 16-bit access */ case ACPI_REGISTER_PM1_STATUS: /* PM1 A/B: 16-bit access each */
/* Perform a read first to preserve certain bits (per ACPI spec) */ /* Perform a read first to preserve certain bits (per ACPI spec) */
status = acpi_hw_register_read(ACPI_REGISTER_PM1_STATUS, status = acpi_hw_read_multiple(&read_value,
&read_value); &acpi_gbl_xpm1a_status,
&acpi_gbl_xpm1b_status);
if (ACPI_FAILURE(status)) { if (ACPI_FAILURE(status)) {
goto exit; goto exit;
} }
...@@ -269,35 +265,29 @@ acpi_status acpi_hw_register_write(u32 register_id, u32 value) ...@@ -269,35 +265,29 @@ acpi_status acpi_hw_register_write(u32 register_id, u32 value)
/* Now we can write the data */ /* Now we can write the data */
status = acpi_write(value, &acpi_gbl_xpm1a_status); status = acpi_hw_write_multiple(value,
if (ACPI_FAILURE(status)) { &acpi_gbl_xpm1a_status,
goto exit; &acpi_gbl_xpm1b_status);
}
/* PM1B is optional */
status = acpi_write(value, &acpi_gbl_xpm1b_status);
break; break;
case ACPI_REGISTER_PM1_ENABLE: /* 16-bit access */ case ACPI_REGISTER_PM1_ENABLE: /* PM1 A/B: 16-bit access */
status = acpi_write(value, &acpi_gbl_xpm1a_enable); status = acpi_hw_write_multiple(value,
if (ACPI_FAILURE(status)) { &acpi_gbl_xpm1a_enable,
goto exit; &acpi_gbl_xpm1b_enable);
}
/* PM1B is optional */
status = acpi_write(value, &acpi_gbl_xpm1b_enable);
break; break;
case ACPI_REGISTER_PM1_CONTROL: /* 16-bit access */ case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */
/* /*
* Perform a read first to preserve certain bits (per ACPI spec) * Perform a read first to preserve certain bits (per ACPI spec)
* Note: This includes SCI_EN, we never want to change this bit
*/ */
status = acpi_hw_register_read(ACPI_REGISTER_PM1_CONTROL, status = acpi_hw_read_multiple(&read_value,
&read_value); &acpi_gbl_FADT.
xpm1a_control_block,
&acpi_gbl_FADT.
xpm1b_control_block);
if (ACPI_FAILURE(status)) { if (ACPI_FAILURE(status)) {
goto exit; goto exit;
} }
...@@ -309,12 +299,11 @@ acpi_status acpi_hw_register_write(u32 register_id, u32 value) ...@@ -309,12 +299,11 @@ acpi_status acpi_hw_register_write(u32 register_id, u32 value)
/* Now we can write the data */ /* Now we can write the data */
status = acpi_write(value, &acpi_gbl_FADT.xpm1a_control_block); status = acpi_hw_write_multiple(value,
if (ACPI_FAILURE(status)) { &acpi_gbl_FADT.
goto exit; xpm1a_control_block,
} &acpi_gbl_FADT.
xpm1b_control_block);
status = acpi_write(value, &acpi_gbl_FADT.xpm1b_control_block);
break; break;
case ACPI_REGISTER_PM1A_CONTROL: /* 16-bit access */ case ACPI_REGISTER_PM1A_CONTROL: /* 16-bit access */
...@@ -346,6 +335,7 @@ acpi_status acpi_hw_register_write(u32 register_id, u32 value) ...@@ -346,6 +335,7 @@ acpi_status acpi_hw_register_write(u32 register_id, u32 value)
break; break;
default: default:
ACPI_ERROR((AE_INFO, "Unknown Register ID: %X", register_id));
status = AE_BAD_PARAMETER; status = AE_BAD_PARAMETER;
break; break;
} }
...@@ -353,3 +343,88 @@ acpi_status acpi_hw_register_write(u32 register_id, u32 value) ...@@ -353,3 +343,88 @@ acpi_status acpi_hw_register_write(u32 register_id, u32 value)
exit: exit:
return_ACPI_STATUS(status); return_ACPI_STATUS(status);
} }
/******************************************************************************
*
* FUNCTION: acpi_hw_read_multiple
*
* PARAMETERS: Value - Where the register value is returned
* register_a - First ACPI register (required)
* register_b - Second ACPI register (optional)
*
* RETURN: Status
*
* DESCRIPTION: Read from the specified two-part ACPI register (such as PM1 A/B)
*
******************************************************************************/
static acpi_status
acpi_hw_read_multiple(u32 *value,
struct acpi_generic_address *register_a,
struct acpi_generic_address *register_b)
{
u32 value_a = 0;
u32 value_b = 0;
acpi_status status;
/* The first register is always required */
status = acpi_read(&value_a, register_a);
if (ACPI_FAILURE(status)) {
return (status);
}
/* Second register is optional */
if (register_b->address) {
status = acpi_read(&value_b, register_b);
if (ACPI_FAILURE(status)) {
return (status);
}
}
/* Shift the B bits above the A bits */
*value = value_a | (value_b << register_a->bit_width);
return (AE_OK);
}
/******************************************************************************
*
* FUNCTION: acpi_hw_write_multiple
*
* PARAMETERS: Value - The value to write
* register_a - First ACPI register (required)
* register_b - Second ACPI register (optional)
*
* RETURN: Status
*
* DESCRIPTION: Write to the specified two-part ACPI register (such as PM1 A/B)
*
******************************************************************************/
static acpi_status
acpi_hw_write_multiple(u32 value,
struct acpi_generic_address *register_a,
struct acpi_generic_address *register_b)
{
acpi_status status;
/* The first register is always required */
status = acpi_write(value, register_a);
if (ACPI_FAILURE(status)) {
return (status);
}
/* Second register is optional */
if (register_b->address) {
/* Normalize the B bits before write */
status = acpi_write(value >> register_a->bit_width, register_b);
}
return (status);
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册