提交 a125a17f 编写于 作者: J Jaecheol Lee 提交者: Dave Jones

[CPUFREQ] EXYNOS: Make EXYNOS common cpufreq driver

To support various EXYNOS series SoCs commonly,
added exynos common structure.
exynos-cpufreq.c => EXYNOS series common cpufreq driver
exynos4210-cpufreq.c => EXYNOS4210 support cpufreq driver
Signed-off-by: NJaecheol Lee <jc.lee@samsung.com>
Signed-off-by: NKukjin Kim <kgene.kim@samsung.com>
Signed-off-by: NDave Jones <davej@redhat.com>
上级 b2bd68e1
/* linux/arch/arm/mach-exynos/include/mach/cpufreq.h
*
* Copyright (c) 2010 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* EXYNOS - CPUFreq support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
enum cpufreq_level_index {
L0, L1, L2, L3, L4,
L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14,
L15, L16, L17, L18, L19,
L20,
};
struct exynos_dvfs_info {
unsigned long mpll_freq_khz;
unsigned int pll_safe_idx;
unsigned int pm_lock_idx;
unsigned int max_support_idx;
unsigned int min_support_idx;
struct clk *cpu_clk;
unsigned int *volt_table;
struct cpufreq_frequency_table *freq_table;
void (*set_freq)(unsigned int, unsigned int);
bool (*need_apll_change)(unsigned int, unsigned int);
};
extern int exynos4210_cpufreq_init(struct exynos_dvfs_info *);
...@@ -21,12 +21,19 @@ config ARM_S5PV210_CPUFREQ ...@@ -21,12 +21,19 @@ config ARM_S5PV210_CPUFREQ
If in doubt, say N. If in doubt, say N.
config ARM_EXYNOS_CPUFREQ
bool "SAMSUNG EXYNOS SoCs"
depends on ARCH_EXYNOS
select ARM_EXYNOS4210_CPUFREQ if CPU_EXYNOS4210
default y
help
This adds the CPUFreq driver common part for Samsung
EXYNOS SoCs.
If in doubt, say N.
config ARM_EXYNOS4210_CPUFREQ config ARM_EXYNOS4210_CPUFREQ
bool "Samsung EXYNOS4210" bool "Samsung EXYNOS4210"
depends on CPU_EXYNOS4210
default y
help help
This adds the CPUFreq driver for Samsung EXYNOS4210 This adds the CPUFreq driver for Samsung EXYNOS4210
SoC (S5PV310 or S5PC210). SoC (S5PV310 or S5PC210).
If in doubt, say N.
...@@ -42,6 +42,7 @@ obj-$(CONFIG_X86_CPUFREQ_NFORCE2) += cpufreq-nforce2.o ...@@ -42,6 +42,7 @@ obj-$(CONFIG_X86_CPUFREQ_NFORCE2) += cpufreq-nforce2.o
obj-$(CONFIG_UX500_SOC_DB8500) += db8500-cpufreq.o obj-$(CONFIG_UX500_SOC_DB8500) += db8500-cpufreq.o
obj-$(CONFIG_ARM_S3C64XX_CPUFREQ) += s3c64xx-cpufreq.o obj-$(CONFIG_ARM_S3C64XX_CPUFREQ) += s3c64xx-cpufreq.o
obj-$(CONFIG_ARM_S5PV210_CPUFREQ) += s5pv210-cpufreq.o obj-$(CONFIG_ARM_S5PV210_CPUFREQ) += s5pv210-cpufreq.o
obj-$(CONFIG_ARM_EXYNOS_CPUFREQ) += exynos-cpufreq.o
obj-$(CONFIG_ARM_EXYNOS4210_CPUFREQ) += exynos4210-cpufreq.o obj-$(CONFIG_ARM_EXYNOS4210_CPUFREQ) += exynos4210-cpufreq.o
obj-$(CONFIG_ARCH_OMAP2PLUS) += omap-cpufreq.o obj-$(CONFIG_ARCH_OMAP2PLUS) += omap-cpufreq.o
......
/*
* Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* EXYNOS - CPU frequency scaling support for EXYNOS series
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/cpufreq.h>
#include <linux/suspend.h>
#include <linux/reboot.h>
#include <mach/map.h>
#include <mach/regs-clock.h>
#include <mach/regs-mem.h>
#include <mach/cpufreq.h>
#include <plat/clock.h>
#include <plat/pm.h>
static struct exynos_dvfs_info *exynos_info;
static struct regulator *arm_regulator;
static struct cpufreq_freqs freqs;
static unsigned int locking_frequency;
static bool frequency_locked;
static DEFINE_MUTEX(cpufreq_lock);
int exynos_verify_speed(struct cpufreq_policy *policy)
{
return cpufreq_frequency_table_verify(policy,
exynos_info->freq_table);
}
unsigned int exynos_getspeed(unsigned int cpu)
{
return clk_get_rate(exynos_info->cpu_clk) / 1000;
}
static int exynos_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
unsigned int index, old_index;
unsigned int arm_volt, safe_arm_volt = 0;
int ret = 0;
struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
unsigned int *volt_table = exynos_info->volt_table;
unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;
mutex_lock(&cpufreq_lock);
freqs.old = policy->cur;
if (frequency_locked && target_freq != locking_frequency) {
ret = -EAGAIN;
goto out;
}
if (cpufreq_frequency_table_target(policy, freq_table,
freqs.old, relation, &old_index)) {
ret = -EINVAL;
goto out;
}
if (cpufreq_frequency_table_target(policy, freq_table,
target_freq, relation, &index)) {
ret = -EINVAL;
goto out;
}
freqs.new = freq_table[index].frequency;
freqs.cpu = policy->cpu;
/*
* ARM clock source will be changed APLL to MPLL temporary
* To support this level, need to control regulator for
* required voltage level
*/
if (exynos_info->need_apll_change != NULL) {
if (exynos_info->need_apll_change(old_index, index) &&
(freq_table[index].frequency < mpll_freq_khz) &&
(freq_table[old_index].frequency < mpll_freq_khz))
safe_arm_volt = volt_table[exynos_info->pll_safe_idx];
}
arm_volt = volt_table[index];
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
/* When the new frequency is higher than current frequency */
if ((freqs.new > freqs.old) && !safe_arm_volt) {
/* Firstly, voltage up to increase frequency */
regulator_set_voltage(arm_regulator, arm_volt,
arm_volt);
}
if (safe_arm_volt)
regulator_set_voltage(arm_regulator, safe_arm_volt,
safe_arm_volt);
if (freqs.new != freqs.old)
exynos_info->set_freq(old_index, index);
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
/* When the new frequency is lower than current frequency */
if ((freqs.new < freqs.old) ||
((freqs.new > freqs.old) && safe_arm_volt)) {
/* down the voltage after frequency change */
regulator_set_voltage(arm_regulator, arm_volt,
arm_volt);
}
out:
mutex_unlock(&cpufreq_lock);
return ret;
}
#ifdef CONFIG_PM
static int exynos_cpufreq_suspend(struct cpufreq_policy *policy)
{
return 0;
}
static int exynos_cpufreq_resume(struct cpufreq_policy *policy)
{
return 0;
}
#endif
/**
* exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
* context
* @notifier
* @pm_event
* @v
*
* While frequency_locked == true, target() ignores every frequency but
* locking_frequency. The locking_frequency value is the initial frequency,
* which is set by the bootloader. In order to eliminate possible
* inconsistency in clock values, we save and restore frequencies during
* suspend and resume and block CPUFREQ activities. Note that the standard
* suspend/resume cannot be used as they are too deep (syscore_ops) for
* regulator actions.
*/
static int exynos_cpufreq_pm_notifier(struct notifier_block *notifier,
unsigned long pm_event, void *v)
{
struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */
static unsigned int saved_frequency;
unsigned int temp;
mutex_lock(&cpufreq_lock);
switch (pm_event) {
case PM_SUSPEND_PREPARE:
if (frequency_locked)
goto out;
frequency_locked = true;
if (locking_frequency) {
saved_frequency = exynos_getspeed(0);
mutex_unlock(&cpufreq_lock);
exynos_target(policy, locking_frequency,
CPUFREQ_RELATION_H);
mutex_lock(&cpufreq_lock);
}
break;
case PM_POST_SUSPEND:
if (saved_frequency) {
/*
* While frequency_locked, only locking_frequency
* is valid for target(). In order to use
* saved_frequency while keeping frequency_locked,
* we temporarly overwrite locking_frequency.
*/
temp = locking_frequency;
locking_frequency = saved_frequency;
mutex_unlock(&cpufreq_lock);
exynos_target(policy, locking_frequency,
CPUFREQ_RELATION_H);
mutex_lock(&cpufreq_lock);
locking_frequency = temp;
}
frequency_locked = false;
break;
}
out:
mutex_unlock(&cpufreq_lock);
return NOTIFY_OK;
}
static struct notifier_block exynos_cpufreq_nb = {
.notifier_call = exynos_cpufreq_pm_notifier,
};
static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
policy->cur = policy->min = policy->max = exynos_getspeed(policy->cpu);
cpufreq_frequency_table_get_attr(exynos_info->freq_table, policy->cpu);
/* set the transition latency value */
policy->cpuinfo.transition_latency = 100000;
/*
* EXYNOS4 multi-core processors has 2 cores
* that the frequency cannot be set independently.
* Each cpu is bound to the same speed.
* So the affected cpu is all of the cpus.
*/
if (num_online_cpus() == 1) {
cpumask_copy(policy->related_cpus, cpu_possible_mask);
cpumask_copy(policy->cpus, cpu_online_mask);
} else {
cpumask_setall(policy->cpus);
}
return cpufreq_frequency_table_cpuinfo(policy, exynos_info->freq_table);
}
static struct cpufreq_driver exynos_driver = {
.flags = CPUFREQ_STICKY,
.verify = exynos_verify_speed,
.target = exynos_target,
.get = exynos_getspeed,
.init = exynos_cpufreq_cpu_init,
.name = "exynos_cpufreq",
#ifdef CONFIG_PM
.suspend = exynos_cpufreq_suspend,
.resume = exynos_cpufreq_resume,
#endif
};
static int __init exynos_cpufreq_init(void)
{
int ret = -EINVAL;
exynos_info = kzalloc(sizeof(struct exynos_dvfs_info), GFP_KERNEL);
if (!exynos_info)
return -ENOMEM;
if (soc_is_exynos4210())
ret = exynos4210_cpufreq_init(exynos_info);
else
pr_err("%s: CPU type not found\n", __func__);
if (ret)
goto err_vdd_arm;
if (exynos_info->set_freq == NULL) {
pr_err("%s: No set_freq function (ERR)\n", __func__);
goto err_vdd_arm;
}
arm_regulator = regulator_get(NULL, "vdd_arm");
if (IS_ERR(arm_regulator)) {
pr_err("%s: failed to get resource vdd_arm\n", __func__);
goto err_vdd_arm;
}
register_pm_notifier(&exynos_cpufreq_nb);
if (cpufreq_register_driver(&exynos_driver)) {
pr_err("%s: failed to register cpufreq driver\n", __func__);
goto err_cpufreq;
}
return 0;
err_cpufreq:
unregister_pm_notifier(&exynos_cpufreq_nb);
if (!IS_ERR(arm_regulator))
regulator_put(arm_regulator);
err_vdd_arm:
kfree(exynos_info);
pr_debug("%s: failed initialization\n", __func__);
return -EINVAL;
}
late_initcall(exynos_cpufreq_init);
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
* Copyright (c) 2010-2011 Samsung Electronics Co., Ltd. * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
* http://www.samsung.com * http://www.samsung.com
* *
* EXYNOS4 - CPU frequency scaling support * EXYNOS4210 - CPU frequency scaling support
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as * it under the terms of the GNU General Public License version 2 as
...@@ -23,10 +23,16 @@ ...@@ -23,10 +23,16 @@
#include <mach/map.h> #include <mach/map.h>
#include <mach/regs-clock.h> #include <mach/regs-clock.h>
#include <mach/regs-mem.h> #include <mach/regs-mem.h>
#include <mach/cpufreq.h>
#include <plat/clock.h> #include <plat/clock.h>
#include <plat/pm.h> #include <plat/pm.h>
#define CPUFREQ_LEVEL_END L5
static int max_support_idx = L0;
static int min_support_idx = (CPUFREQ_LEVEL_END - 1);
static struct clk *cpu_clk; static struct clk *cpu_clk;
static struct clk *moutcore; static struct clk *moutcore;
static struct clk *mout_mpll; static struct clk *mout_mpll;
...@@ -37,20 +43,18 @@ static struct regulator *arm_regulator; ...@@ -37,20 +43,18 @@ static struct regulator *arm_regulator;
static struct cpufreq_freqs freqs; static struct cpufreq_freqs freqs;
struct cpufreq_clkdiv { struct cpufreq_clkdiv {
unsigned int index;
unsigned int clkdiv; unsigned int clkdiv;
}; };
static unsigned int locking_frequency; static unsigned int exynos4210_volt_table[CPUFREQ_LEVEL_END] = {
static bool frequency_locked; 1250000, 1150000, 1050000, 975000, 950000,
static DEFINE_MUTEX(cpufreq_lock);
enum cpufreq_level_index {
L0, L1, L2, L3, L4, CPUFREQ_LEVEL_END,
}; };
static struct cpufreq_clkdiv exynos4_clkdiv_table[CPUFREQ_LEVEL_END];
static struct cpufreq_frequency_table exynos4_freq_table[] = { static struct cpufreq_clkdiv exynos4210_clkdiv_table[CPUFREQ_LEVEL_END];
static struct cpufreq_frequency_table exynos4210_freq_table[] = {
{L0, 1200*1000}, {L0, 1200*1000},
{L1, 1000*1000}, {L1, 1000*1000},
{L2, 800*1000}, {L2, 800*1000},
...@@ -104,31 +108,7 @@ static unsigned int clkdiv_cpu1[CPUFREQ_LEVEL_END][2] = { ...@@ -104,31 +108,7 @@ static unsigned int clkdiv_cpu1[CPUFREQ_LEVEL_END][2] = {
{ 3, 0 }, { 3, 0 },
}; };
struct cpufreq_voltage_table { static unsigned int exynos4210_apll_pms_table[CPUFREQ_LEVEL_END] = {
unsigned int index; /* any */
unsigned int arm_volt; /* uV */
};
static struct cpufreq_voltage_table exynos4_volt_table[CPUFREQ_LEVEL_END] = {
{
.index = L0,
.arm_volt = 1350000,
}, {
.index = L1,
.arm_volt = 1300000,
}, {
.index = L2,
.arm_volt = 1200000,
}, {
.index = L3,
.arm_volt = 1100000,
}, {
.index = L4,
.arm_volt = 1050000,
},
};
static unsigned int exynos4_apll_pms_table[CPUFREQ_LEVEL_END] = {
/* APLL FOUT L0: 1200MHz */ /* APLL FOUT L0: 1200MHz */
((150 << 16) | (3 << 8) | 1), ((150 << 16) | (3 << 8) | 1),
...@@ -145,23 +125,13 @@ static unsigned int exynos4_apll_pms_table[CPUFREQ_LEVEL_END] = { ...@@ -145,23 +125,13 @@ static unsigned int exynos4_apll_pms_table[CPUFREQ_LEVEL_END] = {
((200 << 16) | (6 << 8) | 3), ((200 << 16) | (6 << 8) | 3),
}; };
static int exynos4_verify_speed(struct cpufreq_policy *policy) static void exynos4210_set_clkdiv(unsigned int div_index)
{
return cpufreq_frequency_table_verify(policy, exynos4_freq_table);
}
static unsigned int exynos4_getspeed(unsigned int cpu)
{
return clk_get_rate(cpu_clk) / 1000;
}
static void exynos4_set_clkdiv(unsigned int div_index)
{ {
unsigned int tmp; unsigned int tmp;
/* Change Divider - CPU0 */ /* Change Divider - CPU0 */
tmp = exynos4_clkdiv_table[div_index].clkdiv; tmp = exynos4210_clkdiv_table[div_index].clkdiv;
__raw_writel(tmp, S5P_CLKDIV_CPU); __raw_writel(tmp, S5P_CLKDIV_CPU);
...@@ -185,7 +155,7 @@ static void exynos4_set_clkdiv(unsigned int div_index) ...@@ -185,7 +155,7 @@ static void exynos4_set_clkdiv(unsigned int div_index)
} while (tmp & 0x11); } while (tmp & 0x11);
} }
static void exynos4_set_apll(unsigned int index) static void exynos4210_set_apll(unsigned int index)
{ {
unsigned int tmp; unsigned int tmp;
...@@ -204,7 +174,7 @@ static void exynos4_set_apll(unsigned int index) ...@@ -204,7 +174,7 @@ static void exynos4_set_apll(unsigned int index)
/* 3. Change PLL PMS values */ /* 3. Change PLL PMS values */
tmp = __raw_readl(S5P_APLL_CON0); tmp = __raw_readl(S5P_APLL_CON0);
tmp &= ~((0x3ff << 16) | (0x3f << 8) | (0x7 << 0)); tmp &= ~((0x3ff << 16) | (0x3f << 8) | (0x7 << 0));
tmp |= exynos4_apll_pms_table[index]; tmp |= exynos4210_apll_pms_table[index];
__raw_writel(tmp, S5P_APLL_CON0); __raw_writel(tmp, S5P_APLL_CON0);
/* 4. wait_lock_time */ /* 4. wait_lock_time */
...@@ -221,305 +191,90 @@ static void exynos4_set_apll(unsigned int index) ...@@ -221,305 +191,90 @@ static void exynos4_set_apll(unsigned int index)
} while (tmp != (0x1 << S5P_CLKSRC_CPU_MUXCORE_SHIFT)); } while (tmp != (0x1 << S5P_CLKSRC_CPU_MUXCORE_SHIFT));
} }
static void exynos4_set_frequency(unsigned int old_index, unsigned int new_index) bool exynos4210_pms_change(unsigned int old_index, unsigned int new_index)
{
unsigned int old_pm = (exynos4210_apll_pms_table[old_index] >> 8);
unsigned int new_pm = (exynos4210_apll_pms_table[new_index] >> 8);
return (old_pm == new_pm) ? 0 : 1;
}
static void exynos4210_set_frequency(unsigned int old_index,
unsigned int new_index)
{ {
unsigned int tmp; unsigned int tmp;
if (old_index > new_index) { if (old_index > new_index) {
/* if (!exynos4210_pms_change(old_index, new_index)) {
* L1/L3, L2/L4 Level change require
* to only change s divider value
*/
if (((old_index == L3) && (new_index == L1)) ||
((old_index == L4) && (new_index == L2))) {
/* 1. Change the system clock divider values */ /* 1. Change the system clock divider values */
exynos4_set_clkdiv(new_index); exynos4210_set_clkdiv(new_index);
/* 2. Change just s value in apll m,p,s value */ /* 2. Change just s value in apll m,p,s value */
tmp = __raw_readl(S5P_APLL_CON0); tmp = __raw_readl(S5P_APLL_CON0);
tmp &= ~(0x7 << 0); tmp &= ~(0x7 << 0);
tmp |= (exynos4_apll_pms_table[new_index] & 0x7); tmp |= (exynos4210_apll_pms_table[new_index] & 0x7);
__raw_writel(tmp, S5P_APLL_CON0); __raw_writel(tmp, S5P_APLL_CON0);
} else { } else {
/* Clock Configuration Procedure */ /* Clock Configuration Procedure */
/* 1. Change the system clock divider values */ /* 1. Change the system clock divider values */
exynos4_set_clkdiv(new_index); exynos4210_set_clkdiv(new_index);
/* 2. Change the apll m,p,s value */ /* 2. Change the apll m,p,s value */
exynos4_set_apll(new_index); exynos4210_set_apll(new_index);
} }
} else if (old_index < new_index) { } else if (old_index < new_index) {
/* if (!exynos4210_pms_change(old_index, new_index)) {
* L1/L3, L2/L4 Level change require
* to only change s divider value
*/
if (((old_index == L1) && (new_index == L3)) ||
((old_index == L2) && (new_index == L4))) {
/* 1. Change just s value in apll m,p,s value */ /* 1. Change just s value in apll m,p,s value */
tmp = __raw_readl(S5P_APLL_CON0); tmp = __raw_readl(S5P_APLL_CON0);
tmp &= ~(0x7 << 0); tmp &= ~(0x7 << 0);
tmp |= (exynos4_apll_pms_table[new_index] & 0x7); tmp |= (exynos4210_apll_pms_table[new_index] & 0x7);
__raw_writel(tmp, S5P_APLL_CON0); __raw_writel(tmp, S5P_APLL_CON0);
/* 2. Change the system clock divider values */ /* 2. Change the system clock divider values */
exynos4_set_clkdiv(new_index); exynos4210_set_clkdiv(new_index);
} else { } else {
/* Clock Configuration Procedure */ /* Clock Configuration Procedure */
/* 1. Change the apll m,p,s value */ /* 1. Change the apll m,p,s value */
exynos4_set_apll(new_index); exynos4210_set_apll(new_index);
/* 2. Change the system clock divider values */ /* 2. Change the system clock divider values */
exynos4_set_clkdiv(new_index); exynos4210_set_clkdiv(new_index);
} }
} }
} }
static int exynos4_target(struct cpufreq_policy *policy, int exynos4210_cpufreq_init(struct exynos_dvfs_info *info)
unsigned int target_freq,
unsigned int relation)
{
unsigned int index, old_index;
unsigned int arm_volt;
int err = -EINVAL;
freqs.old = exynos4_getspeed(policy->cpu);
mutex_lock(&cpufreq_lock);
if (frequency_locked && target_freq != locking_frequency) {
err = -EAGAIN;
goto out;
}
if (cpufreq_frequency_table_target(policy, exynos4_freq_table,
freqs.old, relation, &old_index))
goto out;
if (cpufreq_frequency_table_target(policy, exynos4_freq_table,
target_freq, relation, &index))
goto out;
err = 0;
freqs.new = exynos4_freq_table[index].frequency;
freqs.cpu = policy->cpu;
if (freqs.new == freqs.old)
goto out;
/* get the voltage value */
arm_volt = exynos4_volt_table[index].arm_volt;
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
/* control regulator */
if (freqs.new > freqs.old) {
/* Voltage up */
regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
}
/* Clock Configuration Procedure */
exynos4_set_frequency(old_index, index);
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
/* control regulator */
if (freqs.new < freqs.old) {
/* Voltage down */
regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
}
out:
mutex_unlock(&cpufreq_lock);
return err;
}
#ifdef CONFIG_PM
/*
* These suspend/resume are used as syscore_ops, it is already too
* late to set regulator voltages at this stage.
*/
static int exynos4_cpufreq_suspend(struct cpufreq_policy *policy)
{
return 0;
}
static int exynos4_cpufreq_resume(struct cpufreq_policy *policy)
{
return 0;
}
#endif
/**
* exynos4_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
* context
* @notifier
* @pm_event
* @v
*
* While frequency_locked == true, target() ignores every frequency but
* locking_frequency. The locking_frequency value is the initial frequency,
* which is set by the bootloader. In order to eliminate possible
* inconsistency in clock values, we save and restore frequencies during
* suspend and resume and block CPUFREQ activities. Note that the standard
* suspend/resume cannot be used as they are too deep (syscore_ops) for
* regulator actions.
*/
static int exynos4_cpufreq_pm_notifier(struct notifier_block *notifier,
unsigned long pm_event, void *v)
{
struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */
static unsigned int saved_frequency;
unsigned int temp;
mutex_lock(&cpufreq_lock);
switch (pm_event) {
case PM_SUSPEND_PREPARE:
if (frequency_locked)
goto out;
frequency_locked = true;
if (locking_frequency) {
saved_frequency = exynos4_getspeed(0);
mutex_unlock(&cpufreq_lock);
exynos4_target(policy, locking_frequency,
CPUFREQ_RELATION_H);
mutex_lock(&cpufreq_lock);
}
break;
case PM_POST_SUSPEND:
if (saved_frequency) {
/*
* While frequency_locked, only locking_frequency
* is valid for target(). In order to use
* saved_frequency while keeping frequency_locked,
* we temporarly overwrite locking_frequency.
*/
temp = locking_frequency;
locking_frequency = saved_frequency;
mutex_unlock(&cpufreq_lock);
exynos4_target(policy, locking_frequency,
CPUFREQ_RELATION_H);
mutex_lock(&cpufreq_lock);
locking_frequency = temp;
}
frequency_locked = false;
break;
}
out:
mutex_unlock(&cpufreq_lock);
return NOTIFY_OK;
}
static struct notifier_block exynos4_cpufreq_nb = {
.notifier_call = exynos4_cpufreq_pm_notifier,
};
static int exynos4_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
int ret;
policy->cur = policy->min = policy->max = exynos4_getspeed(policy->cpu);
cpufreq_frequency_table_get_attr(exynos4_freq_table, policy->cpu);
/* set the transition latency value */
policy->cpuinfo.transition_latency = 100000;
/*
* EXYNOS4 multi-core processors has 2 cores
* that the frequency cannot be set independently.
* Each cpu is bound to the same speed.
* So the affected cpu is all of the cpus.
*/
if (!cpu_online(1)) {
cpumask_copy(policy->related_cpus, cpu_possible_mask);
cpumask_copy(policy->cpus, cpu_online_mask);
} else {
cpumask_setall(policy->cpus);
}
ret = cpufreq_frequency_table_cpuinfo(policy, exynos4_freq_table);
if (ret)
return ret;
cpufreq_frequency_table_get_attr(exynos4_freq_table, policy->cpu);
return 0;
}
static int exynos4_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
cpufreq_frequency_table_put_attr(policy->cpu);
return 0;
}
static struct freq_attr *exynos4_cpufreq_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
NULL,
};
static struct cpufreq_driver exynos4_driver = {
.flags = CPUFREQ_STICKY,
.verify = exynos4_verify_speed,
.target = exynos4_target,
.get = exynos4_getspeed,
.init = exynos4_cpufreq_cpu_init,
.exit = exynos4_cpufreq_cpu_exit,
.name = "exynos4_cpufreq",
.attr = exynos4_cpufreq_attr,
#ifdef CONFIG_PM
.suspend = exynos4_cpufreq_suspend,
.resume = exynos4_cpufreq_resume,
#endif
};
static int __init exynos4_cpufreq_init(void)
{ {
int i; int i;
unsigned int tmp; unsigned int tmp;
unsigned long rate;
cpu_clk = clk_get(NULL, "armclk"); cpu_clk = clk_get(NULL, "armclk");
if (IS_ERR(cpu_clk)) if (IS_ERR(cpu_clk))
return PTR_ERR(cpu_clk); return PTR_ERR(cpu_clk);
locking_frequency = exynos4_getspeed(0);
moutcore = clk_get(NULL, "moutcore"); moutcore = clk_get(NULL, "moutcore");
if (IS_ERR(moutcore)) if (IS_ERR(moutcore))
goto out; goto err_moutcore;
mout_mpll = clk_get(NULL, "mout_mpll"); mout_mpll = clk_get(NULL, "mout_mpll");
if (IS_ERR(mout_mpll)) if (IS_ERR(mout_mpll))
goto out; goto err_mout_mpll;
rate = clk_get_rate(mout_mpll) / 1000;
mout_apll = clk_get(NULL, "mout_apll"); mout_apll = clk_get(NULL, "mout_apll");
if (IS_ERR(mout_apll)) if (IS_ERR(mout_apll))
goto out; goto err_mout_apll;
arm_regulator = regulator_get(NULL, "vdd_arm");
if (IS_ERR(arm_regulator)) {
printk(KERN_ERR "failed to get resource %s\n", "vdd_arm");
goto out;
}
register_pm_notifier(&exynos4_cpufreq_nb);
tmp = __raw_readl(S5P_CLKDIV_CPU); tmp = __raw_readl(S5P_CLKDIV_CPU);
for (i = L0; i < CPUFREQ_LEVEL_END; i++) { for (i = L0; i < CPUFREQ_LEVEL_END; i++) {
tmp &= ~(S5P_CLKDIV_CPU0_CORE_MASK | tmp &= ~(S5P_CLKDIV_CPU0_CORE_MASK |
S5P_CLKDIV_CPU0_COREM0_MASK | S5P_CLKDIV_CPU0_COREM0_MASK |
S5P_CLKDIV_CPU0_COREM1_MASK | S5P_CLKDIV_CPU0_COREM1_MASK |
S5P_CLKDIV_CPU0_PERIPH_MASK | S5P_CLKDIV_CPU0_PERIPH_MASK |
S5P_CLKDIV_CPU0_ATB_MASK | S5P_CLKDIV_CPU0_ATB_MASK |
S5P_CLKDIV_CPU0_PCLKDBG_MASK | S5P_CLKDIV_CPU0_PCLKDBG_MASK |
S5P_CLKDIV_CPU0_APLL_MASK); S5P_CLKDIV_CPU0_APLL_MASK);
tmp |= ((clkdiv_cpu0[i][0] << S5P_CLKDIV_CPU0_CORE_SHIFT) | tmp |= ((clkdiv_cpu0[i][0] << S5P_CLKDIV_CPU0_CORE_SHIFT) |
(clkdiv_cpu0[i][1] << S5P_CLKDIV_CPU0_COREM0_SHIFT) | (clkdiv_cpu0[i][1] << S5P_CLKDIV_CPU0_COREM0_SHIFT) |
...@@ -529,29 +284,33 @@ static int __init exynos4_cpufreq_init(void) ...@@ -529,29 +284,33 @@ static int __init exynos4_cpufreq_init(void)
(clkdiv_cpu0[i][5] << S5P_CLKDIV_CPU0_PCLKDBG_SHIFT) | (clkdiv_cpu0[i][5] << S5P_CLKDIV_CPU0_PCLKDBG_SHIFT) |
(clkdiv_cpu0[i][6] << S5P_CLKDIV_CPU0_APLL_SHIFT)); (clkdiv_cpu0[i][6] << S5P_CLKDIV_CPU0_APLL_SHIFT));
exynos4_clkdiv_table[i].clkdiv = tmp; exynos4210_clkdiv_table[i].clkdiv = tmp;
} }
return cpufreq_register_driver(&exynos4_driver); info->mpll_freq_khz = rate;
info->pm_lock_idx = L2;
out: info->pll_safe_idx = L2;
if (!IS_ERR(cpu_clk)) info->max_support_idx = max_support_idx;
clk_put(cpu_clk); info->min_support_idx = min_support_idx;
info->cpu_clk = cpu_clk;
info->volt_table = exynos4210_volt_table;
info->freq_table = exynos4210_freq_table;
info->set_freq = exynos4210_set_frequency;
info->need_apll_change = exynos4210_pms_change;
if (!IS_ERR(moutcore)) return 0;
clk_put(moutcore);
err_mout_apll:
if (!IS_ERR(mout_mpll)) if (!IS_ERR(mout_mpll))
clk_put(mout_mpll); clk_put(mout_mpll);
err_mout_mpll:
if (!IS_ERR(moutcore))
clk_put(moutcore);
err_moutcore:
if (!IS_ERR(cpu_clk))
clk_put(cpu_clk);
if (!IS_ERR(mout_apll)) pr_debug("%s: failed initialization\n", __func__);
clk_put(mout_apll);
if (!IS_ERR(arm_regulator))
regulator_put(arm_regulator);
printk(KERN_ERR "%s: failed initialization\n", __func__);
return -EINVAL; return -EINVAL;
} }
late_initcall(exynos4_cpufreq_init); EXPORT_SYMBOL(exynos4210_cpufreq_init);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册