swap: choose swap device according to numa node
If the system has more than one swap device and swap device has the node information, we can make use of this information to decide which swap device to use in get_swap_pages() to get better performance. The current code uses a priority based list, swap_avail_list, to decide which swap device to use and if multiple swap devices share the same priority, they are used round robin. This patch changes the previous single global swap_avail_list into a per-numa-node list, i.e. for each numa node, it sees its own priority based list of available swap devices. Swap device's priority can be promoted on its matching node's swap_avail_list. The current swap device's priority is set as: user can set a >=0 value, or the system will pick one starting from -1 then downwards. The priority value in the swap_avail_list is the negated value of the swap device's due to plist being sorted from low to high. The new policy doesn't change the semantics for priority >=0 cases, the previous starting from -1 then downwards now becomes starting from -2 then downwards and -1 is reserved as the promoted value. Take 4-node EX machine as an example, suppose 4 swap devices are available, each sit on a different node: swapA on node 0 swapB on node 1 swapC on node 2 swapD on node 3 After they are all swapped on in the sequence of ABCD. Current behaviour: their priorities will be: swapA: -1 swapB: -2 swapC: -3 swapD: -4 And their position in the global swap_avail_list will be: swapA -> swapB -> swapC -> swapD prio:1 prio:2 prio:3 prio:4 New behaviour: their priorities will be(note that -1 is skipped): swapA: -2 swapB: -3 swapC: -4 swapD: -5 And their positions in the 4 swap_avail_lists[nid] will be: swap_avail_lists[0]: /* node 0's available swap device list */ swapA -> swapB -> swapC -> swapD prio:1 prio:3 prio:4 prio:5 swap_avali_lists[1]: /* node 1's available swap device list */ swapB -> swapA -> swapC -> swapD prio:1 prio:2 prio:4 prio:5 swap_avail_lists[2]: /* node 2's available swap device list */ swapC -> swapA -> swapB -> swapD prio:1 prio:2 prio:3 prio:5 swap_avail_lists[3]: /* node 3's available swap device list */ swapD -> swapA -> swapB -> swapC prio:1 prio:2 prio:3 prio:4 To see the effect of the patch, a test that starts N process, each mmap a region of anonymous memory and then continually write to it at random position to trigger both swap in and out is used. On a 2 node Skylake EP machine with 64GiB memory, two 170GB SSD drives are used as swap devices with each attached to a different node, the result is: runtime=30m/processes=32/total test size=128G/each process mmap region=4G kernel throughput vanilla 13306 auto-binding 15169 +14% runtime=30m/processes=64/total test size=128G/each process mmap region=2G kernel throughput vanilla 11885 auto-binding 14879 +25% [aaron.lu@intel.com: v2] Link: http://lkml.kernel.org/r/20170814053130.GD2369@aaronlu.sh.intel.com Link: http://lkml.kernel.org/r/20170816024439.GA10925@aaronlu.sh.intel.com [akpm@linux-foundation.org: use kmalloc_array()] Link: http://lkml.kernel.org/r/20170814053130.GD2369@aaronlu.sh.intel.com Link: http://lkml.kernel.org/r/20170816024439.GA10925@aaronlu.sh.intel.comSigned-off-by: NAaron Lu <aaron.lu@intel.com> Cc: "Chen, Tim C" <tim.c.chen@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
Showing
Documentation/vm/swap_numa.txt
0 → 100644
想要评论请 注册 或 登录