提交 a53eb5e0 编写于 作者: J James Smart 提交者: James Bottomley

[SCSI] FC Transport support for vports based on NPIV

This patch provides support for FC virtual ports based on NPIV.
For information on the interfaces and design, please read the
Documentation/scsi/scsi_fc_transport.txt file enclosed within
the patch.

The RFC was originally posted here:
http://marc.info/?l=linux-scsi&m=117226959918393&w=2

Changes from the initial RFC:
- Bug fix: needed a transport_class_unregister() for the vport class
- Create a symlink to the vport in the shost device if it is not the
    parent of the vport.
- Made symbolic name writable so it can be set after creation
- Made the temporary fc_vport_identifiers struct private to the
transport.
- Deleted the vport_id field from the vport. I couldn't find any good
  use for it (and symname is a good replacement).
- Made the vport_state and vport_last_state "private" attributes.
  Added the fc_vport_set_state() helper function to manage state
  transitions
- Updated vport_create() to allow a vport to be created in a disabled
  state.
- Added INITIALIZING and FAILED vport states
- Added VPCERR_xxx defines for errors to be returned from vport_create()
- Created a Documentation/scsi/scsi_fc_transport.txt file that describes
  the interfaces and expected LLDD behaviors.
Signed-off-by: NJames Smart <James.Smart@emulex.com>
Signed-off-by: NJames Bottomley <James.Bottomley@SteelEye.com>
上级 7b104bcb
SCSI FC Tansport
=============================================
Date: 4/12/2007
Kernel Revisions for features:
rports : <<TBS>>
vports : 2.6.22 (? TBD)
Introduction
============
This file documents the features and components of the SCSI FC Transport.
It also provides documents the API between the transport and FC LLDDs.
The FC transport can be found at:
drivers/scsi/scsi_transport_fc.c
include/scsi/scsi_transport_fc.h
include/scsi/scsi_netlink_fc.h
This file is found at Documentation/scsi/scsi_fc_transport.txt
FC Remote Ports (rports)
========================================================================
<< To Be Supplied >>
FC Virtual Ports (vports)
========================================================================
Overview:
-------------------------------
New FC standards have defined mechanisms which allows for a single physical
port to appear on as multiple communication ports. Using the N_Port Id
Virtualization (NPIV) mechanism, a point-to-point connection to a Fabric
can be assigned more than 1 N_Port_ID. Each N_Port_ID appears as a
separate port to other endpoints on the fabric, even though it shares one
physical link to the switch for communication. Each N_Port_ID can have a
unique view of the fabric based on fabric zoning and array lun-masking
(just like a normal non-NPIV adapter). Using the Virtual Fabric (VF)
mechanism, adding a fabric header to each frame allows the port to
interact with the Fabric Port to join multiple fabrics. The port will
obtain an N_Port_ID on each fabric it joins. Each fabric will have its
own unique view of endpoints and configuration parameters. NPIV may be
used together with VF so that the port can obtain multiple N_Port_IDs
on each virtual fabric.
The FC transport is now recognizing a new object - a vport. A vport is
an entity that has a world-wide unique World Wide Port Name (wwpn) and
World Wide Node Name (wwnn). The transport also allows for the FC4's to
be specified for the vport, with FCP_Initiator being the primary role
expected. Once instantiated by one of the above methods, it will have a
distinct N_Port_ID and view of fabric endpoints and storage entities.
The fc_host associated with the physical adapter will export the ability
to create vports. The transport will create the vport object within the
Linux device tree, and instruct the fc_host's driver to instantiate the
virtual port. Typically, the driver will create a new scsi_host instance
on the vport, resulting in a unique <H,C,T,L> namespace for the vport.
Thus, whether a FC port is based on a physical port or on a virtual port,
each will appear as a unique scsi_host with its own target and lun space.
Note: At this time, the transport is written to create only NPIV-based
vports. However, consideration was given to VF-based vports and it
should be a minor change to add support if needed. The remaining
discussion will concentrate on NPIV.
Note: World Wide Name assignment (and uniqueness guarantees) are left
up to an administrative entity controling the vport. For example,
if vports are to be associated with virtual machines, a XEN mgmt
utility would be responsible for creating wwpn/wwnn's for the vport,
using it's own naming authority and OUI. (Note: it already does this
for virtual MAC addresses).
Device Trees and Vport Objects:
-------------------------------
Today, the device tree typically contains the scsi_host object,
with rports and scsi target objects underneath it. Currently the FC
transport creates the vport object and places it under the scsi_host
object corresponding to the physical adapter. The LLDD will allocate
a new scsi_host for the vport and link it's object under the vport.
The remainder of the tree under the vports scsi_host is the same
as the non-NPIV case. The transport is written currently to easily
allow the parent of the vport to be something other than the scsi_host.
This could be used in the future to link the object onto a vm-specific
device tree. If the vport's parent is not the physical port's scsi_host,
a symbolic link to the vport object will be placed in the physical
port's scsi_host.
Here's what to expect in the device tree :
The typical Physical Port's Scsi_Host:
/sys/devices/.../host17/
and it has the typical decendent tree:
/sys/devices/.../host17/rport-17:0-0/target17:0:0/17:0:0:0:
and then the vport is created on the Physical Port:
/sys/devices/.../host17/vport-17:0-0
and the vport's Scsi_Host is then created:
/sys/devices/.../host17/vport-17:0-0/host18
and then the rest of the tree progresses, such as:
/sys/devices/.../host17/vport-17:0-0/host18/rport-18:0-0/target18:0:0/18:0:0:0:
Here's what to expect in the sysfs tree :
scsi_hosts:
/sys/class/scsi_host/host17 physical port's scsi_host
/sys/class/scsi_host/host18 vport's scsi_host
fc_hosts:
/sys/class/fc_host/host17 physical port's fc_host
/sys/class/fc_host/host18 vport's fc_host
fc_vports:
/sys/class/fc_vports/vport-17:0-0 the vport's fc_vport
fc_rports:
/sys/class/fc_remote_ports/rport-17:0-0 rport on the physical port
/sys/class/fc_remote_ports/rport-18:0-0 rport on the vport
Vport Attributes:
-------------------------------
The new fc_vport class object has the following attributes
node_name: Read_Only
The WWNN of the vport
port_name: Read_Only
The WWPN of the vport
roles: Read_Only
Indicates the FC4 roles enabled on the vport.
symbolic_name: Read_Write
A string, appended to the driver's symbolic port name string, which
is registered with the switch to identify the vport. For example,
a hypervisor could set this string to "Xen Domain 2 VM 5 Vport 2",
and this set of identifiers can be seen on switch management screens
to identify the port.
vport_delete: Write_Only
When written with a "1", will tear down the vport.
vport_disable: Write_Only
When written with a "1", will transition the vport to a disabled.
state. The vport will still be instantiated with the Linux kernel,
but it will not be active on the FC link.
When written with a "0", will enable the vport.
vport_last_state: Read_Only
Indicates the previous state of the vport. See the section below on
"Vport States".
vport_state: Read_Only
Indicates the state of the vport. See the section below on
"Vport States".
vport_type: Read_Only
Reflects the FC mechanism used to create the virtual port.
Only NPIV is supported currently.
For the fc_host class object, the following attributes are added for vports:
max_npiv_vports: Read_Only
Indicates the maximum number of NPIV-based vports that the
driver/adapter can support on the fc_host.
npiv_vports_inuse: Read_Only
Indicates how many NPIV-based vports have been instantiated on the
fc_host.
vport_create: Write_Only
A "simple" create interface to instantiate a vport on an fc_host.
A "<WWPN>:<WWNN>" string is written to the attribute. The transport
then instantiates the vport object and calls the LLDD to create the
vport with the role of FCP_Initiator. Each WWN is specified as 16
hex characters and may *not* contain any prefixes (e.g. 0x, x, etc).
vport_delete: Write_Only
A "simple" delete interface to teardown a vport. A "<WWPN>:<WWNN>"
string is written to the attribute. The transport will locate the
vport on the fc_host with the same WWNs and tear it down. Each WWN
is specified as 16 hex characters and may *not* contain any prefixes
(e.g. 0x, x, etc).
Vport States:
-------------------------------
Vport instantiation consists of two parts:
- Creation with the kernel and LLDD. This means all transport and
driver data structures are built up, and device objects created.
This is equivalent to a driver "attach" on an adapter, which is
independent of the adapter's link state.
- Instantiation of the vport on the FC link via ELS traffic, etc.
This is equivalent to a "link up" and successfull link initialization.
Futher information can be found in the interfaces section below for
Vport Creation.
Once a vport has been instantiated with the kernel/LLDD, a vport state
can be reported via the sysfs attribute. The following states exist:
FC_VPORT_UNKNOWN - Unknown
An temporary state, typically set only while the vport is being
instantiated with the kernel and LLDD.
FC_VPORT_ACTIVE - Active
The vport has been successfully been created on the FC link.
It is fully functional.
FC_VPORT_DISABLED - Disabled
The vport instantiated, but "disabled". The vport is not instantiated
on the FC link. This is equivalent to a physical port with the
link "down".
FC_VPORT_LINKDOWN - Linkdown
The vport is not operational as the physical link is not operational.
FC_VPORT_INITIALIZING - Initializing
The vport is in the process of instantiating on the FC link.
The LLDD will set this state just prior to starting the ELS traffic
to create the vport. This state will persist until the vport is
successfully created (state becomes FC_VPORT_ACTIVE) or it fails
(state is one of the values below). As this state is transitory,
it will not be preserved in the "vport_last_state".
FC_VPORT_NO_FABRIC_SUPP - No Fabric Support
The vport is not operational. One of the following conditions were
encountered:
- The FC topology is not Point-to-Point
- The FC port is not connected to an F_Port
- The F_Port has indicated that NPIV is not supported.
FC_VPORT_NO_FABRIC_RSCS - No Fabric Resources
The vport is not operational. The Fabric failed FDISC with a status
indicating that it does not have sufficient resources to complete
the operation.
FC_VPORT_FABRIC_LOGOUT - Fabric Logout
The vport is not operational. The Fabric has LOGO'd the N_Port_ID
associated with the vport.
FC_VPORT_FABRIC_REJ_WWN - Fabric Rejected WWN
The vport is not operational. The Fabric failed FDISC with a status
indicating that the WWN's are not valid.
FC_VPORT_FAILED - VPort Failed
The vport is not operational. This is a catchall for all other
error conditions.
The following state table indicates the different state transitions:
State Event New State
--------------------------------------------------------------------
n/a Initialization Unknown
Unknown: Link Down Linkdown
Link Up & Loop No Fabric Support
Link Up & no Fabric No Fabric Support
Link Up & FLOGI response No Fabric Support
indicates no NPIV support
Link Up & FDISC being sent Initializing
Disable request Disable
Linkdown: Link Up Unknown
Initializing: FDISC ACC Active
FDISC LS_RJT w/ no resources No Fabric Resources
FDISC LS_RJT w/ invalid Fabric Rejected WWN
pname or invalid nport_id
FDISC LS_RJT failed for Vport Failed
other reasons
Link Down Linkdown
Disable request Disable
Disable: Enable request Unknown
Active: LOGO received from fabric Fabric Logout
Link Down Linkdown
Disable request Disable
Fabric Logout: Link still up Unknown
The following 4 error states all have the same transitions:
No Fabric Support:
No Fabric Resources:
Fabric Rejected WWN:
Vport Failed:
Disable request Disable
Link goes down Linkdown
Transport <-> LLDD Interfaces :
-------------------------------
Vport support by LLDD:
The LLDD indicates support for vports by supplying a vport_create()
function in the transport template. The presense of this function will
cause the creation of the new attributes on the fc_host. As part of
the physical port completing its initialization relative to the
transport, it should set the max_npiv_vports attribute to indicate the
maximum number of vports the driver and/or adapter supports.
Vport Creation:
The LLDD vport_create() syntax is:
int vport_create(struct fc_vport *vport, bool disable)
where:
vport: Is the newly allocated vport object
disable: If "true", the vport is to be created in a disabled stated.
If "false", the vport is to be enabled upon creation.
When a request is made to create a new vport (via sgio/netlink, or the
vport_create fc_host attribute), the transport will validate that the LLDD
can support another vport (e.g. max_npiv_vports > npiv_vports_inuse).
If not, the create request will be failed. If space remains, the transport
will increment the vport count, create the vport object, and then call the
LLDD's vport_create() function with the newly allocated vport object.
As mentioned above, vport creation is divided into two parts:
- Creation with the kernel and LLDD. This means all transport and
driver data structures are built up, and device objects created.
This is equivalent to a driver "attach" on an adapter, which is
independent of the adapter's link state.
- Instantiation of the vport on the FC link via ELS traffic, etc.
This is equivalent to a "link up" and successfull link initialization.
The LLDD's vport_create() function will not synchronously wait for both
parts to be fully completed before returning. It must validate that the
infrastructure exists to support NPIV, and complete the first part of
vport creation (data structure build up) before returning. We do not
hinge vport_create() on the link-side operation mainly because:
- The link may be down. It is not a failure if it is. It simply
means the vport is in an inoperable state until the link comes up.
This is consistent with the link bouncing post vport creation.
- The vport may be created in a disabled state.
- This is consistent with a model where: the vport equates to a
FC adapter. The vport_create is synonymous with driver attachment
to the adapter, which is independent of link state.
Note: special error codes have been defined to delineate infrastructure
failure cases for quicker resolution.
The expected behavior for the LLDD's vport_create() function is:
- Validate Infrastructure:
- If the driver or adapter cannot support another vport, whether
due to improper firmware, (a lie about) max_npiv, or a lack of
some other resource - return VPCERR_UNSUPPORTED.
- If the driver validates the WWN's against those already active on
the adapter and detects an overlap - return VPCERR_BAD_WWN.
- If the driver detects the topology is loop, non-fabric, or the
FLOGI did not support NPIV - return VPCERR_NO_FABRIC_SUPP.
- Allocate data structures. If errors are encountered, such as out
of memory conditions, return the respective negative Exxx error code.
- If the role is FCP Initiator, the LLDD is to :
- Call scsi_host_alloc() to allocate a scsi_host for the vport.
- Call scsi_add_host(new_shost, &vport->dev) to start the scsi_host
and bind it as a child of the vport device.
- Initializes the fc_host attribute values.
- Kick of further vport state transitions based on the disable flag and
link state - and return success (zero).
LLDD Implementers Notes:
- It is suggested that there be a different fc_function_templates for
the physical port and the virtual port. The physical port's template
would have the vport_create, vport_delete, and vport_disable functions,
while the vports would not.
- It is suggested that there be different scsi_host_templates
for the physical port and virtual port. Likely, there are driver
attributes, embedded into the scsi_host_template, that are applicable
for the physical port only (link speed, topology setting, etc). This
ensures that the attributes are applicable to the respective scsi_host.
Vport Disable/Enable:
The LLDD vport_disable() syntax is:
int vport_disable(struct fc_vport *vport, bool disable)
where:
vport: Is vport to to be enabled or disabled
disable: If "true", the vport is to be disabled.
If "false", the vport is to be enabled.
When a request is made to change the disabled state on a vport, the
transport will validate the request against the existing vport state.
If the request is to disable and the vport is already disabled, the
request will fail. Similarly, if the request is to enable, and the
vport is not in a disabled state, the request will fail. If the request
is valid for the vport state, the transport will call the LLDD to
change the vport's state.
Within the LLDD, if a vport is disabled, it remains instantiated with
the kernel and LLDD, but it is not active or visible on the FC link in
any way. (see Vport Creation and the 2 part instantiation discussion).
The vport will remain in this state until it is deleted or re-enabled.
When enabling a vport, the LLDD reinstantiates the vport on the FC
link - essentially restarting the LLDD statemachine (see Vport States
above).
Vport Deletion:
The LLDD vport_delete() syntax is:
int vport_delete(struct fc_vport *vport)
where:
vport: Is vport to delete
When a request is made to delete a vport (via sgio/netlink, or via the
fc_host or fc_vport vport_delete attributes), the transport will call
the LLDD to terminate the vport on the FC link, and teardown all other
datastructures and references. If the LLDD completes successfully,
the transport will teardown the vport objects and complete the vport
removal. If the LLDD delete request fails, the vport object will remain,
but will be in an indeterminate state.
Within the LLDD, the normal code paths for a scsi_host teardown should
be followed. E.g. If the vport has a FCP Initiator role, the LLDD
will call fc_remove_host() for the vports scsi_host, followed by
scsi_remove_host() and scsi_host_put() for the vports scsi_host.
Other:
fc_host port_type attribute:
There is a new fc_host port_type value - FC_PORTTYPE_NPIV. This value
must be set on all vport-based fc_hosts. Normally, on a physical port,
the port_type attribute would be set to NPORT, NLPORT, etc based on the
topology type and existence of the fabric. As this is not applicable to
a vport, it makes more sense to report the FC mechanism used to create
the vport.
Driver unload:
FC drivers are required to call fc_remove_host() prior to calling
scsi_remove_host(). This allows the fc_host to tear down all remote
ports prior the scsi_host being torn down. The fc_remove_host() call
was updated to remove all vports for the fc_host as well.
Credits
=======
The following people have contributed to this document:
James Smart
james.smart@emulex.com
此差异已折叠。
......@@ -19,7 +19,7 @@
*
* ========
*
* Copyright (C) 2004-2005 James Smart, Emulex Corporation
* Copyright (C) 2004-2007 James Smart, Emulex Corporation
* Rewrite for host, target, device, and remote port attributes,
* statistics, and service functions...
*
......@@ -62,8 +62,10 @@ enum fc_port_type {
FC_PORTTYPE_NLPORT, /* (Public) Loop w/ FLPort */
FC_PORTTYPE_LPORT, /* (Private) Loop w/o FLPort */
FC_PORTTYPE_PTP, /* Point to Point w/ another NPort */
FC_PORTTYPE_NPIV, /* VPORT based on NPIV */
};
/*
* fc_port_state: If you alter this, you also need to alter scsi_transport_fc.c
* (for the ascii descriptions).
......@@ -83,6 +85,25 @@ enum fc_port_state {
};
/*
* fc_vport_state: If you alter this, you also need to alter
* scsi_transport_fc.c (for the ascii descriptions).
*/
enum fc_vport_state {
FC_VPORT_UNKNOWN,
FC_VPORT_ACTIVE,
FC_VPORT_DISABLED,
FC_VPORT_LINKDOWN,
FC_VPORT_INITIALIZING,
FC_VPORT_NO_FABRIC_SUPP,
FC_VPORT_NO_FABRIC_RSCS,
FC_VPORT_FABRIC_LOGOUT,
FC_VPORT_FABRIC_REJ_WWN,
FC_VPORT_FAILED,
};
/*
* FC Classes of Service
* Note: values are not enumerated, as they can be "or'd" together
......@@ -124,17 +145,114 @@ enum fc_tgtid_binding_type {
};
/*
* FC Remote Port Roles
* FC Port Roles
* Note: values are not enumerated, as they can be "or'd" together
* for reporting (e.g. report roles). If you alter this list,
* you also need to alter scsi_transport_fc.c (for the ascii descriptions).
*/
#define FC_RPORT_ROLE_UNKNOWN 0x00
#define FC_RPORT_ROLE_FCP_TARGET 0x01
#define FC_RPORT_ROLE_FCP_INITIATOR 0x02
#define FC_RPORT_ROLE_IP_PORT 0x04
#define FC_PORT_ROLE_UNKNOWN 0x00
#define FC_PORT_ROLE_FCP_TARGET 0x01
#define FC_PORT_ROLE_FCP_INITIATOR 0x02
#define FC_PORT_ROLE_IP_PORT 0x04
/* The following are for compatibility */
#define FC_RPORT_ROLE_UNKNOWN FC_PORT_ROLE_UNKNOWN
#define FC_RPORT_ROLE_FCP_TARGET FC_PORT_ROLE_FCP_TARGET
#define FC_RPORT_ROLE_FCP_INITIATOR FC_PORT_ROLE_FCP_INITIATOR
#define FC_RPORT_ROLE_IP_PORT FC_PORT_ROLE_IP_PORT
/* Macro for use in defining Virtual Port attributes */
#define FC_VPORT_ATTR(_name,_mode,_show,_store) \
struct class_device_attribute class_device_attr_vport_##_name = \
__ATTR(_name,_mode,_show,_store)
/*
* FC Virtual Port Attributes
*
* This structure exists for each FC port is a virtual FC port. Virtual
* ports share the physical link with the Physical port. Each virtual
* ports has a unique presense on the SAN, and may be instantiated via
* NPIV, Virtual Fabrics, or via additional ALPAs. As the vport is a
* unique presense, each vport has it's own view of the fabric,
* authentication priviledge, and priorities.
*
* A virtual port may support 1 or more FC4 roles. Typically it is a
* FCP Initiator. It could be a FCP Target, or exist sole for an IP over FC
* roles. FC port attributes for the vport will be reported on any
* fc_host class object allocated for an FCP Initiator.
*
* --
*
* Fixed attributes are not expected to change. The driver is
* expected to set these values after receiving the fc_vport structure
* via the vport_create() call from the transport.
* The transport fully manages all get functions w/o driver interaction.
*
* Dynamic attributes are expected to change. The driver participates
* in all get/set operations via functions provided by the driver.
*
* Private attributes are transport-managed values. They are fully
* managed by the transport w/o driver interaction.
*/
#define FC_VPORT_SYMBOLIC_NAMELEN 64
struct fc_vport {
/* Fixed Attributes */
/* Dynamic Attributes */
/* Private (Transport-managed) Attributes */
enum fc_vport_state vport_state;
enum fc_vport_state vport_last_state;
u64 node_name;
u64 port_name;
u32 roles;
u32 vport_id; /* Admin Identifier for the vport */
enum fc_port_type vport_type;
char symbolic_name[FC_VPORT_SYMBOLIC_NAMELEN];
/* exported data */
void *dd_data; /* Used for driver-specific storage */
/* internal data */
struct Scsi_Host *shost; /* Physical Port Parent */
unsigned int channel;
u32 number;
u8 flags;
struct list_head peers;
struct device dev;
} __attribute__((aligned(sizeof(unsigned long))));
/* bit field values for struct fc_vport "flags" field: */
#define FC_VPORT_CREATING 0x01
#define FC_VPORT_DELETING 0x02
#define FC_VPORT_DELETED 0x04
#define FC_VPORT_DEL 0x06 /* Any DELETE state */
#define dev_to_vport(d) \
container_of(d, struct fc_vport, dev)
#define transport_class_to_vport(classdev) \
dev_to_vport(classdev->dev)
#define vport_to_shost(v) \
(v->shost)
#define vport_to_shost_channel(v) \
(v->channel)
#define vport_to_parent(v) \
(v->dev.parent)
/* Error return codes for vport_create() callback */
#define VPCERR_UNSUPPORTED -ENOSYS /* no driver/adapter
support */
#define VPCERR_BAD_WWN -ENOTUNIQ /* driver validation
of WWNs failed */
#define VPCERR_NO_FABRIC_SUPP -EOPNOTSUPP /* Fabric connection
is loop or the
Fabric Port does
not support NPIV */
/*
* fc_rport_identifiers: This set of data contains all elements
* to uniquely identify a remote FC port. The driver uses this data
......@@ -149,6 +267,7 @@ struct fc_rport_identifiers {
u32 roles;
};
/* Macro for use in defining Remote Port attributes */
#define FC_RPORT_ATTR(_name,_mode,_show,_store) \
struct class_device_attribute class_device_attr_rport_##_name = \
......@@ -343,6 +462,7 @@ struct fc_host_attrs {
u8 supported_fc4s[FC_FC4_LIST_SIZE];
u32 supported_speeds;
u32 maxframe_size;
u16 max_npiv_vports;
char serial_number[FC_SERIAL_NUMBER_SIZE];
/* Dynamic Attributes */
......@@ -361,8 +481,11 @@ struct fc_host_attrs {
/* internal data */
struct list_head rports;
struct list_head rport_bindings;
struct list_head vports;
u32 next_rport_number;
u32 next_target_id;
u32 next_vport_number;
u16 npiv_vports_inuse;
/* work queues for rport state manipulation */
char work_q_name[KOBJ_NAME_LEN];
......@@ -388,6 +511,8 @@ struct fc_host_attrs {
(((struct fc_host_attrs *)(x)->shost_data)->supported_speeds)
#define fc_host_maxframe_size(x) \
(((struct fc_host_attrs *)(x)->shost_data)->maxframe_size)
#define fc_host_max_npiv_vports(x) \
(((struct fc_host_attrs *)(x)->shost_data)->max_npiv_vports)
#define fc_host_serial_number(x) \
(((struct fc_host_attrs *)(x)->shost_data)->serial_number)
#define fc_host_port_id(x) \
......@@ -412,10 +537,16 @@ struct fc_host_attrs {
(((struct fc_host_attrs *)(x)->shost_data)->rports)
#define fc_host_rport_bindings(x) \
(((struct fc_host_attrs *)(x)->shost_data)->rport_bindings)
#define fc_host_vports(x) \
(((struct fc_host_attrs *)(x)->shost_data)->vports)
#define fc_host_next_rport_number(x) \
(((struct fc_host_attrs *)(x)->shost_data)->next_rport_number)
#define fc_host_next_target_id(x) \
(((struct fc_host_attrs *)(x)->shost_data)->next_target_id)
#define fc_host_next_vport_number(x) \
(((struct fc_host_attrs *)(x)->shost_data)->next_vport_number)
#define fc_host_npiv_vports_inuse(x) \
(((struct fc_host_attrs *)(x)->shost_data)->npiv_vports_inuse)
#define fc_host_work_q_name(x) \
(((struct fc_host_attrs *)(x)->shost_data)->work_q_name)
#define fc_host_work_q(x) \
......@@ -452,8 +583,14 @@ struct fc_function_template {
void (*dev_loss_tmo_callbk)(struct fc_rport *);
void (*terminate_rport_io)(struct fc_rport *);
void (*set_vport_symbolic_name)(struct fc_vport *);
int (*vport_create)(struct fc_vport *, bool);
int (*vport_disable)(struct fc_vport *, bool);
int (*vport_delete)(struct fc_vport *);
/* allocation lengths for host-specific data */
u32 dd_fcrport_size;
u32 dd_fcvport_size;
/*
* The driver sets these to tell the transport class it
......@@ -512,7 +649,7 @@ fc_remote_port_chkready(struct fc_rport *rport)
switch (rport->port_state) {
case FC_PORTSTATE_ONLINE:
if (rport->roles & FC_RPORT_ROLE_FCP_TARGET)
if (rport->roles & FC_PORT_ROLE_FCP_TARGET)
result = 0;
else if (rport->flags & FC_RPORT_DEVLOSS_PENDING)
result = DID_IMM_RETRY << 16;
......@@ -549,6 +686,27 @@ static inline void u64_to_wwn(u64 inm, u8 *wwn)
wwn[7] = inm & 0xff;
}
/**
* fc_vport_set_state() - called to set a vport's state. Saves the old state,
* excepting the transitory states of initializing and sending the ELS
* traffic to instantiate the vport on the link.
*
* Assumes the driver has surrounded this with the proper locking to ensure
* a coherent state change.
*
* @vport: virtual port whose state is changing
* @new_state: new state
**/
static inline void
fc_vport_set_state(struct fc_vport *vport, enum fc_vport_state new_state)
{
if ((new_state != FC_VPORT_UNKNOWN) &&
(new_state != FC_VPORT_INITIALIZING))
vport->vport_last_state = vport->vport_state;
vport->vport_state = new_state;
}
struct scsi_transport_template *fc_attach_transport(
struct fc_function_template *);
void fc_release_transport(struct scsi_transport_template *);
......@@ -567,5 +725,6 @@ void fc_host_post_vendor_event(struct Scsi_Host *shost, u32 event_number,
* be sure to read the Vendor Type and ID formatting requirements
* specified in scsi_netlink.h
*/
int fc_vport_terminate(struct fc_vport *vport);
#endif /* SCSI_TRANSPORT_FC_H */
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册