提交 c296d5f9 编写于 作者: T Thomas Petazzoni 提交者: Greg Kroah-Hartman

staging: fbtft: core support

This commit adds the core fbtft framework from
https://github.com/notro/fbtft.
Signed-off-by: NThomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: NNoralf Tronnes <notro@tronnes.org>
Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
上级 ab666bb2
...@@ -106,4 +106,6 @@ source "drivers/staging/unisys/Kconfig" ...@@ -106,4 +106,6 @@ source "drivers/staging/unisys/Kconfig"
source "drivers/staging/clocking-wizard/Kconfig" source "drivers/staging/clocking-wizard/Kconfig"
source "drivers/staging/fbtft/Kconfig"
endif # STAGING endif # STAGING
...@@ -45,3 +45,4 @@ obj-$(CONFIG_GS_FPGABOOT) += gs_fpgaboot/ ...@@ -45,3 +45,4 @@ obj-$(CONFIG_GS_FPGABOOT) += gs_fpgaboot/
obj-$(CONFIG_CRYPTO_SKEIN) += skein/ obj-$(CONFIG_CRYPTO_SKEIN) += skein/
obj-$(CONFIG_UNISYSSPAR) += unisys/ obj-$(CONFIG_UNISYSSPAR) += unisys/
obj-$(CONFIG_COMMON_CLK_XLNX_CLKWZRD) += clocking-wizard/ obj-$(CONFIG_COMMON_CLK_XLNX_CLKWZRD) += clocking-wizard/
obj-$(CONFIG_FB_TFT) += fbtft/
menuconfig FB_TFT
tristate "Support for small TFT LCD display modules"
depends on FB && SPI && GPIOLIB
select FB_SYS_FILLRECT
select FB_SYS_COPYAREA
select FB_SYS_IMAGEBLIT
select FB_SYS_FOPS
select FB_DEFERRED_IO
select FB_BACKLIGHT
# Core module
obj-$(CONFIG_FB_TFT) += fbtft.o
fbtft-y += fbtft-core.o fbtft-sysfs.o fbtft-bus.o fbtft-io.o
FBTFT
=========
Linux Framebuffer drivers for small TFT LCD display modules.
The module 'fbtft' makes writing drivers for some of these displays very easy.
Development is done on a Raspberry Pi running the Raspbian "wheezy" distribution.
INSTALLATION
Download kernel sources
From Linux 3.15
cd drivers/video/fbdev/fbtft
git clone https://github.com/notro/fbtft.git
Add to drivers/video/fbdev/Kconfig: source "drivers/video/fbdev/fbtft/Kconfig"
Add to drivers/video/fbdev/Makefile: obj-y += fbtft/
Before Linux 3.15
cd drivers/video
git clone https://github.com/notro/fbtft.git
Add to drivers/video/Kconfig: source "drivers/video/fbtft/Kconfig"
Add to drivers/video/Makefile: obj-y += fbtft/
Enable driver(s) in menuconfig and build the kernel
See wiki for more information: https://github.com/notro/fbtft/wiki
Source: https://github.com/notro/fbtft/
#include <linux/export.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#include "fbtft.h"
/*****************************************************************************
*
* void (*write_reg)(struct fbtft_par *par, int len, ...);
*
*****************************************************************************/
#define define_fbtft_write_reg(func, type, modifier) \
void func(struct fbtft_par *par, int len, ...) \
{ \
va_list args; \
int i, ret; \
int offset = 0; \
type *buf = (type *)par->buf; \
\
if (unlikely(par->debug & DEBUG_WRITE_REGISTER)) { \
va_start(args, len); \
for (i = 0; i < len; i++) { \
buf[i] = (type)va_arg(args, unsigned int); \
} \
va_end(args); \
fbtft_par_dbg_hex(DEBUG_WRITE_REGISTER, par, par->info->device, type, buf, len, "%s: ", __func__); \
} \
\
va_start(args, len); \
\
if (par->startbyte) { \
*(u8 *)par->buf = par->startbyte; \
buf = (type *)(par->buf + 1); \
offset = 1; \
} \
\
*buf = modifier((type)va_arg(args, unsigned int)); \
if (par->gpio.dc != -1) \
gpio_set_value(par->gpio.dc, 0); \
ret = par->fbtftops.write(par, par->buf, sizeof(type)+offset); \
if (ret < 0) { \
va_end(args); \
dev_err(par->info->device, "%s: write() failed and returned %d\n", __func__, ret); \
return; \
} \
len--; \
\
if (par->startbyte) \
*(u8 *)par->buf = par->startbyte | 0x2; \
\
if (len) { \
i = len; \
while (i--) { \
*buf++ = modifier((type)va_arg(args, unsigned int)); \
} \
if (par->gpio.dc != -1) \
gpio_set_value(par->gpio.dc, 1); \
ret = par->fbtftops.write(par, par->buf, len * (sizeof(type)+offset)); \
if (ret < 0) { \
va_end(args); \
dev_err(par->info->device, "%s: write() failed and returned %d\n", __func__, ret); \
return; \
} \
} \
va_end(args); \
} \
EXPORT_SYMBOL(func);
define_fbtft_write_reg(fbtft_write_reg8_bus8, u8, )
define_fbtft_write_reg(fbtft_write_reg16_bus8, u16, cpu_to_be16)
define_fbtft_write_reg(fbtft_write_reg16_bus16, u16, )
void fbtft_write_reg8_bus9(struct fbtft_par *par, int len, ...)
{
va_list args;
int i, ret;
int pad = 0;
u16 *buf = (u16 *)par->buf;
if (unlikely(par->debug & DEBUG_WRITE_REGISTER)) {
va_start(args, len);
for (i = 0; i < len; i++)
*(((u8 *)buf) + i) = (u8)va_arg(args, unsigned int);
va_end(args);
fbtft_par_dbg_hex(DEBUG_WRITE_REGISTER, par,
par->info->device, u8, buf, len, "%s: ", __func__);
}
if (len <= 0)
return;
if (par->spi && (par->spi->bits_per_word == 8)) {
/* we're emulating 9-bit, pad start of buffer with no-ops
(assuming here that zero is a no-op) */
pad = (len % 4) ? 4 - (len % 4) : 0;
for (i = 0; i < pad; i++)
*buf++ = 0x000;
}
va_start(args, len);
*buf++ = (u8)va_arg(args, unsigned int);
i = len - 1;
while (i--) {
*buf = (u8)va_arg(args, unsigned int);
*buf++ |= 0x100; /* dc=1 */
}
va_end(args);
ret = par->fbtftops.write(par, par->buf, (len + pad) * sizeof(u16));
if (ret < 0) {
dev_err(par->info->device,
"%s: write() failed and returned %d\n", __func__, ret);
return;
}
}
EXPORT_SYMBOL(fbtft_write_reg8_bus9);
/*****************************************************************************
*
* int (*write_vmem)(struct fbtft_par *par);
*
*****************************************************************************/
/* 16 bit pixel over 8-bit databus */
int fbtft_write_vmem16_bus8(struct fbtft_par *par, size_t offset, size_t len)
{
u16 *vmem16;
u16 *txbuf16 = (u16 *)par->txbuf.buf;
size_t remain;
size_t to_copy;
size_t tx_array_size;
int i;
int ret = 0;
size_t startbyte_size = 0;
fbtft_par_dbg(DEBUG_WRITE_VMEM, par, "%s(offset=%zu, len=%zu)\n",
__func__, offset, len);
remain = len / 2;
vmem16 = (u16 *)(par->info->screen_base + offset);
if (par->gpio.dc != -1)
gpio_set_value(par->gpio.dc, 1);
/* non buffered write */
if (!par->txbuf.buf)
return par->fbtftops.write(par, vmem16, len);
/* buffered write */
tx_array_size = par->txbuf.len / 2;
if (par->startbyte) {
txbuf16 = (u16 *)(par->txbuf.buf + 1);
tx_array_size -= 2;
*(u8 *)(par->txbuf.buf) = par->startbyte | 0x2;
startbyte_size = 1;
}
while (remain) {
to_copy = remain > tx_array_size ? tx_array_size : remain;
dev_dbg(par->info->device, " to_copy=%zu, remain=%zu\n",
to_copy, remain - to_copy);
for (i = 0; i < to_copy; i++)
txbuf16[i] = cpu_to_be16(vmem16[i]);
vmem16 = vmem16 + to_copy;
ret = par->fbtftops.write(par, par->txbuf.buf,
startbyte_size + to_copy * 2);
if (ret < 0)
return ret;
remain -= to_copy;
}
return ret;
}
EXPORT_SYMBOL(fbtft_write_vmem16_bus8);
/* 16 bit pixel over 9-bit SPI bus: dc + high byte, dc + low byte */
int fbtft_write_vmem16_bus9(struct fbtft_par *par, size_t offset, size_t len)
{
u8 *vmem8;
u16 *txbuf16 = par->txbuf.buf;
size_t remain;
size_t to_copy;
size_t tx_array_size;
int i;
int ret = 0;
fbtft_par_dbg(DEBUG_WRITE_VMEM, par, "%s(offset=%zu, len=%zu)\n",
__func__, offset, len);
if (!par->txbuf.buf) {
dev_err(par->info->device, "%s: txbuf.buf is NULL\n", __func__);
return -1;
}
remain = len;
vmem8 = par->info->screen_base + offset;
tx_array_size = par->txbuf.len / 2;
while (remain) {
to_copy = remain > tx_array_size ? tx_array_size : remain;
dev_dbg(par->info->device, " to_copy=%zu, remain=%zu\n",
to_copy, remain - to_copy);
#ifdef __LITTLE_ENDIAN
for (i = 0; i < to_copy; i += 2) {
txbuf16[i] = 0x0100 | vmem8[i+1];
txbuf16[i+1] = 0x0100 | vmem8[i];
}
#else
for (i = 0; i < to_copy; i++)
txbuf16[i] = 0x0100 | vmem8[i];
#endif
vmem8 = vmem8 + to_copy;
ret = par->fbtftops.write(par, par->txbuf.buf, to_copy*2);
if (ret < 0)
return ret;
remain -= to_copy;
}
return ret;
}
EXPORT_SYMBOL(fbtft_write_vmem16_bus9);
int fbtft_write_vmem8_bus8(struct fbtft_par *par, size_t offset, size_t len)
{
dev_err(par->info->device, "%s: function not implemented\n", __func__);
return -1;
}
EXPORT_SYMBOL(fbtft_write_vmem8_bus8);
/* 16 bit pixel over 16-bit databus */
int fbtft_write_vmem16_bus16(struct fbtft_par *par, size_t offset, size_t len)
{
u16 *vmem16;
fbtft_par_dbg(DEBUG_WRITE_VMEM, par, "%s(offset=%zu, len=%zu)\n",
__func__, offset, len);
vmem16 = (u16 *)(par->info->screen_base + offset);
if (par->gpio.dc != -1)
gpio_set_value(par->gpio.dc, 1);
/* no need for buffered write with 16-bit bus */
return par->fbtftops.write(par, vmem16, len);
}
EXPORT_SYMBOL(fbtft_write_vmem16_bus16);
/*
* Copyright (C) 2013 Noralf Tronnes
*
* This driver is inspired by:
* st7735fb.c, Copyright (C) 2011, Matt Porter
* broadsheetfb.c, Copyright (C) 2008, Jaya Kumar
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/fb.h>
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
#include <linux/uaccess.h>
#include <linux/backlight.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include "fbtft.h"
extern void fbtft_sysfs_init(struct fbtft_par *par);
extern void fbtft_sysfs_exit(struct fbtft_par *par);
extern void fbtft_expand_debug_value(unsigned long *debug);
extern int fbtft_gamma_parse_str(struct fbtft_par *par, unsigned long *curves,
const char *str, int size);
static unsigned long debug;
module_param(debug, ulong , 0);
MODULE_PARM_DESC(debug, "override device debug level");
static bool dma = true;
module_param(dma, bool, 0);
MODULE_PARM_DESC(dma, "Use DMA buffer");
void fbtft_dbg_hex(const struct device *dev, int groupsize,
void *buf, size_t len, const char *fmt, ...)
{
va_list args;
static char textbuf[512];
char *text = textbuf;
size_t text_len;
va_start(args, fmt);
text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
va_end(args);
hex_dump_to_buffer(buf, len, 32, groupsize, text + text_len,
512 - text_len, false);
if (len > 32)
dev_info(dev, "%s ...\n", text);
else
dev_info(dev, "%s\n", text);
}
EXPORT_SYMBOL(fbtft_dbg_hex);
unsigned long fbtft_request_gpios_match(struct fbtft_par *par,
const struct fbtft_gpio *gpio)
{
int ret;
long val;
fbtft_par_dbg(DEBUG_REQUEST_GPIOS_MATCH, par, "%s('%s')\n",
__func__, gpio->name);
if (strcasecmp(gpio->name, "reset") == 0) {
par->gpio.reset = gpio->gpio;
return GPIOF_OUT_INIT_HIGH;
} else if (strcasecmp(gpio->name, "dc") == 0) {
par->gpio.dc = gpio->gpio;
return GPIOF_OUT_INIT_LOW;
} else if (strcasecmp(gpio->name, "cs") == 0) {
par->gpio.cs = gpio->gpio;
return GPIOF_OUT_INIT_HIGH;
} else if (strcasecmp(gpio->name, "wr") == 0) {
par->gpio.wr = gpio->gpio;
return GPIOF_OUT_INIT_HIGH;
} else if (strcasecmp(gpio->name, "rd") == 0) {
par->gpio.rd = gpio->gpio;
return GPIOF_OUT_INIT_HIGH;
} else if (strcasecmp(gpio->name, "latch") == 0) {
par->gpio.latch = gpio->gpio;
return GPIOF_OUT_INIT_LOW;
} else if (gpio->name[0] == 'd' && gpio->name[1] == 'b') {
ret = kstrtol(&gpio->name[2], 10, &val);
if (ret == 0 && val < 16) {
par->gpio.db[val] = gpio->gpio;
return GPIOF_OUT_INIT_LOW;
}
} else if (strcasecmp(gpio->name, "led") == 0) {
par->gpio.led[0] = gpio->gpio;
return GPIOF_OUT_INIT_LOW;
} else if (strcasecmp(gpio->name, "led_") == 0) {
par->gpio.led[0] = gpio->gpio;
return GPIOF_OUT_INIT_HIGH;
}
return FBTFT_GPIO_NO_MATCH;
}
int fbtft_request_gpios(struct fbtft_par *par)
{
struct fbtft_platform_data *pdata = par->pdata;
const struct fbtft_gpio *gpio;
unsigned long flags;
int ret;
if (pdata && pdata->gpios) {
gpio = pdata->gpios;
while (gpio->name[0]) {
flags = FBTFT_GPIO_NO_MATCH;
/* if driver provides match function, try it first,
if no match use our own */
if (par->fbtftops.request_gpios_match)
flags = par->fbtftops.request_gpios_match(par, gpio);
if (flags == FBTFT_GPIO_NO_MATCH)
flags = fbtft_request_gpios_match(par, gpio);
if (flags != FBTFT_GPIO_NO_MATCH) {
ret = devm_gpio_request_one(par->info->device,
gpio->gpio, flags,
par->info->device->driver->name);
if (ret < 0) {
dev_err(par->info->device,
"%s: gpio_request_one('%s'=%d) failed with %d\n",
__func__, gpio->name,
gpio->gpio, ret);
return ret;
}
fbtft_par_dbg(DEBUG_REQUEST_GPIOS, par,
"%s: '%s' = GPIO%d\n",
__func__, gpio->name, gpio->gpio);
}
gpio++;
}
}
return 0;
}
#ifdef CONFIG_OF
static int fbtft_request_one_gpio(struct fbtft_par *par,
const char *name, int index, int *gpiop)
{
struct device *dev = par->info->device;
struct device_node *node = dev->of_node;
int gpio, flags, ret = 0;
enum of_gpio_flags of_flags;
if (of_find_property(node, name, NULL)) {
gpio = of_get_named_gpio_flags(node, name, index, &of_flags);
if (gpio == -ENOENT)
return 0;
if (gpio == -EPROBE_DEFER)
return gpio;
if (gpio < 0) {
dev_err(dev,
"failed to get '%s' from DT\n", name);
return gpio;
}
/* active low translates to initially low */
flags = (of_flags & OF_GPIO_ACTIVE_LOW) ? GPIOF_OUT_INIT_LOW :
GPIOF_OUT_INIT_HIGH;
ret = devm_gpio_request_one(dev, gpio, flags,
dev->driver->name);
if (ret) {
dev_err(dev,
"gpio_request_one('%s'=%d) failed with %d\n",
name, gpio, ret);
return ret;
}
if (gpiop)
*gpiop = gpio;
fbtft_par_dbg(DEBUG_REQUEST_GPIOS, par, "%s: '%s' = GPIO%d\n",
__func__, name, gpio);
}
return ret;
}
static int fbtft_request_gpios_dt(struct fbtft_par *par)
{
int i;
int ret;
if (!par->info->device->of_node)
return -EINVAL;
ret = fbtft_request_one_gpio(par, "reset-gpios", 0, &par->gpio.reset);
if (ret)
return ret;
ret = fbtft_request_one_gpio(par, "dc-gpios", 0, &par->gpio.dc);
if (ret)
return ret;
ret = fbtft_request_one_gpio(par, "rd-gpios", 0, &par->gpio.rd);
if (ret)
return ret;
ret = fbtft_request_one_gpio(par, "wr-gpios", 0, &par->gpio.wr);
if (ret)
return ret;
ret = fbtft_request_one_gpio(par, "cs-gpios", 0, &par->gpio.cs);
if (ret)
return ret;
ret = fbtft_request_one_gpio(par, "latch-gpios", 0, &par->gpio.latch);
if (ret)
return ret;
for (i = 0; i < 16; i++) {
ret = fbtft_request_one_gpio(par, "db-gpios", i,
&par->gpio.db[i]);
if (ret)
return ret;
ret = fbtft_request_one_gpio(par, "led-gpios", i,
&par->gpio.led[i]);
if (ret)
return ret;
ret = fbtft_request_one_gpio(par, "aux-gpios", i,
&par->gpio.aux[i]);
if (ret)
return ret;
}
return 0;
}
#endif
#ifdef CONFIG_FB_BACKLIGHT
int fbtft_backlight_update_status(struct backlight_device *bd)
{
struct fbtft_par *par = bl_get_data(bd);
bool polarity = !!(bd->props.state & BL_CORE_DRIVER1);
fbtft_par_dbg(DEBUG_BACKLIGHT, par,
"%s: polarity=%d, power=%d, fb_blank=%d\n",
__func__, polarity, bd->props.power, bd->props.fb_blank);
if ((bd->props.power == FB_BLANK_UNBLANK) && (bd->props.fb_blank == FB_BLANK_UNBLANK))
gpio_set_value(par->gpio.led[0], polarity);
else
gpio_set_value(par->gpio.led[0], !polarity);
return 0;
}
int fbtft_backlight_get_brightness(struct backlight_device *bd)
{
return bd->props.brightness;
}
void fbtft_unregister_backlight(struct fbtft_par *par)
{
const struct backlight_ops *bl_ops;
fbtft_par_dbg(DEBUG_BACKLIGHT, par, "%s()\n", __func__);
if (par->info->bl_dev) {
par->info->bl_dev->props.power = FB_BLANK_POWERDOWN;
backlight_update_status(par->info->bl_dev);
bl_ops = par->info->bl_dev->ops;
backlight_device_unregister(par->info->bl_dev);
par->info->bl_dev = NULL;
}
}
void fbtft_register_backlight(struct fbtft_par *par)
{
struct backlight_device *bd;
struct backlight_properties bl_props = { 0, };
struct backlight_ops *bl_ops;
fbtft_par_dbg(DEBUG_BACKLIGHT, par, "%s()\n", __func__);
if (par->gpio.led[0] == -1) {
fbtft_par_dbg(DEBUG_BACKLIGHT, par,
"%s(): led pin not set, exiting.\n", __func__);
return;
}
bl_ops = devm_kzalloc(par->info->device, sizeof(struct backlight_ops),
GFP_KERNEL);
if (!bl_ops) {
dev_err(par->info->device,
"%s: could not allocate memeory for backlight operations.\n",
__func__);
return;
}
bl_ops->get_brightness = fbtft_backlight_get_brightness;
bl_ops->update_status = fbtft_backlight_update_status;
bl_props.type = BACKLIGHT_RAW;
/* Assume backlight is off, get polarity from current state of pin */
bl_props.power = FB_BLANK_POWERDOWN;
if (!gpio_get_value(par->gpio.led[0]))
bl_props.state |= BL_CORE_DRIVER1;
bd = backlight_device_register(dev_driver_string(par->info->device),
par->info->device, par, bl_ops, &bl_props);
if (IS_ERR(bd)) {
dev_err(par->info->device,
"cannot register backlight device (%ld)\n",
PTR_ERR(bd));
return;
}
par->info->bl_dev = bd;
if (!par->fbtftops.unregister_backlight)
par->fbtftops.unregister_backlight = fbtft_unregister_backlight;
}
#else
void fbtft_register_backlight(struct fbtft_par *par) { };
void fbtft_unregister_backlight(struct fbtft_par *par) { };
#endif
EXPORT_SYMBOL(fbtft_register_backlight);
EXPORT_SYMBOL(fbtft_unregister_backlight);
void fbtft_set_addr_win(struct fbtft_par *par, int xs, int ys, int xe, int ye)
{
fbtft_par_dbg(DEBUG_SET_ADDR_WIN, par,
"%s(xs=%d, ys=%d, xe=%d, ye=%d)\n", __func__, xs, ys, xe, ye);
/* Column address set */
write_reg(par, 0x2A,
(xs >> 8) & 0xFF, xs & 0xFF, (xe >> 8) & 0xFF, xe & 0xFF);
/* Row adress set */
write_reg(par, 0x2B,
(ys >> 8) & 0xFF, ys & 0xFF, (ye >> 8) & 0xFF, ye & 0xFF);
/* Memory write */
write_reg(par, 0x2C);
}
void fbtft_reset(struct fbtft_par *par)
{
if (par->gpio.reset == -1)
return;
fbtft_par_dbg(DEBUG_RESET, par, "%s()\n", __func__);
gpio_set_value(par->gpio.reset, 0);
udelay(20);
gpio_set_value(par->gpio.reset, 1);
mdelay(120);
}
void fbtft_update_display(struct fbtft_par *par, unsigned start_line, unsigned end_line)
{
size_t offset, len;
struct timespec ts_start, ts_end, ts_fps, ts_duration;
long fps_ms, fps_us, duration_ms, duration_us;
long fps, throughput;
bool timeit = false;
int ret = 0;
if (unlikely(par->debug & (DEBUG_TIME_FIRST_UPDATE | DEBUG_TIME_EACH_UPDATE))) {
if ((par->debug & DEBUG_TIME_EACH_UPDATE) || \
((par->debug & DEBUG_TIME_FIRST_UPDATE) && !par->first_update_done)) {
getnstimeofday(&ts_start);
timeit = true;
}
}
/* Sanity checks */
if (start_line > end_line) {
dev_warn(par->info->device,
"%s: start_line=%u is larger than end_line=%u. Shouldn't happen, will do full display update\n",
__func__, start_line, end_line);
start_line = 0;
end_line = par->info->var.yres - 1;
}
if (start_line > par->info->var.yres - 1 || end_line > par->info->var.yres - 1) {
dev_warn(par->info->device,
"%s: start_line=%u or end_line=%u is larger than max=%d. Shouldn't happen, will do full display update\n",
__func__, start_line, end_line, par->info->var.yres - 1);
start_line = 0;
end_line = par->info->var.yres - 1;
}
fbtft_par_dbg(DEBUG_UPDATE_DISPLAY, par, "%s(start_line=%u, end_line=%u)\n",
__func__, start_line, end_line);
if (par->fbtftops.set_addr_win)
par->fbtftops.set_addr_win(par, 0, start_line,
par->info->var.xres-1, end_line);
offset = start_line * par->info->fix.line_length;
len = (end_line - start_line + 1) * par->info->fix.line_length;
ret = par->fbtftops.write_vmem(par, offset, len);
if (ret < 0)
dev_err(par->info->device,
"%s: write_vmem failed to update display buffer\n",
__func__);
if (unlikely(timeit)) {
getnstimeofday(&ts_end);
if (par->update_time.tv_nsec == 0 && par->update_time.tv_sec == 0) {
par->update_time.tv_sec = ts_start.tv_sec;
par->update_time.tv_nsec = ts_start.tv_nsec;
}
ts_fps = timespec_sub(ts_start, par->update_time);
par->update_time.tv_sec = ts_start.tv_sec;
par->update_time.tv_nsec = ts_start.tv_nsec;
fps_ms = (ts_fps.tv_sec * 1000) + ((ts_fps.tv_nsec / 1000000) % 1000);
fps_us = (ts_fps.tv_nsec / 1000) % 1000;
fps = fps_ms * 1000 + fps_us;
fps = fps ? 1000000 / fps : 0;
ts_duration = timespec_sub(ts_end, ts_start);
duration_ms = (ts_duration.tv_sec * 1000) + ((ts_duration.tv_nsec / 1000000) % 1000);
duration_us = (ts_duration.tv_nsec / 1000) % 1000;
throughput = duration_ms * 1000 + duration_us;
throughput = throughput ? (len * 1000) / throughput : 0;
throughput = throughput * 1000 / 1024;
dev_info(par->info->device,
"Display update: %ld kB/s (%ld.%.3ld ms), fps=%ld (%ld.%.3ld ms)\n",
throughput, duration_ms, duration_us,
fps, fps_ms, fps_us);
par->first_update_done = true;
}
}
void fbtft_mkdirty(struct fb_info *info, int y, int height)
{
struct fbtft_par *par = info->par;
struct fb_deferred_io *fbdefio = info->fbdefio;
/* special case, needed ? */
if (y == -1) {
y = 0;
height = info->var.yres - 1;
}
/* Mark display lines/area as dirty */
spin_lock(&par->dirty_lock);
if (y < par->dirty_lines_start)
par->dirty_lines_start = y;
if (y + height - 1 > par->dirty_lines_end)
par->dirty_lines_end = y + height - 1;
spin_unlock(&par->dirty_lock);
/* Schedule deferred_io to update display (no-op if already on queue)*/
schedule_delayed_work(&info->deferred_work, fbdefio->delay);
}
void fbtft_deferred_io(struct fb_info *info, struct list_head *pagelist)
{
struct fbtft_par *par = info->par;
unsigned dirty_lines_start, dirty_lines_end;
struct page *page;
unsigned long index;
unsigned y_low = 0, y_high = 0;
int count = 0;
spin_lock(&par->dirty_lock);
dirty_lines_start = par->dirty_lines_start;
dirty_lines_end = par->dirty_lines_end;
/* set display line markers as clean */
par->dirty_lines_start = par->info->var.yres - 1;
par->dirty_lines_end = 0;
spin_unlock(&par->dirty_lock);
/* Mark display lines as dirty */
list_for_each_entry(page, pagelist, lru) {
count++;
index = page->index << PAGE_SHIFT;
y_low = index / info->fix.line_length;
y_high = (index + PAGE_SIZE - 1) / info->fix.line_length;
fbtft_dev_dbg(DEBUG_DEFERRED_IO, par, info->device,
"page->index=%lu y_low=%d y_high=%d\n",
page->index, y_low, y_high);
if (y_high > info->var.yres - 1)
y_high = info->var.yres - 1;
if (y_low < dirty_lines_start)
dirty_lines_start = y_low;
if (y_high > dirty_lines_end)
dirty_lines_end = y_high;
}
par->fbtftops.update_display(info->par,
dirty_lines_start, dirty_lines_end);
}
void fbtft_fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
{
struct fbtft_par *par = info->par;
fbtft_dev_dbg(DEBUG_FB_FILLRECT, par, info->dev,
"%s: dx=%d, dy=%d, width=%d, height=%d\n",
__func__, rect->dx, rect->dy, rect->width, rect->height);
sys_fillrect(info, rect);
par->fbtftops.mkdirty(info, rect->dy, rect->height);
}
void fbtft_fb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
{
struct fbtft_par *par = info->par;
fbtft_dev_dbg(DEBUG_FB_COPYAREA, par, info->dev,
"%s: dx=%d, dy=%d, width=%d, height=%d\n",
__func__, area->dx, area->dy, area->width, area->height);
sys_copyarea(info, area);
par->fbtftops.mkdirty(info, area->dy, area->height);
}
void fbtft_fb_imageblit(struct fb_info *info, const struct fb_image *image)
{
struct fbtft_par *par = info->par;
fbtft_dev_dbg(DEBUG_FB_IMAGEBLIT, par, info->dev,
"%s: dx=%d, dy=%d, width=%d, height=%d\n",
__func__, image->dx, image->dy, image->width, image->height);
sys_imageblit(info, image);
par->fbtftops.mkdirty(info, image->dy, image->height);
}
ssize_t fbtft_fb_write(struct fb_info *info,
const char __user *buf, size_t count, loff_t *ppos)
{
struct fbtft_par *par = info->par;
ssize_t res;
fbtft_dev_dbg(DEBUG_FB_WRITE, par, info->dev,
"%s: count=%zd, ppos=%llu\n", __func__, count, *ppos);
res = fb_sys_write(info, buf, count, ppos);
/* TODO: only mark changed area
update all for now */
par->fbtftops.mkdirty(info, -1, 0);
return res;
}
/* from pxafb.c */
unsigned int chan_to_field(unsigned chan, struct fb_bitfield *bf)
{
chan &= 0xffff;
chan >>= 16 - bf->length;
return chan << bf->offset;
}
int fbtft_fb_setcolreg(unsigned regno,
unsigned red, unsigned green, unsigned blue,
unsigned transp, struct fb_info *info)
{
struct fbtft_par *par = info->par;
unsigned val;
int ret = 1;
fbtft_dev_dbg(DEBUG_FB_SETCOLREG, par, info->dev,
"%s(regno=%u, red=0x%X, green=0x%X, blue=0x%X, trans=0x%X)\n",
__func__, regno, red, green, blue, transp);
switch (info->fix.visual) {
case FB_VISUAL_TRUECOLOR:
if (regno < 16) {
u32 *pal = info->pseudo_palette;
val = chan_to_field(red, &info->var.red);
val |= chan_to_field(green, &info->var.green);
val |= chan_to_field(blue, &info->var.blue);
pal[regno] = val;
ret = 0;
}
break;
}
return ret;
}
int fbtft_fb_blank(int blank, struct fb_info *info)
{
struct fbtft_par *par = info->par;
int ret = -EINVAL;
fbtft_dev_dbg(DEBUG_FB_BLANK, par, info->dev, "%s(blank=%d)\n",
__func__, blank);
if (!par->fbtftops.blank)
return ret;
switch (blank) {
case FB_BLANK_POWERDOWN:
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
case FB_BLANK_NORMAL:
ret = par->fbtftops.blank(par, true);
break;
case FB_BLANK_UNBLANK:
ret = par->fbtftops.blank(par, false);
break;
}
return ret;
}
void fbtft_merge_fbtftops(struct fbtft_ops *dst, struct fbtft_ops *src)
{
if (src->write)
dst->write = src->write;
if (src->read)
dst->read = src->read;
if (src->write_vmem)
dst->write_vmem = src->write_vmem;
if (src->write_register)
dst->write_register = src->write_register;
if (src->set_addr_win)
dst->set_addr_win = src->set_addr_win;
if (src->reset)
dst->reset = src->reset;
if (src->mkdirty)
dst->mkdirty = src->mkdirty;
if (src->update_display)
dst->update_display = src->update_display;
if (src->init_display)
dst->init_display = src->init_display;
if (src->blank)
dst->blank = src->blank;
if (src->request_gpios_match)
dst->request_gpios_match = src->request_gpios_match;
if (src->request_gpios)
dst->request_gpios = src->request_gpios;
if (src->verify_gpios)
dst->verify_gpios = src->verify_gpios;
if (src->register_backlight)
dst->register_backlight = src->register_backlight;
if (src->unregister_backlight)
dst->unregister_backlight = src->unregister_backlight;
if (src->set_var)
dst->set_var = src->set_var;
if (src->set_gamma)
dst->set_gamma = src->set_gamma;
}
/**
* fbtft_framebuffer_alloc - creates a new frame buffer info structure
*
* @display: pointer to structure describing the display
* @dev: pointer to the device for this fb, this can be NULL
*
* Creates a new frame buffer info structure.
*
* Also creates and populates the following structures:
* info->fbops
* info->fbdefio
* info->pseudo_palette
* par->fbtftops
* par->txbuf
*
* Returns the new structure, or NULL if an error occurred.
*
*/
struct fb_info *fbtft_framebuffer_alloc(struct fbtft_display *display,
struct device *dev)
{
struct fb_info *info;
struct fbtft_par *par;
struct fb_ops *fbops = NULL;
struct fb_deferred_io *fbdefio = NULL;
struct fbtft_platform_data *pdata = dev->platform_data;
u8 *vmem = NULL;
void *txbuf = NULL;
void *buf = NULL;
unsigned width;
unsigned height;
int txbuflen = display->txbuflen;
unsigned bpp = display->bpp;
unsigned fps = display->fps;
int vmem_size, i;
int *init_sequence = display->init_sequence;
char *gamma = display->gamma;
unsigned long *gamma_curves = NULL;
/* sanity check */
if (display->gamma_num * display->gamma_len > FBTFT_GAMMA_MAX_VALUES_TOTAL) {
dev_err(dev,
"%s: FBTFT_GAMMA_MAX_VALUES_TOTAL=%d is exceeded\n",
__func__, FBTFT_GAMMA_MAX_VALUES_TOTAL);
return NULL;
}
/* defaults */
if (!fps)
fps = 20;
if (!bpp)
bpp = 16;
if (!pdata) {
dev_err(dev, "platform data is missing\n");
return NULL;
}
/* override driver values? */
if (pdata->fps)
fps = pdata->fps;
if (pdata->txbuflen)
txbuflen = pdata->txbuflen;
if (pdata->display.init_sequence)
init_sequence = pdata->display.init_sequence;
if (pdata->gamma)
gamma = pdata->gamma;
if (pdata->display.debug)
display->debug = pdata->display.debug;
if (pdata->display.backlight)
display->backlight = pdata->display.backlight;
if (pdata->display.width)
display->width = pdata->display.width;
if (pdata->display.height)
display->height = pdata->display.height;
if (pdata->display.buswidth)
display->buswidth = pdata->display.buswidth;
if (pdata->display.regwidth)
display->regwidth = pdata->display.regwidth;
display->debug |= debug;
fbtft_expand_debug_value(&display->debug);
switch (pdata->rotate) {
case 90:
case 270:
width = display->height;
height = display->width;
break;
default:
width = display->width;
height = display->height;
}
vmem_size = display->width * display->height * bpp / 8;
vmem = vzalloc(vmem_size);
if (!vmem)
goto alloc_fail;
fbops = devm_kzalloc(dev, sizeof(struct fb_ops), GFP_KERNEL);
if (!fbops)
goto alloc_fail;
fbdefio = devm_kzalloc(dev, sizeof(struct fb_deferred_io), GFP_KERNEL);
if (!fbdefio)
goto alloc_fail;
buf = devm_kzalloc(dev, 128, GFP_KERNEL);
if (!buf)
goto alloc_fail;
if (display->gamma_num && display->gamma_len) {
gamma_curves = devm_kzalloc(dev, display->gamma_num * display->gamma_len * sizeof(gamma_curves[0]),
GFP_KERNEL);
if (!gamma_curves)
goto alloc_fail;
}
info = framebuffer_alloc(sizeof(struct fbtft_par), dev);
if (!info)
goto alloc_fail;
info->screen_base = (u8 __force __iomem *)vmem;
info->fbops = fbops;
info->fbdefio = fbdefio;
fbops->owner = dev->driver->owner;
fbops->fb_read = fb_sys_read;
fbops->fb_write = fbtft_fb_write;
fbops->fb_fillrect = fbtft_fb_fillrect;
fbops->fb_copyarea = fbtft_fb_copyarea;
fbops->fb_imageblit = fbtft_fb_imageblit;
fbops->fb_setcolreg = fbtft_fb_setcolreg;
fbops->fb_blank = fbtft_fb_blank;
fbdefio->delay = HZ/fps;
fbdefio->deferred_io = fbtft_deferred_io;
fb_deferred_io_init(info);
strncpy(info->fix.id, dev->driver->name, 16);
info->fix.type = FB_TYPE_PACKED_PIXELS;
info->fix.visual = FB_VISUAL_TRUECOLOR;
info->fix.xpanstep = 0;
info->fix.ypanstep = 0;
info->fix.ywrapstep = 0;
info->fix.line_length = width*bpp/8;
info->fix.accel = FB_ACCEL_NONE;
info->fix.smem_len = vmem_size;
info->var.rotate = pdata->rotate;
info->var.xres = width;
info->var.yres = height;
info->var.xres_virtual = info->var.xres;
info->var.yres_virtual = info->var.yres;
info->var.bits_per_pixel = bpp;
info->var.nonstd = 1;
/* RGB565 */
info->var.red.offset = 11;
info->var.red.length = 5;
info->var.green.offset = 5;
info->var.green.length = 6;
info->var.blue.offset = 0;
info->var.blue.length = 5;
info->var.transp.offset = 0;
info->var.transp.length = 0;
info->flags = FBINFO_FLAG_DEFAULT | FBINFO_VIRTFB;
par = info->par;
par->info = info;
par->pdata = dev->platform_data;
par->debug = display->debug;
par->buf = buf;
spin_lock_init(&par->dirty_lock);
par->bgr = pdata->bgr;
par->startbyte = pdata->startbyte;
par->init_sequence = init_sequence;
par->gamma.curves = gamma_curves;
par->gamma.num_curves = display->gamma_num;
par->gamma.num_values = display->gamma_len;
mutex_init(&par->gamma.lock);
info->pseudo_palette = par->pseudo_palette;
if (par->gamma.curves && gamma) {
if (fbtft_gamma_parse_str(par,
par->gamma.curves, gamma, strlen(gamma)))
goto alloc_fail;
}
/* Transmit buffer */
if (txbuflen == -1)
txbuflen = vmem_size + 2; /* add in case startbyte is used */
#ifdef __LITTLE_ENDIAN
if ((!txbuflen) && (bpp > 8))
txbuflen = PAGE_SIZE; /* need buffer for byteswapping */
#endif
if (txbuflen > 0) {
if (dma) {
dev->coherent_dma_mask = ~0;
txbuf = dmam_alloc_coherent(dev, txbuflen, &par->txbuf.dma, GFP_DMA);
} else {
txbuf = devm_kzalloc(par->info->device, txbuflen, GFP_KERNEL);
}
if (!txbuf)
goto alloc_fail;
par->txbuf.buf = txbuf;
par->txbuf.len = txbuflen;
}
/* Initialize gpios to disabled */
par->gpio.reset = -1;
par->gpio.dc = -1;
par->gpio.rd = -1;
par->gpio.wr = -1;
par->gpio.cs = -1;
par->gpio.latch = -1;
for (i = 0; i < 16; i++) {
par->gpio.db[i] = -1;
par->gpio.led[i] = -1;
par->gpio.aux[i] = -1;
}
/* default fbtft operations */
par->fbtftops.write = fbtft_write_spi;
par->fbtftops.read = fbtft_read_spi;
par->fbtftops.write_vmem = fbtft_write_vmem16_bus8;
par->fbtftops.write_register = fbtft_write_reg8_bus8;
par->fbtftops.set_addr_win = fbtft_set_addr_win;
par->fbtftops.reset = fbtft_reset;
par->fbtftops.mkdirty = fbtft_mkdirty;
par->fbtftops.update_display = fbtft_update_display;
par->fbtftops.request_gpios = fbtft_request_gpios;
if (display->backlight)
par->fbtftops.register_backlight = fbtft_register_backlight;
/* use driver provided functions */
fbtft_merge_fbtftops(&par->fbtftops, &display->fbtftops);
return info;
alloc_fail:
vfree(vmem);
return NULL;
}
EXPORT_SYMBOL(fbtft_framebuffer_alloc);
/**
* fbtft_framebuffer_release - frees up all memory used by the framebuffer
*
* @info: frame buffer info structure
*
*/
void fbtft_framebuffer_release(struct fb_info *info)
{
fb_deferred_io_cleanup(info);
vfree(info->screen_base);
framebuffer_release(info);
}
EXPORT_SYMBOL(fbtft_framebuffer_release);
/**
* fbtft_register_framebuffer - registers a tft frame buffer device
* @fb_info: frame buffer info structure
*
* Sets SPI driverdata if needed
* Requests needed gpios.
* Initializes display
* Updates display.
* Registers a frame buffer device @fb_info.
*
* Returns negative errno on error, or zero for success.
*
*/
int fbtft_register_framebuffer(struct fb_info *fb_info)
{
int ret;
char text1[50] = "";
char text2[50] = "";
struct fbtft_par *par = fb_info->par;
struct spi_device *spi = par->spi;
/* sanity checks */
if (!par->fbtftops.init_display) {
dev_err(fb_info->device, "missing fbtftops.init_display()\n");
return -EINVAL;
}
if (spi)
spi_set_drvdata(spi, fb_info);
if (par->pdev)
platform_set_drvdata(par->pdev, fb_info);
ret = par->fbtftops.request_gpios(par);
if (ret < 0)
goto reg_fail;
if (par->fbtftops.verify_gpios) {
ret = par->fbtftops.verify_gpios(par);
if (ret < 0)
goto reg_fail;
}
ret = par->fbtftops.init_display(par);
if (ret < 0)
goto reg_fail;
if (par->fbtftops.set_var) {
ret = par->fbtftops.set_var(par);
if (ret < 0)
goto reg_fail;
}
/* update the entire display */
par->fbtftops.update_display(par, 0, par->info->var.yres - 1);
if (par->fbtftops.set_gamma && par->gamma.curves) {
ret = par->fbtftops.set_gamma(par, par->gamma.curves);
if (ret)
goto reg_fail;
}
if (par->fbtftops.register_backlight)
par->fbtftops.register_backlight(par);
ret = register_framebuffer(fb_info);
if (ret < 0)
goto reg_fail;
fbtft_sysfs_init(par);
if (par->txbuf.buf)
sprintf(text1, ", %d KiB %sbuffer memory",
par->txbuf.len >> 10, par->txbuf.dma ? "DMA " : "");
if (spi)
sprintf(text2, ", spi%d.%d at %d MHz", spi->master->bus_num,
spi->chip_select, spi->max_speed_hz/1000000);
dev_info(fb_info->dev,
"%s frame buffer, %dx%d, %d KiB video memory%s, fps=%lu%s\n",
fb_info->fix.id, fb_info->var.xres, fb_info->var.yres,
fb_info->fix.smem_len >> 10, text1,
HZ/fb_info->fbdefio->delay, text2);
#ifdef CONFIG_FB_BACKLIGHT
/* Turn on backlight if available */
if (fb_info->bl_dev) {
fb_info->bl_dev->props.power = FB_BLANK_UNBLANK;
fb_info->bl_dev->ops->update_status(fb_info->bl_dev);
}
#endif
return 0;
reg_fail:
if (par->fbtftops.unregister_backlight)
par->fbtftops.unregister_backlight(par);
if (spi)
spi_set_drvdata(spi, NULL);
if (par->pdev)
platform_set_drvdata(par->pdev, NULL);
return ret;
}
EXPORT_SYMBOL(fbtft_register_framebuffer);
/**
* fbtft_unregister_framebuffer - releases a tft frame buffer device
* @fb_info: frame buffer info structure
*
* Frees SPI driverdata if needed
* Frees gpios.
* Unregisters frame buffer device.
*
*/
int fbtft_unregister_framebuffer(struct fb_info *fb_info)
{
struct fbtft_par *par = fb_info->par;
struct spi_device *spi = par->spi;
int ret;
if (spi)
spi_set_drvdata(spi, NULL);
if (par->pdev)
platform_set_drvdata(par->pdev, NULL);
if (par->fbtftops.unregister_backlight)
par->fbtftops.unregister_backlight(par);
fbtft_sysfs_exit(par);
ret = unregister_framebuffer(fb_info);
return ret;
}
EXPORT_SYMBOL(fbtft_unregister_framebuffer);
#ifdef CONFIG_OF
/**
* fbtft_init_display_dt() - Device Tree init_display() function
* @par: Driver data
*
* Return: 0 if successful, negative if error
*/
static int fbtft_init_display_dt(struct fbtft_par *par)
{
struct device_node *node = par->info->device->of_node;
struct property *prop;
const __be32 *p;
u32 val;
int buf[64], i, j;
char msg[128];
char str[16];
fbtft_par_dbg(DEBUG_INIT_DISPLAY, par, "%s()\n", __func__);
if (!node)
return -EINVAL;
prop = of_find_property(node, "init", NULL);
p = of_prop_next_u32(prop, NULL, &val);
if (!p)
return -EINVAL;
while (p) {
if (val & FBTFT_OF_INIT_CMD) {
val &= 0xFFFF;
i = 0;
while (p && !(val & 0xFFFF0000)) {
if (i > 63) {
dev_err(par->info->device,
"%s: Maximum register values exceeded\n",
__func__);
return -EINVAL;
}
buf[i++] = val;
p = of_prop_next_u32(prop, p, &val);
}
/* make debug message */
msg[0] = '\0';
for (j = 0; j < i; j++) {
snprintf(str, 128, " %02X", buf[j]);
strcat(msg, str);
}
fbtft_par_dbg(DEBUG_INIT_DISPLAY, par,
"init: write_register:%s\n", msg);
par->fbtftops.write_register(par, i,
buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7],
buf[8], buf[9], buf[10], buf[11],
buf[12], buf[13], buf[14], buf[15],
buf[16], buf[17], buf[18], buf[19],
buf[20], buf[21], buf[22], buf[23],
buf[24], buf[25], buf[26], buf[27],
buf[28], buf[29], buf[30], buf[31],
buf[32], buf[33], buf[34], buf[35],
buf[36], buf[37], buf[38], buf[39],
buf[40], buf[41], buf[42], buf[43],
buf[44], buf[45], buf[46], buf[47],
buf[48], buf[49], buf[50], buf[51],
buf[52], buf[53], buf[54], buf[55],
buf[56], buf[57], buf[58], buf[59],
buf[60], buf[61], buf[62], buf[63]);
} else if (val & FBTFT_OF_INIT_DELAY) {
fbtft_par_dbg(DEBUG_INIT_DISPLAY, par,
"init: msleep(%u)\n", val & 0xFFFF);
msleep(val & 0xFFFF);
p = of_prop_next_u32(prop, p, &val);
} else {
dev_err(par->info->device, "illegal init value 0x%X\n",
val);
return -EINVAL;
}
}
return 0;
}
#endif
/**
* fbtft_init_display() - Generic init_display() function
* @par: Driver data
*
* Uses par->init_sequence to do the initialization
*
* Return: 0 if successful, negative if error
*/
int fbtft_init_display(struct fbtft_par *par)
{
int buf[64];
char msg[128];
char str[16];
int i = 0;
int j;
fbtft_par_dbg(DEBUG_INIT_DISPLAY, par, "%s()\n", __func__);
/* sanity check */
if (!par->init_sequence) {
dev_err(par->info->device,
"error: init_sequence is not set\n");
return -EINVAL;
}
/* make sure stop marker exists */
for (i = 0; i < FBTFT_MAX_INIT_SEQUENCE; i++)
if (par->init_sequence[i] == -3)
break;
if (i == FBTFT_MAX_INIT_SEQUENCE) {
dev_err(par->info->device,
"missing stop marker at end of init sequence\n");
return -EINVAL;
}
par->fbtftops.reset(par);
if (par->gpio.cs != -1)
gpio_set_value(par->gpio.cs, 0); /* Activate chip */
i = 0;
while (i < FBTFT_MAX_INIT_SEQUENCE) {
if (par->init_sequence[i] == -3) {
/* done */
return 0;
}
if (par->init_sequence[i] >= 0) {
dev_err(par->info->device,
"missing delimiter at position %d\n", i);
return -EINVAL;
}
if (par->init_sequence[i+1] < 0) {
dev_err(par->info->device,
"missing value after delimiter %d at position %d\n",
par->init_sequence[i], i);
return -EINVAL;
}
switch (par->init_sequence[i]) {
case -1:
i++;
/* make debug message */
strcpy(msg, "");
j = i + 1;
while (par->init_sequence[j] >= 0) {
sprintf(str, "0x%02X ", par->init_sequence[j]);
strcat(msg, str);
j++;
}
fbtft_par_dbg(DEBUG_INIT_DISPLAY, par,
"init: write(0x%02X) %s\n",
par->init_sequence[i], msg);
/* Write */
j = 0;
while (par->init_sequence[i] >= 0) {
if (j > 63) {
dev_err(par->info->device,
"%s: Maximum register values exceeded\n",
__func__);
return -EINVAL;
}
buf[j++] = par->init_sequence[i++];
}
par->fbtftops.write_register(par, j,
buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7],
buf[8], buf[9], buf[10], buf[11],
buf[12], buf[13], buf[14], buf[15],
buf[16], buf[17], buf[18], buf[19],
buf[20], buf[21], buf[22], buf[23],
buf[24], buf[25], buf[26], buf[27],
buf[28], buf[29], buf[30], buf[31],
buf[32], buf[33], buf[34], buf[35],
buf[36], buf[37], buf[38], buf[39],
buf[40], buf[41], buf[42], buf[43],
buf[44], buf[45], buf[46], buf[47],
buf[48], buf[49], buf[50], buf[51],
buf[52], buf[53], buf[54], buf[55],
buf[56], buf[57], buf[58], buf[59],
buf[60], buf[61], buf[62], buf[63]);
break;
case -2:
i++;
fbtft_par_dbg(DEBUG_INIT_DISPLAY, par,
"init: mdelay(%d)\n", par->init_sequence[i]);
mdelay(par->init_sequence[i++]);
break;
default:
dev_err(par->info->device,
"unknown delimiter %d at position %d\n",
par->init_sequence[i], i);
return -EINVAL;
}
}
dev_err(par->info->device,
"%s: something is wrong. Shouldn't get here.\n", __func__);
return -EINVAL;
}
EXPORT_SYMBOL(fbtft_init_display);
/**
* fbtft_verify_gpios() - Generic verify_gpios() function
* @par: Driver data
*
* Uses @spi, @pdev and @buswidth to determine which GPIOs is needed
*
* Return: 0 if successful, negative if error
*/
int fbtft_verify_gpios(struct fbtft_par *par)
{
struct fbtft_platform_data *pdata;
int i;
fbtft_par_dbg(DEBUG_VERIFY_GPIOS, par, "%s()\n", __func__);
pdata = par->info->device->platform_data;
if (pdata->display.buswidth != 9 && par->startbyte == 0 && \
par->gpio.dc < 0) {
dev_err(par->info->device,
"Missing info about 'dc' gpio. Aborting.\n");
return -EINVAL;
}
if (!par->pdev)
return 0;
if (par->gpio.wr < 0) {
dev_err(par->info->device, "Missing 'wr' gpio. Aborting.\n");
return -EINVAL;
}
for (i = 0; i < pdata->display.buswidth; i++) {
if (par->gpio.db[i] < 0) {
dev_err(par->info->device,
"Missing 'db%02d' gpio. Aborting.\n", i);
return -EINVAL;
}
}
return 0;
}
#ifdef CONFIG_OF
/* returns 0 if the property is not present */
static u32 fbtft_of_value(struct device_node *node, const char *propname)
{
int ret;
u32 val = 0;
ret = of_property_read_u32(node, propname, &val);
if (ret == 0)
pr_info("%s: %s = %u\n", __func__, propname, val);
return val;
}
static struct fbtft_platform_data *fbtft_probe_dt(struct device *dev)
{
struct device_node *node = dev->of_node;
struct fbtft_platform_data *pdata;
if (!node) {
dev_err(dev, "Missing platform data or DT\n");
return ERR_PTR(-EINVAL);
}
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM);
pdata->display.width = fbtft_of_value(node, "width");
pdata->display.height = fbtft_of_value(node, "height");
pdata->display.regwidth = fbtft_of_value(node, "regwidth");
pdata->display.buswidth = fbtft_of_value(node, "buswidth");
pdata->display.backlight = fbtft_of_value(node, "backlight");
pdata->display.bpp = fbtft_of_value(node, "bpp");
pdata->display.debug = fbtft_of_value(node, "debug");
pdata->rotate = fbtft_of_value(node, "rotate");
pdata->bgr = of_property_read_bool(node, "bgr");
pdata->fps = fbtft_of_value(node, "fps");
pdata->txbuflen = fbtft_of_value(node, "txbuflen");
pdata->startbyte = fbtft_of_value(node, "startbyte");
of_property_read_string(node, "gamma", (const char **)&pdata->gamma);
if (of_find_property(node, "led-gpios", NULL))
pdata->display.backlight = 1;
if (of_find_property(node, "init", NULL))
pdata->display.fbtftops.init_display = fbtft_init_display_dt;
pdata->display.fbtftops.request_gpios = fbtft_request_gpios_dt;
return pdata;
}
#else
static struct fbtft_platform_data *fbtft_probe_dt(struct device *dev)
{
dev_err(dev, "Missing platform data\n");
return ERR_PTR(-EINVAL);
}
#endif
/**
* fbtft_probe_common() - Generic device probe() helper function
* @display: Display properties
* @sdev: SPI device
* @pdev: Platform device
*
* Allocates, initializes and registers a framebuffer
*
* Either @sdev or @pdev should be NULL
*
* Return: 0 if successful, negative if error
*/
int fbtft_probe_common(struct fbtft_display *display,
struct spi_device *sdev, struct platform_device *pdev)
{
struct device *dev;
struct fb_info *info;
struct fbtft_par *par;
struct fbtft_platform_data *pdata;
int ret;
if (sdev)
dev = &sdev->dev;
else
dev = &pdev->dev;
if (unlikely(display->debug & DEBUG_DRIVER_INIT_FUNCTIONS))
dev_info(dev, "%s()\n", __func__);
pdata = dev->platform_data;
if (!pdata) {
pdata = fbtft_probe_dt(dev);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
dev->platform_data = pdata;
}
info = fbtft_framebuffer_alloc(display, dev);
if (!info)
return -ENOMEM;
par = info->par;
par->spi = sdev;
par->pdev = pdev;
if (display->buswidth == 0) {
dev_err(dev, "buswidth is not set\n");
return -EINVAL;
}
/* write register functions */
if (display->regwidth == 8 && display->buswidth == 8) {
par->fbtftops.write_register = fbtft_write_reg8_bus8;
} else
if (display->regwidth == 8 && display->buswidth == 9 && par->spi) {
par->fbtftops.write_register = fbtft_write_reg8_bus9;
} else if (display->regwidth == 16 && display->buswidth == 8) {
par->fbtftops.write_register = fbtft_write_reg16_bus8;
} else if (display->regwidth == 16 && display->buswidth == 16) {
par->fbtftops.write_register = fbtft_write_reg16_bus16;
} else {
dev_warn(dev,
"no default functions for regwidth=%d and buswidth=%d\n",
display->regwidth, display->buswidth);
}
/* write_vmem() functions */
if (display->buswidth == 8)
par->fbtftops.write_vmem = fbtft_write_vmem16_bus8;
else if (display->buswidth == 9)
par->fbtftops.write_vmem = fbtft_write_vmem16_bus9;
else if (display->buswidth == 16)
par->fbtftops.write_vmem = fbtft_write_vmem16_bus16;
/* GPIO write() functions */
if (par->pdev) {
if (display->buswidth == 8)
par->fbtftops.write = fbtft_write_gpio8_wr;
else if (display->buswidth == 16)
par->fbtftops.write = fbtft_write_gpio16_wr;
}
/* 9-bit SPI setup */
if (par->spi && display->buswidth == 9) {
par->spi->bits_per_word = 9;
ret = par->spi->master->setup(par->spi);
if (ret) {
dev_warn(&par->spi->dev,
"9-bit SPI not available, emulating using 8-bit.\n");
par->spi->bits_per_word = 8;
ret = par->spi->master->setup(par->spi);
if (ret)
goto out_release;
/* allocate buffer with room for dc bits */
par->extra = devm_kzalloc(par->info->device,
par->txbuf.len + (par->txbuf.len / 8) + 8,
GFP_KERNEL);
if (!par->extra) {
ret = -ENOMEM;
goto out_release;
}
par->fbtftops.write = fbtft_write_spi_emulate_9;
}
}
if (!par->fbtftops.verify_gpios)
par->fbtftops.verify_gpios = fbtft_verify_gpios;
/* make sure we still use the driver provided functions */
fbtft_merge_fbtftops(&par->fbtftops, &display->fbtftops);
/* use init_sequence if provided */
if (par->init_sequence)
par->fbtftops.init_display = fbtft_init_display;
/* use platform_data provided functions above all */
fbtft_merge_fbtftops(&par->fbtftops, &pdata->display.fbtftops);
ret = fbtft_register_framebuffer(info);
if (ret < 0)
goto out_release;
return 0;
out_release:
fbtft_framebuffer_release(info);
return ret;
}
EXPORT_SYMBOL(fbtft_probe_common);
/**
* fbtft_remove_common() - Generic device remove() helper function
* @dev: Device
* @info: Framebuffer
*
* Unregisters and releases the framebuffer
*
* Return: 0 if successful, negative if error
*/
int fbtft_remove_common(struct device *dev, struct fb_info *info)
{
struct fbtft_par *par;
if (!info)
return -EINVAL;
par = info->par;
if (par)
fbtft_par_dbg(DEBUG_DRIVER_INIT_FUNCTIONS, par,
"%s()\n", __func__);
fbtft_unregister_framebuffer(info);
fbtft_framebuffer_release(info);
return 0;
}
EXPORT_SYMBOL(fbtft_remove_common);
MODULE_LICENSE("GPL");
#include <linux/export.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#ifdef CONFIG_ARCH_BCM2708
#include <mach/platform.h>
#endif
#include "fbtft.h"
int fbtft_write_spi(struct fbtft_par *par, void *buf, size_t len)
{
struct spi_transfer t = {
.tx_buf = buf,
.len = len,
};
struct spi_message m;
fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len,
"%s(len=%d): ", __func__, len);
if (!par->spi) {
dev_err(par->info->device,
"%s: par->spi is unexpectedly NULL\n", __func__);
return -1;
}
spi_message_init(&m);
if (par->txbuf.dma && buf == par->txbuf.buf) {
t.tx_dma = par->txbuf.dma;
m.is_dma_mapped = 1;
}
spi_message_add_tail(&t, &m);
return spi_sync(par->spi, &m);
}
EXPORT_SYMBOL(fbtft_write_spi);
/**
* fbtft_write_spi_emulate_9() - write SPI emulating 9-bit
* @par: Driver data
* @buf: Buffer to write
* @len: Length of buffer (must be divisible by 8)
*
* When 9-bit SPI is not available, this function can be used to emulate that.
* par->extra must hold a transformation buffer used for transfer.
*/
int fbtft_write_spi_emulate_9(struct fbtft_par *par, void *buf, size_t len)
{
u16 *src = buf;
u8 *dst = par->extra;
size_t size = len / 2;
size_t added = 0;
int bits, i, j;
u64 val, dc, tmp;
fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len,
"%s(len=%d): ", __func__, len);
if (!par->extra) {
dev_err(par->info->device, "%s: error: par->extra is NULL\n",
__func__);
return -EINVAL;
}
if ((len % 8) != 0) {
dev_err(par->info->device,
"%s: error: len=%d must be divisible by 8\n",
__func__, len);
return -EINVAL;
}
for (i = 0; i < size; i += 8) {
tmp = 0;
bits = 63;
for (j = 0; j < 7; j++) {
dc = (*src & 0x0100) ? 1 : 0;
val = *src & 0x00FF;
tmp |= dc << bits;
bits -= 8;
tmp |= val << bits--;
src++;
}
tmp |= ((*src & 0x0100) ? 1 : 0);
*(u64 *)dst = cpu_to_be64(tmp);
dst += 8;
*dst++ = (u8)(*src++ & 0x00FF);
added++;
}
return spi_write(par->spi, par->extra, size + added);
}
EXPORT_SYMBOL(fbtft_write_spi_emulate_9);
int fbtft_read_spi(struct fbtft_par *par, void *buf, size_t len)
{
int ret;
u8 txbuf[32] = { 0, };
struct spi_transfer t = {
.speed_hz = 2000000,
.rx_buf = buf,
.len = len,
};
struct spi_message m;
if (!par->spi) {
dev_err(par->info->device,
"%s: par->spi is unexpectedly NULL\n", __func__);
return -ENODEV;
}
if (par->startbyte) {
if (len > 32) {
dev_err(par->info->device,
"%s: len=%d can't be larger than 32 when using 'startbyte'\n",
__func__, len);
return -EINVAL;
}
txbuf[0] = par->startbyte | 0x3;
t.tx_buf = txbuf;
fbtft_par_dbg_hex(DEBUG_READ, par, par->info->device, u8,
txbuf, len, "%s(len=%d) txbuf => ", __func__, len);
}
spi_message_init(&m);
spi_message_add_tail(&t, &m);
ret = spi_sync(par->spi, &m);
fbtft_par_dbg_hex(DEBUG_READ, par, par->info->device, u8, buf, len,
"%s(len=%d) buf <= ", __func__, len);
return ret;
}
EXPORT_SYMBOL(fbtft_read_spi);
#ifdef CONFIG_ARCH_BCM2708
/*
* Raspberry Pi
* - writing directly to the registers is 40-50% faster than
* optimized use of gpiolib
*/
#define GPIOSET(no, ishigh) \
do { \
if (ishigh) \
set |= (1 << (no)); \
else \
reset |= (1 << (no)); \
} while (0)
int fbtft_write_gpio8_wr(struct fbtft_par *par, void *buf, size_t len)
{
unsigned int set = 0;
unsigned int reset = 0;
u8 data;
fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len,
"%s(len=%d): ", __func__, len);
while (len--) {
data = *(u8 *) buf;
buf++;
/* Set data */
GPIOSET(par->gpio.db[0], (data&0x01));
GPIOSET(par->gpio.db[1], (data&0x02));
GPIOSET(par->gpio.db[2], (data&0x04));
GPIOSET(par->gpio.db[3], (data&0x08));
GPIOSET(par->gpio.db[4], (data&0x10));
GPIOSET(par->gpio.db[5], (data&0x20));
GPIOSET(par->gpio.db[6], (data&0x40));
GPIOSET(par->gpio.db[7], (data&0x80));
writel(set, __io_address(GPIO_BASE+0x1C));
writel(reset, __io_address(GPIO_BASE+0x28));
/* Pulse /WR low */
writel((1<<par->gpio.wr), __io_address(GPIO_BASE+0x28));
writel(0, __io_address(GPIO_BASE+0x28)); /* used as a delay */
writel((1<<par->gpio.wr), __io_address(GPIO_BASE+0x1C));
set = 0;
reset = 0;
}
return 0;
}
EXPORT_SYMBOL(fbtft_write_gpio8_wr);
int fbtft_write_gpio16_wr(struct fbtft_par *par, void *buf, size_t len)
{
unsigned int set = 0;
unsigned int reset = 0;
u16 data;
fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len,
"%s(len=%d): ", __func__, len);
while (len) {
len -= 2;
data = *(u16 *) buf;
buf += 2;
/* Start writing by pulling down /WR */
gpio_set_value(par->gpio.wr, 0);
/* Set data */
GPIOSET(par->gpio.db[0], (data&0x0001));
GPIOSET(par->gpio.db[1], (data&0x0002));
GPIOSET(par->gpio.db[2], (data&0x0004));
GPIOSET(par->gpio.db[3], (data&0x0008));
GPIOSET(par->gpio.db[4], (data&0x0010));
GPIOSET(par->gpio.db[5], (data&0x0020));
GPIOSET(par->gpio.db[6], (data&0x0040));
GPIOSET(par->gpio.db[7], (data&0x0080));
GPIOSET(par->gpio.db[8], (data&0x0100));
GPIOSET(par->gpio.db[9], (data&0x0200));
GPIOSET(par->gpio.db[10], (data&0x0400));
GPIOSET(par->gpio.db[11], (data&0x0800));
GPIOSET(par->gpio.db[12], (data&0x1000));
GPIOSET(par->gpio.db[13], (data&0x2000));
GPIOSET(par->gpio.db[14], (data&0x4000));
GPIOSET(par->gpio.db[15], (data&0x8000));
writel(set, __io_address(GPIO_BASE+0x1C));
writel(reset, __io_address(GPIO_BASE+0x28));
/* Pullup /WR */
gpio_set_value(par->gpio.wr, 1);
set = 0;
reset = 0;
}
return 0;
}
EXPORT_SYMBOL(fbtft_write_gpio16_wr);
int fbtft_write_gpio16_wr_latched(struct fbtft_par *par, void *buf, size_t len)
{
unsigned int set = 0;
unsigned int reset = 0;
u16 data;
fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len,
"%s(len=%d): ", __func__, len);
while (len) {
len -= 2;
data = *(u16 *) buf;
buf += 2;
/* Start writing by pulling down /WR */
gpio_set_value(par->gpio.wr, 0);
/* Low byte */
GPIOSET(par->gpio.db[0], (data&0x0001));
GPIOSET(par->gpio.db[1], (data&0x0002));
GPIOSET(par->gpio.db[2], (data&0x0004));
GPIOSET(par->gpio.db[3], (data&0x0008));
GPIOSET(par->gpio.db[4], (data&0x0010));
GPIOSET(par->gpio.db[5], (data&0x0020));
GPIOSET(par->gpio.db[6], (data&0x0040));
GPIOSET(par->gpio.db[7], (data&0x0080));
writel(set, __io_address(GPIO_BASE+0x1C));
writel(reset, __io_address(GPIO_BASE+0x28));
/* Pulse 'latch' high */
gpio_set_value(par->gpio.latch, 1);
gpio_set_value(par->gpio.latch, 0);
/* High byte */
GPIOSET(par->gpio.db[0], (data&0x0100));
GPIOSET(par->gpio.db[1], (data&0x0200));
GPIOSET(par->gpio.db[2], (data&0x0400));
GPIOSET(par->gpio.db[3], (data&0x0800));
GPIOSET(par->gpio.db[4], (data&0x1000));
GPIOSET(par->gpio.db[5], (data&0x2000));
GPIOSET(par->gpio.db[6], (data&0x4000));
GPIOSET(par->gpio.db[7], (data&0x8000));
writel(set, __io_address(GPIO_BASE+0x1C));
writel(reset, __io_address(GPIO_BASE+0x28));
/* Pullup /WR */
gpio_set_value(par->gpio.wr, 1);
set = 0;
reset = 0;
}
return 0;
}
EXPORT_SYMBOL(fbtft_write_gpio16_wr_latched);
#undef GPIOSET
#else
/*
* Optimized use of gpiolib is twice as fast as no optimization
* only one driver can use the optimized version at a time
*/
int fbtft_write_gpio8_wr(struct fbtft_par *par, void *buf, size_t len)
{
u8 data;
int i;
#ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO
static u8 prev_data;
#endif
fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len,
"%s(len=%d): ", __func__, len);
while (len--) {
data = *(u8 *) buf;
/* Start writing by pulling down /WR */
gpio_set_value(par->gpio.wr, 0);
/* Set data */
#ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO
if (data == prev_data) {
gpio_set_value(par->gpio.wr, 0); /* used as delay */
} else {
for (i = 0; i < 8; i++) {
if ((data & 1) != (prev_data & 1))
gpio_set_value(par->gpio.db[i],
(data & 1));
data >>= 1;
prev_data >>= 1;
}
}
#else
for (i = 0; i < 8; i++) {
gpio_set_value(par->gpio.db[i], (data & 1));
data >>= 1;
}
#endif
/* Pullup /WR */
gpio_set_value(par->gpio.wr, 1);
#ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO
prev_data = *(u8 *) buf;
#endif
buf++;
}
return 0;
}
EXPORT_SYMBOL(fbtft_write_gpio8_wr);
int fbtft_write_gpio16_wr(struct fbtft_par *par, void *buf, size_t len)
{
u16 data;
int i;
#ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO
static u16 prev_data;
#endif
fbtft_par_dbg_hex(DEBUG_WRITE, par, par->info->device, u8, buf, len,
"%s(len=%d): ", __func__, len);
while (len) {
data = *(u16 *) buf;
/* Start writing by pulling down /WR */
gpio_set_value(par->gpio.wr, 0);
/* Set data */
#ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO
if (data == prev_data) {
gpio_set_value(par->gpio.wr, 0); /* used as delay */
} else {
for (i = 0; i < 16; i++) {
if ((data & 1) != (prev_data & 1))
gpio_set_value(par->gpio.db[i],
(data & 1));
data >>= 1;
prev_data >>= 1;
}
}
#else
for (i = 0; i < 16; i++) {
gpio_set_value(par->gpio.db[i], (data & 1));
data >>= 1;
}
#endif
/* Pullup /WR */
gpio_set_value(par->gpio.wr, 1);
#ifndef DO_NOT_OPTIMIZE_FBTFT_WRITE_GPIO
prev_data = *(u16 *) buf;
#endif
buf += 2;
len -= 2;
}
return 0;
}
EXPORT_SYMBOL(fbtft_write_gpio16_wr);
int fbtft_write_gpio16_wr_latched(struct fbtft_par *par, void *buf, size_t len)
{
dev_err(par->info->device, "%s: function not implemented\n", __func__);
return -1;
}
EXPORT_SYMBOL(fbtft_write_gpio16_wr_latched);
#endif /* CONFIG_ARCH_BCM2708 */
#include "fbtft.h"
static int get_next_ulong(char **str_p, unsigned long *val, char *sep, int base)
{
char *p_val;
int ret;
if (!str_p || !(*str_p))
return -EINVAL;
p_val = strsep(str_p, sep);
if (!p_val)
return -EINVAL;
ret = kstrtoul(p_val, base, val);
if (ret)
return -EINVAL;
return 0;
}
int fbtft_gamma_parse_str(struct fbtft_par *par, unsigned long *curves,
const char *str, int size)
{
char *str_p, *curve_p = NULL;
char *tmp;
unsigned long val = 0;
int ret = 0;
int curve_counter, value_counter;
fbtft_par_dbg(DEBUG_SYSFS, par, "%s() str=\n", __func__);
if (!str || !curves)
return -EINVAL;
fbtft_par_dbg(DEBUG_SYSFS, par, "%s\n", str);
tmp = kmalloc(size+1, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
memcpy(tmp, str, size+1);
/* replace optional separators */
str_p = tmp;
while (*str_p) {
if (*str_p == ',')
*str_p = ' ';
if (*str_p == ';')
*str_p = '\n';
str_p++;
}
str_p = strim(tmp);
curve_counter = 0;
while (str_p) {
if (curve_counter == par->gamma.num_curves) {
dev_err(par->info->device, "Gamma: Too many curves\n");
ret = -EINVAL;
goto out;
}
curve_p = strsep(&str_p, "\n");
value_counter = 0;
while (curve_p) {
if (value_counter == par->gamma.num_values) {
dev_err(par->info->device,
"Gamma: Too many values\n");
ret = -EINVAL;
goto out;
}
ret = get_next_ulong(&curve_p, &val, " ", 16);
if (ret)
goto out;
curves[curve_counter * par->gamma.num_values + value_counter] = val;
value_counter++;
}
if (value_counter != par->gamma.num_values) {
dev_err(par->info->device, "Gamma: Too few values\n");
ret = -EINVAL;
goto out;
}
curve_counter++;
}
if (curve_counter != par->gamma.num_curves) {
dev_err(par->info->device, "Gamma: Too few curves\n");
ret = -EINVAL;
goto out;
}
out:
kfree(tmp);
return ret;
}
static ssize_t
sprintf_gamma(struct fbtft_par *par, unsigned long *curves, char *buf)
{
ssize_t len = 0;
unsigned int i, j;
mutex_lock(&par->gamma.lock);
for (i = 0; i < par->gamma.num_curves; i++) {
for (j = 0; j < par->gamma.num_values; j++)
len += scnprintf(&buf[len], PAGE_SIZE,
"%04lx ", curves[i*par->gamma.num_values + j]);
buf[len-1] = '\n';
}
mutex_unlock(&par->gamma.lock);
return len;
}
static ssize_t store_gamma_curve(struct device *device,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct fb_info *fb_info = dev_get_drvdata(device);
struct fbtft_par *par = fb_info->par;
unsigned long tmp_curves[FBTFT_GAMMA_MAX_VALUES_TOTAL];
int ret;
ret = fbtft_gamma_parse_str(par, tmp_curves, buf, count);
if (ret)
return ret;
ret = par->fbtftops.set_gamma(par, tmp_curves);
if (ret)
return ret;
mutex_lock(&par->gamma.lock);
memcpy(par->gamma.curves, tmp_curves,
par->gamma.num_curves * par->gamma.num_values * sizeof(tmp_curves[0]));
mutex_unlock(&par->gamma.lock);
return count;
}
static ssize_t show_gamma_curve(struct device *device,
struct device_attribute *attr, char *buf)
{
struct fb_info *fb_info = dev_get_drvdata(device);
struct fbtft_par *par = fb_info->par;
return sprintf_gamma(par, par->gamma.curves, buf);
}
static struct device_attribute gamma_device_attrs[] = {
__ATTR(gamma, 0660, show_gamma_curve, store_gamma_curve),
};
void fbtft_expand_debug_value(unsigned long *debug)
{
switch (*debug & 0b111) {
case 1:
*debug |= DEBUG_LEVEL_1;
break;
case 2:
*debug |= DEBUG_LEVEL_2;
break;
case 3:
*debug |= DEBUG_LEVEL_3;
break;
case 4:
*debug |= DEBUG_LEVEL_4;
break;
case 5:
*debug |= DEBUG_LEVEL_5;
break;
case 6:
*debug |= DEBUG_LEVEL_6;
break;
case 7:
*debug = 0xFFFFFFFF;
break;
}
}
static ssize_t store_debug(struct device *device,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct fb_info *fb_info = dev_get_drvdata(device);
struct fbtft_par *par = fb_info->par;
int ret;
ret = kstrtoul(buf, 10, &par->debug);
if (ret)
return ret;
fbtft_expand_debug_value(&par->debug);
return count;
}
static ssize_t show_debug(struct device *device,
struct device_attribute *attr, char *buf)
{
struct fb_info *fb_info = dev_get_drvdata(device);
struct fbtft_par *par = fb_info->par;
return snprintf(buf, PAGE_SIZE, "%lu\n", par->debug);
}
static struct device_attribute debug_device_attr = \
__ATTR(debug, 0660, show_debug, store_debug);
void fbtft_sysfs_init(struct fbtft_par *par)
{
device_create_file(par->info->dev, &debug_device_attr);
if (par->gamma.curves && par->fbtftops.set_gamma)
device_create_file(par->info->dev, &gamma_device_attrs[0]);
}
void fbtft_sysfs_exit(struct fbtft_par *par)
{
device_remove_file(par->info->dev, &debug_device_attr);
if (par->gamma.curves && par->fbtftops.set_gamma)
device_remove_file(par->info->dev, &gamma_device_attrs[0]);
}
/*
* Copyright (C) 2013 Noralf Tronnes
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __LINUX_FBTFT_H
#define __LINUX_FBTFT_H
#include <linux/fb.h>
#include <linux/spinlock.h>
#include <linux/spi/spi.h>
#include <linux/platform_device.h>
#define FBTFT_NOP 0x00
#define FBTFT_SWRESET 0x01
#define FBTFT_RDDID 0x04
#define FBTFT_RDDST 0x09
#define FBTFT_CASET 0x2A
#define FBTFT_RASET 0x2B
#define FBTFT_RAMWR 0x2C
#define FBTFT_ONBOARD_BACKLIGHT 2
#define FBTFT_GPIO_NO_MATCH 0xFFFF
#define FBTFT_GPIO_NAME_SIZE 32
#define FBTFT_MAX_INIT_SEQUENCE 512
#define FBTFT_GAMMA_MAX_VALUES_TOTAL 128
#define FBTFT_OF_INIT_CMD BIT(24)
#define FBTFT_OF_INIT_DELAY BIT(25)
/**
* struct fbtft_gpio - Structure that holds one pinname to gpio mapping
* @name: pinname (reset, dc, etc.)
* @gpio: GPIO number
*
*/
struct fbtft_gpio {
char name[FBTFT_GPIO_NAME_SIZE];
unsigned gpio;
};
struct fbtft_par;
/**
* struct fbtft_ops - FBTFT operations structure
* @write: Writes to interface bus
* @read: Reads from interface bus
* @write_vmem: Writes video memory to display
* @write_reg: Writes to controller register
* @set_addr_win: Set the GRAM update window
* @reset: Reset the LCD controller
* @mkdirty: Marks display lines for update
* @update_display: Updates the display
* @init_display: Initializes the display
* @blank: Blank the display (optional)
* @request_gpios_match: Do pinname to gpio matching
* @request_gpios: Request gpios from the kernel
* @free_gpios: Free previously requested gpios
* @verify_gpios: Verify that necessary gpios is present (optional)
* @register_backlight: Used to register backlight device (optional)
* @unregister_backlight: Unregister backlight device (optional)
* @set_var: Configure LCD with values from variables like @rotate and @bgr
* (optional)
* @set_gamma: Set Gamma curve (optional)
*
* Most of these operations have default functions assigned to them in
* fbtft_framebuffer_alloc()
*/
struct fbtft_ops {
int (*write)(struct fbtft_par *par, void *buf, size_t len);
int (*read)(struct fbtft_par *par, void *buf, size_t len);
int (*write_vmem)(struct fbtft_par *par, size_t offset, size_t len);
void (*write_register)(struct fbtft_par *par, int len, ...);
void (*set_addr_win)(struct fbtft_par *par,
int xs, int ys, int xe, int ye);
void (*reset)(struct fbtft_par *par);
void (*mkdirty)(struct fb_info *info, int from, int to);
void (*update_display)(struct fbtft_par *par,
unsigned start_line, unsigned end_line);
int (*init_display)(struct fbtft_par *par);
int (*blank)(struct fbtft_par *par, bool on);
unsigned long (*request_gpios_match)(struct fbtft_par *par,
const struct fbtft_gpio *gpio);
int (*request_gpios)(struct fbtft_par *par);
int (*verify_gpios)(struct fbtft_par *par);
void (*register_backlight)(struct fbtft_par *par);
void (*unregister_backlight)(struct fbtft_par *par);
int (*set_var)(struct fbtft_par *par);
int (*set_gamma)(struct fbtft_par *par, unsigned long *curves);
};
/**
* struct fbtft_display - Describes the display properties
* @width: Width of display in pixels
* @height: Height of display in pixels
* @regwidth: LCD Controller Register width in bits
* @buswidth: Display interface bus width in bits
* @backlight: Backlight type.
* @fbtftops: FBTFT operations provided by driver or device (platform_data)
* @bpp: Bits per pixel
* @fps: Frames per second
* @txbuflen: Size of transmit buffer
* @init_sequence: Pointer to LCD initialization array
* @gamma: String representation of Gamma curve(s)
* @gamma_num: Number of Gamma curves
* @gamma_len: Number of values per Gamma curve
* @debug: Initial debug value
*
* This structure is not stored by FBTFT except for init_sequence.
*/
struct fbtft_display {
unsigned width;
unsigned height;
unsigned regwidth;
unsigned buswidth;
unsigned backlight;
struct fbtft_ops fbtftops;
unsigned bpp;
unsigned fps;
int txbuflen;
int *init_sequence;
char *gamma;
int gamma_num;
int gamma_len;
unsigned long debug;
};
/**
* struct fbtft_platform_data - Passes display specific data to the driver
* @display: Display properties
* @gpios: Pointer to an array of piname to gpio mappings
* @rotate: Display rotation angle
* @bgr: LCD Controller BGR bit
* @fps: Frames per second (this will go away, use @fps in @fbtft_display)
* @txbuflen: Size of transmit buffer
* @startbyte: When set, enables use of Startbyte in transfers
* @gamma: String representation of Gamma curve(s)
* @extra: A way to pass extra info
*/
struct fbtft_platform_data {
struct fbtft_display display;
const struct fbtft_gpio *gpios;
unsigned rotate;
bool bgr;
unsigned fps;
int txbuflen;
u8 startbyte;
char *gamma;
void *extra;
};
/**
* struct fbtft_par - Main FBTFT data structure
*
* This structure holds all relevant data to operate the display
*
* See sourcefile for documentation since nested structs is not
* supported by kernel-doc.
*
*/
/* @spi: Set if it is a SPI device
* @pdev: Set if it is a platform device
* @info: Pointer to framebuffer fb_info structure
* @pdata: Pointer to platform data
* @ssbuf: Not used
* @pseudo_palette: Used by fb_set_colreg()
* @txbuf.buf: Transmit buffer
* @txbuf.len: Transmit buffer length
* @buf: Small buffer used when writing init data over SPI
* @startbyte: Used by some controllers when in SPI mode.
* Format: 6 bit Device id + RS bit + RW bit
* @fbtftops: FBTFT operations provided by driver or device (platform_data)
* @dirty_lock: Protects dirty_lines_start and dirty_lines_end
* @dirty_lines_start: Where to begin updating display
* @dirty_lines_end: Where to end updating display
* @gpio.reset: GPIO used to reset display
* @gpio.dc: Data/Command signal, also known as RS
* @gpio.rd: Read latching signal
* @gpio.wr: Write latching signal
* @gpio.latch: Bus latch signal, eg. 16->8 bit bus latch
* @gpio.cs: LCD Chip Select with parallel interface bus
* @gpio.db[16]: Parallel databus
* @gpio.led[16]: Led control signals
* @gpio.aux[16]: Auxillary signals, not used by core
* @init_sequence: Pointer to LCD initialization array
* @gamma.lock: Mutex for Gamma curve locking
* @gamma.curves: Pointer to Gamma curve array
* @gamma.num_values: Number of values per Gamma curve
* @gamma.num_curves: Number of Gamma curves
* @debug: Pointer to debug value
* @current_debug:
* @first_update_done: Used to only time the first display update
* @update_time: Used to calculate 'fps' in debug output
* @bgr: BGR mode/\n
* @extra: Extra info needed by driver
*/
struct fbtft_par {
struct spi_device *spi;
struct platform_device *pdev;
struct fb_info *info;
struct fbtft_platform_data *pdata;
u16 *ssbuf;
u32 pseudo_palette[16];
struct {
void *buf;
dma_addr_t dma;
size_t len;
} txbuf;
u8 *buf;
u8 startbyte;
struct fbtft_ops fbtftops;
spinlock_t dirty_lock;
unsigned dirty_lines_start;
unsigned dirty_lines_end;
struct {
int reset;
int dc;
int rd;
int wr;
int latch;
int cs;
int db[16];
int led[16];
int aux[16];
} gpio;
int *init_sequence;
struct {
struct mutex lock;
unsigned long *curves;
int num_values;
int num_curves;
} gamma;
unsigned long debug;
bool first_update_done;
struct timespec update_time;
bool bgr;
void *extra;
};
#define NUMARGS(...) (sizeof((int[]){__VA_ARGS__})/sizeof(int))
#define write_reg(par, ...) \
do { \
par->fbtftops.write_register(par, NUMARGS(__VA_ARGS__), __VA_ARGS__); \
} while (0)
/* fbtft-core.c */
extern void fbtft_dbg_hex(const struct device *dev,
int groupsize, void *buf, size_t len, const char *fmt, ...);
extern struct fb_info *fbtft_framebuffer_alloc(struct fbtft_display *display,
struct device *dev);
extern void fbtft_framebuffer_release(struct fb_info *info);
extern int fbtft_register_framebuffer(struct fb_info *fb_info);
extern int fbtft_unregister_framebuffer(struct fb_info *fb_info);
extern void fbtft_register_backlight(struct fbtft_par *par);
extern void fbtft_unregister_backlight(struct fbtft_par *par);
extern int fbtft_init_display(struct fbtft_par *par);
extern int fbtft_probe_common(struct fbtft_display *display,
struct spi_device *sdev, struct platform_device *pdev);
extern int fbtft_remove_common(struct device *dev, struct fb_info *info);
/* fbtft-io.c */
extern int fbtft_write_spi(struct fbtft_par *par, void *buf, size_t len);
extern int fbtft_write_spi_emulate_9(struct fbtft_par *par,
void *buf, size_t len);
extern int fbtft_read_spi(struct fbtft_par *par, void *buf, size_t len);
extern int fbtft_write_gpio8_wr(struct fbtft_par *par, void *buf, size_t len);
extern int fbtft_write_gpio16_wr(struct fbtft_par *par, void *buf, size_t len);
extern int fbtft_write_gpio16_wr_latched(struct fbtft_par *par,
void *buf, size_t len);
/* fbtft-bus.c */
extern int fbtft_write_vmem8_bus8(struct fbtft_par *par, size_t offset, size_t len);
extern int fbtft_write_vmem16_bus16(struct fbtft_par *par, size_t offset, size_t len);
extern int fbtft_write_vmem16_bus8(struct fbtft_par *par, size_t offset, size_t len);
extern int fbtft_write_vmem16_bus9(struct fbtft_par *par, size_t offset, size_t len);
extern void fbtft_write_reg8_bus8(struct fbtft_par *par, int len, ...);
extern void fbtft_write_reg8_bus9(struct fbtft_par *par, int len, ...);
extern void fbtft_write_reg16_bus8(struct fbtft_par *par, int len, ...);
extern void fbtft_write_reg16_bus16(struct fbtft_par *par, int len, ...);
#define FBTFT_REGISTER_DRIVER(_name, _compatible, _display) \
\
static int fbtft_driver_probe_spi(struct spi_device *spi) \
{ \
return fbtft_probe_common(_display, spi, NULL); \
} \
\
static int fbtft_driver_remove_spi(struct spi_device *spi) \
{ \
struct fb_info *info = spi_get_drvdata(spi); \
\
return fbtft_remove_common(&spi->dev, info); \
} \
\
static int fbtft_driver_probe_pdev(struct platform_device *pdev) \
{ \
return fbtft_probe_common(_display, NULL, pdev); \
} \
\
static int fbtft_driver_remove_pdev(struct platform_device *pdev) \
{ \
struct fb_info *info = platform_get_drvdata(pdev); \
\
return fbtft_remove_common(&pdev->dev, info); \
} \
\
static const struct of_device_id dt_ids[] = { \
{ .compatible = _compatible }, \
{}, \
}; \
\
MODULE_DEVICE_TABLE(of, dt_ids); \
\
\
static struct spi_driver fbtft_driver_spi_driver = { \
.driver = { \
.name = _name, \
.owner = THIS_MODULE, \
.of_match_table = of_match_ptr(dt_ids), \
}, \
.probe = fbtft_driver_probe_spi, \
.remove = fbtft_driver_remove_spi, \
}; \
\
static struct platform_driver fbtft_driver_platform_driver = { \
.driver = { \
.name = _name, \
.owner = THIS_MODULE, \
.of_match_table = of_match_ptr(dt_ids), \
}, \
.probe = fbtft_driver_probe_pdev, \
.remove = fbtft_driver_remove_pdev, \
}; \
\
static int __init fbtft_driver_module_init(void) \
{ \
int ret; \
\
ret = spi_register_driver(&fbtft_driver_spi_driver); \
if (ret < 0) \
return ret; \
return platform_driver_register(&fbtft_driver_platform_driver); \
} \
\
static void __exit fbtft_driver_module_exit(void) \
{ \
spi_unregister_driver(&fbtft_driver_spi_driver); \
platform_driver_unregister(&fbtft_driver_platform_driver); \
} \
\
module_init(fbtft_driver_module_init); \
module_exit(fbtft_driver_module_exit);
/* Debug macros */
/* shorthand debug levels */
#define DEBUG_LEVEL_1 DEBUG_REQUEST_GPIOS
#define DEBUG_LEVEL_2 (DEBUG_LEVEL_1 | DEBUG_DRIVER_INIT_FUNCTIONS | DEBUG_TIME_FIRST_UPDATE)
#define DEBUG_LEVEL_3 (DEBUG_LEVEL_2 | DEBUG_RESET | DEBUG_INIT_DISPLAY | DEBUG_BLANK | DEBUG_REQUEST_GPIOS | DEBUG_FREE_GPIOS | DEBUG_VERIFY_GPIOS | DEBUG_BACKLIGHT | DEBUG_SYSFS)
#define DEBUG_LEVEL_4 (DEBUG_LEVEL_2 | DEBUG_FB_READ | DEBUG_FB_WRITE | DEBUG_FB_FILLRECT | DEBUG_FB_COPYAREA | DEBUG_FB_IMAGEBLIT | DEBUG_FB_BLANK)
#define DEBUG_LEVEL_5 (DEBUG_LEVEL_3 | DEBUG_UPDATE_DISPLAY)
#define DEBUG_LEVEL_6 (DEBUG_LEVEL_4 | DEBUG_LEVEL_5)
#define DEBUG_LEVEL_7 0xFFFFFFFF
#define DEBUG_DRIVER_INIT_FUNCTIONS (1<<3)
#define DEBUG_TIME_FIRST_UPDATE (1<<4)
#define DEBUG_TIME_EACH_UPDATE (1<<5)
#define DEBUG_DEFERRED_IO (1<<6)
#define DEBUG_FBTFT_INIT_FUNCTIONS (1<<7)
/* fbops */
#define DEBUG_FB_READ (1<<8)
#define DEBUG_FB_WRITE (1<<9)
#define DEBUG_FB_FILLRECT (1<<10)
#define DEBUG_FB_COPYAREA (1<<11)
#define DEBUG_FB_IMAGEBLIT (1<<12)
#define DEBUG_FB_SETCOLREG (1<<13)
#define DEBUG_FB_BLANK (1<<14)
#define DEBUG_SYSFS (1<<16)
/* fbtftops */
#define DEBUG_BACKLIGHT (1<<17)
#define DEBUG_READ (1<<18)
#define DEBUG_WRITE (1<<19)
#define DEBUG_WRITE_VMEM (1<<20)
#define DEBUG_WRITE_REGISTER (1<<21)
#define DEBUG_SET_ADDR_WIN (1<<22)
#define DEBUG_RESET (1<<23)
#define DEBUG_MKDIRTY (1<<24)
#define DEBUG_UPDATE_DISPLAY (1<<25)
#define DEBUG_INIT_DISPLAY (1<<26)
#define DEBUG_BLANK (1<<27)
#define DEBUG_REQUEST_GPIOS (1<<28)
#define DEBUG_FREE_GPIOS (1<<29)
#define DEBUG_REQUEST_GPIOS_MATCH (1<<30)
#define DEBUG_VERIFY_GPIOS (1<<31)
#define fbtft_init_dbg(dev, format, arg...) \
do { \
if (unlikely((dev)->platform_data && \
(((struct fbtft_platform_data *)(dev)->platform_data)->display.debug & DEBUG_DRIVER_INIT_FUNCTIONS))) \
dev_info(dev, format, ##arg); \
} while (0)
#define fbtft_par_dbg(level, par, format, arg...) \
do { \
if (unlikely(par->debug & level)) \
dev_info(par->info->device, format, ##arg); \
} while (0)
#define fbtft_dev_dbg(level, par, dev, format, arg...) \
do { \
if (unlikely(par->debug & level)) \
dev_info(dev, format, ##arg); \
} while (0)
#define fbtft_par_dbg_hex(level, par, dev, type, buf, num, format, arg...) \
do { \
if (unlikely(par->debug & level)) \
fbtft_dbg_hex(dev, sizeof(type), buf, num * sizeof(type), format, ##arg); \
} while (0)
#endif /* __LINUX_FBTFT_H */
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册