提交 806468f8 编写于 作者: C Chris Mason

Merge git://git.jan-o-sch.net/btrfs-unstable into integration

Conflicts:
	fs/btrfs/Makefile
	fs/btrfs/extent_io.c
	fs/btrfs/extent_io.h
	fs/btrfs/scrub.c
Signed-off-by: NChris Mason <chris.mason@oracle.com>
...@@ -8,6 +8,6 @@ btrfs-y += super.o ctree.o extent-tree.o print-tree.o root-tree.o dir-item.o \ ...@@ -8,6 +8,6 @@ btrfs-y += super.o ctree.o extent-tree.o print-tree.o root-tree.o dir-item.o \
extent_io.o volumes.o async-thread.o ioctl.o locking.o orphan.o \ extent_io.o volumes.o async-thread.o ioctl.o locking.o orphan.o \
export.o tree-log.o free-space-cache.o zlib.o lzo.o \ export.o tree-log.o free-space-cache.o zlib.o lzo.o \
compression.o delayed-ref.o relocation.o delayed-inode.o scrub.o \ compression.o delayed-ref.o relocation.o delayed-inode.o scrub.o \
reada.o reada.o backref.o
btrfs-$(CONFIG_BTRFS_FS_POSIX_ACL) += acl.o btrfs-$(CONFIG_BTRFS_FS_POSIX_ACL) += acl.o
此差异已折叠。
/*
* Copyright (C) 2011 STRATO. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#ifndef __BTRFS_BACKREF__
#define __BTRFS_BACKREF__
#include "ioctl.h"
struct inode_fs_paths {
struct btrfs_path *btrfs_path;
struct btrfs_root *fs_root;
struct btrfs_data_container *fspath;
};
typedef int (iterate_extent_inodes_t)(u64 inum, u64 offset, u64 root,
void *ctx);
typedef int (iterate_irefs_t)(u64 parent, struct btrfs_inode_ref *iref,
struct extent_buffer *eb, void *ctx);
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
struct btrfs_path *path);
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
struct btrfs_path *path, struct btrfs_key *found_key);
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
struct btrfs_extent_item *ei, u32 item_size,
u64 *out_root, u8 *out_level);
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
struct btrfs_path *path,
u64 extent_item_objectid,
u64 extent_offset,
iterate_extent_inodes_t *iterate, void *ctx);
int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
struct btrfs_path *path,
iterate_extent_inodes_t *iterate, void *ctx);
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath);
struct btrfs_data_container *init_data_container(u32 total_bytes);
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
struct btrfs_path *path);
void free_ipath(struct inode_fs_paths *ipath);
#endif
...@@ -620,7 +620,7 @@ static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, ...@@ -620,7 +620,7 @@ static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
static int btree_io_failed_hook(struct bio *failed_bio, static int btree_io_failed_hook(struct bio *failed_bio,
struct page *page, u64 start, u64 end, struct page *page, u64 start, u64 end,
struct extent_state *state) u64 mirror_num, struct extent_state *state)
{ {
struct extent_io_tree *tree; struct extent_io_tree *tree;
unsigned long len; unsigned long len;
...@@ -944,7 +944,7 @@ static int btree_readpage(struct file *file, struct page *page) ...@@ -944,7 +944,7 @@ static int btree_readpage(struct file *file, struct page *page)
{ {
struct extent_io_tree *tree; struct extent_io_tree *tree;
tree = &BTRFS_I(page->mapping->host)->io_tree; tree = &BTRFS_I(page->mapping->host)->io_tree;
return extent_read_full_page(tree, page, btree_get_extent); return extent_read_full_page(tree, page, btree_get_extent, 0);
} }
static int btree_releasepage(struct page *page, gfp_t gfp_flags) static int btree_releasepage(struct page *page, gfp_t gfp_flags)
......
...@@ -1788,18 +1788,18 @@ static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, ...@@ -1788,18 +1788,18 @@ static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
{ {
int ret; int ret;
u64 discarded_bytes = 0; u64 discarded_bytes = 0;
struct btrfs_multi_bio *multi = NULL; struct btrfs_bio *bbio = NULL;
/* Tell the block device(s) that the sectors can be discarded */ /* Tell the block device(s) that the sectors can be discarded */
ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD, ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
bytenr, &num_bytes, &multi, 0); bytenr, &num_bytes, &bbio, 0);
if (!ret) { if (!ret) {
struct btrfs_bio_stripe *stripe = multi->stripes; struct btrfs_bio_stripe *stripe = bbio->stripes;
int i; int i;
for (i = 0; i < multi->num_stripes; i++, stripe++) { for (i = 0; i < bbio->num_stripes; i++, stripe++) {
if (!stripe->dev->can_discard) if (!stripe->dev->can_discard)
continue; continue;
...@@ -1818,7 +1818,7 @@ static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, ...@@ -1818,7 +1818,7 @@ static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
*/ */
ret = 0; ret = 0;
} }
kfree(multi); kfree(bbio);
} }
if (actual_bytes) if (actual_bytes)
......
...@@ -17,6 +17,7 @@ ...@@ -17,6 +17,7 @@
#include "compat.h" #include "compat.h"
#include "ctree.h" #include "ctree.h"
#include "btrfs_inode.h" #include "btrfs_inode.h"
#include "volumes.h"
static struct kmem_cache *extent_state_cache; static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache; static struct kmem_cache *extent_buffer_cache;
...@@ -1787,6 +1788,368 @@ static int check_page_writeback(struct extent_io_tree *tree, ...@@ -1787,6 +1788,368 @@ static int check_page_writeback(struct extent_io_tree *tree,
return 0; return 0;
} }
/*
* When IO fails, either with EIO or csum verification fails, we
* try other mirrors that might have a good copy of the data. This
* io_failure_record is used to record state as we go through all the
* mirrors. If another mirror has good data, the page is set up to date
* and things continue. If a good mirror can't be found, the original
* bio end_io callback is called to indicate things have failed.
*/
struct io_failure_record {
struct page *page;
u64 start;
u64 len;
u64 logical;
unsigned long bio_flags;
int this_mirror;
int failed_mirror;
int in_validation;
};
static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
int did_repair)
{
int ret;
int err = 0;
struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
set_state_private(failure_tree, rec->start, 0);
ret = clear_extent_bits(failure_tree, rec->start,
rec->start + rec->len - 1,
EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
if (ret)
err = ret;
if (did_repair) {
ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
rec->start + rec->len - 1,
EXTENT_DAMAGED, GFP_NOFS);
if (ret && !err)
err = ret;
}
kfree(rec);
return err;
}
static void repair_io_failure_callback(struct bio *bio, int err)
{
complete(bio->bi_private);
}
/*
* this bypasses the standard btrfs submit functions deliberately, as
* the standard behavior is to write all copies in a raid setup. here we only
* want to write the one bad copy. so we do the mapping for ourselves and issue
* submit_bio directly.
* to avoid any synchonization issues, wait for the data after writing, which
* actually prevents the read that triggered the error from finishing.
* currently, there can be no more than two copies of every data bit. thus,
* exactly one rewrite is required.
*/
int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
u64 length, u64 logical, struct page *page,
int mirror_num)
{
struct bio *bio;
struct btrfs_device *dev;
DECLARE_COMPLETION_ONSTACK(compl);
u64 map_length = 0;
u64 sector;
struct btrfs_bio *bbio = NULL;
int ret;
BUG_ON(!mirror_num);
bio = bio_alloc(GFP_NOFS, 1);
if (!bio)
return -EIO;
bio->bi_private = &compl;
bio->bi_end_io = repair_io_failure_callback;
bio->bi_size = 0;
map_length = length;
ret = btrfs_map_block(map_tree, WRITE, logical,
&map_length, &bbio, mirror_num);
if (ret) {
bio_put(bio);
return -EIO;
}
BUG_ON(mirror_num != bbio->mirror_num);
sector = bbio->stripes[mirror_num-1].physical >> 9;
bio->bi_sector = sector;
dev = bbio->stripes[mirror_num-1].dev;
kfree(bbio);
if (!dev || !dev->bdev || !dev->writeable) {
bio_put(bio);
return -EIO;
}
bio->bi_bdev = dev->bdev;
bio_add_page(bio, page, length, start-page_offset(page));
submit_bio(WRITE_SYNC, bio);
wait_for_completion(&compl);
if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
/* try to remap that extent elsewhere? */
bio_put(bio);
return -EIO;
}
printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
"sector %llu)\n", page->mapping->host->i_ino, start,
dev->name, sector);
bio_put(bio);
return 0;
}
/*
* each time an IO finishes, we do a fast check in the IO failure tree
* to see if we need to process or clean up an io_failure_record
*/
static int clean_io_failure(u64 start, struct page *page)
{
u64 private;
u64 private_failure;
struct io_failure_record *failrec;
struct btrfs_mapping_tree *map_tree;
struct extent_state *state;
int num_copies;
int did_repair = 0;
int ret;
struct inode *inode = page->mapping->host;
private = 0;
ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
(u64)-1, 1, EXTENT_DIRTY, 0);
if (!ret)
return 0;
ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
&private_failure);
if (ret)
return 0;
failrec = (struct io_failure_record *)(unsigned long) private_failure;
BUG_ON(!failrec->this_mirror);
if (failrec->in_validation) {
/* there was no real error, just free the record */
pr_debug("clean_io_failure: freeing dummy error at %llu\n",
failrec->start);
did_repair = 1;
goto out;
}
spin_lock(&BTRFS_I(inode)->io_tree.lock);
state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
failrec->start,
EXTENT_LOCKED);
spin_unlock(&BTRFS_I(inode)->io_tree.lock);
if (state && state->start == failrec->start) {
map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
num_copies = btrfs_num_copies(map_tree, failrec->logical,
failrec->len);
if (num_copies > 1) {
ret = repair_io_failure(map_tree, start, failrec->len,
failrec->logical, page,
failrec->failed_mirror);
did_repair = !ret;
}
}
out:
if (!ret)
ret = free_io_failure(inode, failrec, did_repair);
return ret;
}
/*
* this is a generic handler for readpage errors (default
* readpage_io_failed_hook). if other copies exist, read those and write back
* good data to the failed position. does not investigate in remapping the
* failed extent elsewhere, hoping the device will be smart enough to do this as
* needed
*/
static int bio_readpage_error(struct bio *failed_bio, struct page *page,
u64 start, u64 end, int failed_mirror,
struct extent_state *state)
{
struct io_failure_record *failrec = NULL;
u64 private;
struct extent_map *em;
struct inode *inode = page->mapping->host;
struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct bio *bio;
int num_copies;
int ret;
int read_mode;
u64 logical;
BUG_ON(failed_bio->bi_rw & REQ_WRITE);
ret = get_state_private(failure_tree, start, &private);
if (ret) {
failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
if (!failrec)
return -ENOMEM;
failrec->start = start;
failrec->len = end - start + 1;
failrec->this_mirror = 0;
failrec->bio_flags = 0;
failrec->in_validation = 0;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, failrec->len);
if (!em) {
read_unlock(&em_tree->lock);
kfree(failrec);
return -EIO;
}
if (em->start > start || em->start + em->len < start) {
free_extent_map(em);
em = NULL;
}
read_unlock(&em_tree->lock);
if (!em || IS_ERR(em)) {
kfree(failrec);
return -EIO;
}
logical = start - em->start;
logical = em->block_start + logical;
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
logical = em->block_start;
failrec->bio_flags = EXTENT_BIO_COMPRESSED;
extent_set_compress_type(&failrec->bio_flags,
em->compress_type);
}
pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
"len=%llu\n", logical, start, failrec->len);
failrec->logical = logical;
free_extent_map(em);
/* set the bits in the private failure tree */
ret = set_extent_bits(failure_tree, start, end,
EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
if (ret >= 0)
ret = set_state_private(failure_tree, start,
(u64)(unsigned long)failrec);
/* set the bits in the inode's tree */
if (ret >= 0)
ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
GFP_NOFS);
if (ret < 0) {
kfree(failrec);
return ret;
}
} else {
failrec = (struct io_failure_record *)(unsigned long)private;
pr_debug("bio_readpage_error: (found) logical=%llu, "
"start=%llu, len=%llu, validation=%d\n",
failrec->logical, failrec->start, failrec->len,
failrec->in_validation);
/*
* when data can be on disk more than twice, add to failrec here
* (e.g. with a list for failed_mirror) to make
* clean_io_failure() clean all those errors at once.
*/
}
num_copies = btrfs_num_copies(
&BTRFS_I(inode)->root->fs_info->mapping_tree,
failrec->logical, failrec->len);
if (num_copies == 1) {
/*
* we only have a single copy of the data, so don't bother with
* all the retry and error correction code that follows. no
* matter what the error is, it is very likely to persist.
*/
pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
"state=%p, num_copies=%d, next_mirror %d, "
"failed_mirror %d\n", state, num_copies,
failrec->this_mirror, failed_mirror);
free_io_failure(inode, failrec, 0);
return -EIO;
}
if (!state) {
spin_lock(&tree->lock);
state = find_first_extent_bit_state(tree, failrec->start,
EXTENT_LOCKED);
if (state && state->start != failrec->start)
state = NULL;
spin_unlock(&tree->lock);
}
/*
* there are two premises:
* a) deliver good data to the caller
* b) correct the bad sectors on disk
*/
if (failed_bio->bi_vcnt > 1) {
/*
* to fulfill b), we need to know the exact failing sectors, as
* we don't want to rewrite any more than the failed ones. thus,
* we need separate read requests for the failed bio
*
* if the following BUG_ON triggers, our validation request got
* merged. we need separate requests for our algorithm to work.
*/
BUG_ON(failrec->in_validation);
failrec->in_validation = 1;
failrec->this_mirror = failed_mirror;
read_mode = READ_SYNC | REQ_FAILFAST_DEV;
} else {
/*
* we're ready to fulfill a) and b) alongside. get a good copy
* of the failed sector and if we succeed, we have setup
* everything for repair_io_failure to do the rest for us.
*/
if (failrec->in_validation) {
BUG_ON(failrec->this_mirror != failed_mirror);
failrec->in_validation = 0;
failrec->this_mirror = 0;
}
failrec->failed_mirror = failed_mirror;
failrec->this_mirror++;
if (failrec->this_mirror == failed_mirror)
failrec->this_mirror++;
read_mode = READ_SYNC;
}
if (!state || failrec->this_mirror > num_copies) {
pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
"next_mirror %d, failed_mirror %d\n", state,
num_copies, failrec->this_mirror, failed_mirror);
free_io_failure(inode, failrec, 0);
return -EIO;
}
bio = bio_alloc(GFP_NOFS, 1);
bio->bi_private = state;
bio->bi_end_io = failed_bio->bi_end_io;
bio->bi_sector = failrec->logical >> 9;
bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
bio->bi_size = 0;
bio_add_page(bio, page, failrec->len, start - page_offset(page));
pr_debug("bio_readpage_error: submitting new read[%#x] to "
"this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
failrec->this_mirror, num_copies, failrec->in_validation);
tree->ops->submit_bio_hook(inode, read_mode, bio, failrec->this_mirror,
failrec->bio_flags, 0);
return 0;
}
/* lots and lots of room for performance fixes in the end_bio funcs */ /* lots and lots of room for performance fixes in the end_bio funcs */
/* /*
...@@ -1885,6 +2248,9 @@ static void end_bio_extent_readpage(struct bio *bio, int err) ...@@ -1885,6 +2248,9 @@ static void end_bio_extent_readpage(struct bio *bio, int err)
struct extent_state *cached = NULL; struct extent_state *cached = NULL;
struct extent_state *state; struct extent_state *state;
pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
"mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
(long int)bio->bi_bdev);
tree = &BTRFS_I(page->mapping->host)->io_tree; tree = &BTRFS_I(page->mapping->host)->io_tree;
start = ((u64)page->index << PAGE_CACHE_SHIFT) + start = ((u64)page->index << PAGE_CACHE_SHIFT) +
...@@ -1915,11 +2281,19 @@ static void end_bio_extent_readpage(struct bio *bio, int err) ...@@ -1915,11 +2281,19 @@ static void end_bio_extent_readpage(struct bio *bio, int err)
state); state);
if (ret) if (ret)
uptodate = 0; uptodate = 0;
else
clean_io_failure(start, page);
} }
if (!uptodate && tree->ops && if (!uptodate) {
tree->ops->readpage_io_failed_hook) { u64 failed_mirror;
ret = tree->ops->readpage_io_failed_hook(bio, page, failed_mirror = (u64)bio->bi_bdev;
start, end, state); if (tree->ops && tree->ops->readpage_io_failed_hook)
ret = tree->ops->readpage_io_failed_hook(
bio, page, start, end,
failed_mirror, state);
else
ret = bio_readpage_error(bio, page, start, end,
failed_mirror, NULL);
if (ret == 0) { if (ret == 0) {
uptodate = uptodate =
test_bit(BIO_UPTODATE, &bio->bi_flags); test_bit(BIO_UPTODATE, &bio->bi_flags);
...@@ -1999,6 +2373,7 @@ static int submit_one_bio(int rw, struct bio *bio, int mirror_num, ...@@ -1999,6 +2373,7 @@ static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
mirror_num, bio_flags, start); mirror_num, bio_flags, start);
else else
submit_bio(rw, bio); submit_bio(rw, bio);
if (bio_flagged(bio, BIO_EOPNOTSUPP)) if (bio_flagged(bio, BIO_EOPNOTSUPP))
ret = -EOPNOTSUPP; ret = -EOPNOTSUPP;
bio_put(bio); bio_put(bio);
...@@ -2264,16 +2639,16 @@ static int __extent_read_full_page(struct extent_io_tree *tree, ...@@ -2264,16 +2639,16 @@ static int __extent_read_full_page(struct extent_io_tree *tree,
} }
int extent_read_full_page(struct extent_io_tree *tree, struct page *page, int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
get_extent_t *get_extent) get_extent_t *get_extent, int mirror_num)
{ {
struct bio *bio = NULL; struct bio *bio = NULL;
unsigned long bio_flags = 0; unsigned long bio_flags = 0;
int ret; int ret;
ret = __extent_read_full_page(tree, page, get_extent, &bio, 0, ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
&bio_flags); &bio_flags);
if (bio) if (bio)
ret = submit_one_bio(READ, bio, 0, bio_flags); ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
return ret; return ret;
} }
...@@ -3127,7 +3502,7 @@ int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, ...@@ -3127,7 +3502,7 @@ int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
return ret; return ret;
} }
static inline struct page *extent_buffer_page(struct extent_buffer *eb, inline struct page *extent_buffer_page(struct extent_buffer *eb,
unsigned long i) unsigned long i)
{ {
struct page *p; struct page *p;
...@@ -3152,7 +3527,7 @@ static inline struct page *extent_buffer_page(struct extent_buffer *eb, ...@@ -3152,7 +3527,7 @@ static inline struct page *extent_buffer_page(struct extent_buffer *eb,
return p; return p;
} }
static inline unsigned long num_extent_pages(u64 start, u64 len) inline unsigned long num_extent_pages(u64 start, u64 len)
{ {
return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
(start >> PAGE_CACHE_SHIFT); (start >> PAGE_CACHE_SHIFT);
......
...@@ -18,6 +18,7 @@ ...@@ -18,6 +18,7 @@
#define EXTENT_DO_ACCOUNTING (1 << 11) #define EXTENT_DO_ACCOUNTING (1 << 11)
#define EXTENT_FIRST_DELALLOC (1 << 12) #define EXTENT_FIRST_DELALLOC (1 << 12)
#define EXTENT_NEED_WAIT (1 << 13) #define EXTENT_NEED_WAIT (1 << 13)
#define EXTENT_DAMAGED (1 << 14)
#define EXTENT_IOBITS (EXTENT_LOCKED | EXTENT_WRITEBACK) #define EXTENT_IOBITS (EXTENT_LOCKED | EXTENT_WRITEBACK)
#define EXTENT_CTLBITS (EXTENT_DO_ACCOUNTING | EXTENT_FIRST_DELALLOC) #define EXTENT_CTLBITS (EXTENT_DO_ACCOUNTING | EXTENT_FIRST_DELALLOC)
...@@ -69,7 +70,7 @@ struct extent_io_ops { ...@@ -69,7 +70,7 @@ struct extent_io_ops {
unsigned long bio_flags); unsigned long bio_flags);
int (*readpage_io_hook)(struct page *page, u64 start, u64 end); int (*readpage_io_hook)(struct page *page, u64 start, u64 end);
int (*readpage_io_failed_hook)(struct bio *bio, struct page *page, int (*readpage_io_failed_hook)(struct bio *bio, struct page *page,
u64 start, u64 end, u64 start, u64 end, u64 failed_mirror,
struct extent_state *state); struct extent_state *state);
int (*writepage_io_failed_hook)(struct bio *bio, struct page *page, int (*writepage_io_failed_hook)(struct bio *bio, struct page *page,
u64 start, u64 end, u64 start, u64 end,
...@@ -188,7 +189,7 @@ int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, ...@@ -188,7 +189,7 @@ int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end, int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
gfp_t mask); gfp_t mask);
int extent_read_full_page(struct extent_io_tree *tree, struct page *page, int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
get_extent_t *get_extent); get_extent_t *get_extent, int mirror_num);
int __init extent_io_init(void); int __init extent_io_init(void);
void extent_io_exit(void); void extent_io_exit(void);
...@@ -259,6 +260,8 @@ void free_extent_buffer(struct extent_buffer *eb); ...@@ -259,6 +260,8 @@ void free_extent_buffer(struct extent_buffer *eb);
int read_extent_buffer_pages(struct extent_io_tree *tree, int read_extent_buffer_pages(struct extent_io_tree *tree,
struct extent_buffer *eb, u64 start, int wait, struct extent_buffer *eb, u64 start, int wait,
get_extent_t *get_extent, int mirror_num); get_extent_t *get_extent, int mirror_num);
unsigned long num_extent_pages(u64 start, u64 len);
struct page *extent_buffer_page(struct extent_buffer *eb, unsigned long i);
static inline void extent_buffer_get(struct extent_buffer *eb) static inline void extent_buffer_get(struct extent_buffer *eb)
{ {
...@@ -308,4 +311,10 @@ int extent_clear_unlock_delalloc(struct inode *inode, ...@@ -308,4 +311,10 @@ int extent_clear_unlock_delalloc(struct inode *inode,
struct bio * struct bio *
btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
gfp_t gfp_flags); gfp_t gfp_flags);
struct btrfs_mapping_tree;
int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
u64 length, u64 logical, struct page *page,
int mirror_num);
#endif #endif
...@@ -45,10 +45,10 @@ ...@@ -45,10 +45,10 @@
#include "btrfs_inode.h" #include "btrfs_inode.h"
#include "ioctl.h" #include "ioctl.h"
#include "print-tree.h" #include "print-tree.h"
#include "volumes.h"
#include "ordered-data.h" #include "ordered-data.h"
#include "xattr.h" #include "xattr.h"
#include "tree-log.h" #include "tree-log.h"
#include "volumes.h"
#include "compression.h" #include "compression.h"
#include "locking.h" #include "locking.h"
#include "free-space-cache.h" #include "free-space-cache.h"
...@@ -1822,154 +1822,10 @@ static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, ...@@ -1822,154 +1822,10 @@ static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
return btrfs_finish_ordered_io(page->mapping->host, start, end); return btrfs_finish_ordered_io(page->mapping->host, start, end);
} }
/*
* When IO fails, either with EIO or csum verification fails, we
* try other mirrors that might have a good copy of the data. This
* io_failure_record is used to record state as we go through all the
* mirrors. If another mirror has good data, the page is set up to date
* and things continue. If a good mirror can't be found, the original
* bio end_io callback is called to indicate things have failed.
*/
struct io_failure_record {
struct page *page;
u64 start;
u64 len;
u64 logical;
unsigned long bio_flags;
int last_mirror;
};
static int btrfs_io_failed_hook(struct bio *failed_bio,
struct page *page, u64 start, u64 end,
struct extent_state *state)
{
struct io_failure_record *failrec = NULL;
u64 private;
struct extent_map *em;
struct inode *inode = page->mapping->host;
struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct bio *bio;
int num_copies;
int ret;
int rw;
u64 logical;
ret = get_state_private(failure_tree, start, &private);
if (ret) {
failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
if (!failrec)
return -ENOMEM;
failrec->start = start;
failrec->len = end - start + 1;
failrec->last_mirror = 0;
failrec->bio_flags = 0;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, failrec->len);
if (em->start > start || em->start + em->len < start) {
free_extent_map(em);
em = NULL;
}
read_unlock(&em_tree->lock);
if (IS_ERR_OR_NULL(em)) {
kfree(failrec);
return -EIO;
}
logical = start - em->start;
logical = em->block_start + logical;
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
logical = em->block_start;
failrec->bio_flags = EXTENT_BIO_COMPRESSED;
extent_set_compress_type(&failrec->bio_flags,
em->compress_type);
}
failrec->logical = logical;
free_extent_map(em);
set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
EXTENT_DIRTY, GFP_NOFS);
set_state_private(failure_tree, start,
(u64)(unsigned long)failrec);
} else {
failrec = (struct io_failure_record *)(unsigned long)private;
}
num_copies = btrfs_num_copies(
&BTRFS_I(inode)->root->fs_info->mapping_tree,
failrec->logical, failrec->len);
failrec->last_mirror++;
if (!state) {
spin_lock(&BTRFS_I(inode)->io_tree.lock);
state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
failrec->start,
EXTENT_LOCKED);
if (state && state->start != failrec->start)
state = NULL;
spin_unlock(&BTRFS_I(inode)->io_tree.lock);
}
if (!state || failrec->last_mirror > num_copies) {
set_state_private(failure_tree, failrec->start, 0);
clear_extent_bits(failure_tree, failrec->start,
failrec->start + failrec->len - 1,
EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
kfree(failrec);
return -EIO;
}
bio = bio_alloc(GFP_NOFS, 1);
bio->bi_private = state;
bio->bi_end_io = failed_bio->bi_end_io;
bio->bi_sector = failrec->logical >> 9;
bio->bi_bdev = failed_bio->bi_bdev;
bio->bi_size = 0;
bio_add_page(bio, page, failrec->len, start - page_offset(page));
if (failed_bio->bi_rw & REQ_WRITE)
rw = WRITE;
else
rw = READ;
ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
failrec->last_mirror,
failrec->bio_flags, 0);
return ret;
}
/*
* each time an IO finishes, we do a fast check in the IO failure tree
* to see if we need to process or clean up an io_failure_record
*/
static int btrfs_clean_io_failures(struct inode *inode, u64 start)
{
u64 private;
u64 private_failure;
struct io_failure_record *failure;
int ret;
private = 0;
if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
(u64)-1, 1, EXTENT_DIRTY, 0)) {
ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
start, &private_failure);
if (ret == 0) {
failure = (struct io_failure_record *)(unsigned long)
private_failure;
set_state_private(&BTRFS_I(inode)->io_failure_tree,
failure->start, 0);
clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
failure->start,
failure->start + failure->len - 1,
EXTENT_DIRTY | EXTENT_LOCKED,
GFP_NOFS);
kfree(failure);
}
}
return 0;
}
/* /*
* when reads are done, we need to check csums to verify the data is correct * when reads are done, we need to check csums to verify the data is correct
* if there's a match, we allow the bio to finish. If not, we go through * if there's a match, we allow the bio to finish. If not, the code in
* the io_failure_record routines to find good copies * extent_io.c will try to find good copies for us.
*/ */
static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
struct extent_state *state) struct extent_state *state)
...@@ -2015,10 +1871,6 @@ static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, ...@@ -2015,10 +1871,6 @@ static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
kunmap_atomic(kaddr, KM_USER0); kunmap_atomic(kaddr, KM_USER0);
good: good:
/* if the io failure tree for this inode is non-empty,
* check to see if we've recovered from a failed IO
*/
btrfs_clean_io_failures(inode, start);
return 0; return 0;
zeroit: zeroit:
...@@ -6273,7 +6125,7 @@ int btrfs_readpage(struct file *file, struct page *page) ...@@ -6273,7 +6125,7 @@ int btrfs_readpage(struct file *file, struct page *page)
{ {
struct extent_io_tree *tree; struct extent_io_tree *tree;
tree = &BTRFS_I(page->mapping->host)->io_tree; tree = &BTRFS_I(page->mapping->host)->io_tree;
return extent_read_full_page(tree, page, btrfs_get_extent); return extent_read_full_page(tree, page, btrfs_get_extent, 0);
} }
static int btrfs_writepage(struct page *page, struct writeback_control *wbc) static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
...@@ -7406,7 +7258,6 @@ static struct extent_io_ops btrfs_extent_io_ops = { ...@@ -7406,7 +7258,6 @@ static struct extent_io_ops btrfs_extent_io_ops = {
.readpage_end_io_hook = btrfs_readpage_end_io_hook, .readpage_end_io_hook = btrfs_readpage_end_io_hook,
.writepage_end_io_hook = btrfs_writepage_end_io_hook, .writepage_end_io_hook = btrfs_writepage_end_io_hook,
.writepage_start_hook = btrfs_writepage_start_hook, .writepage_start_hook = btrfs_writepage_start_hook,
.readpage_io_failed_hook = btrfs_io_failed_hook,
.set_bit_hook = btrfs_set_bit_hook, .set_bit_hook = btrfs_set_bit_hook,
.clear_bit_hook = btrfs_clear_bit_hook, .clear_bit_hook = btrfs_clear_bit_hook,
.merge_extent_hook = btrfs_merge_extent_hook, .merge_extent_hook = btrfs_merge_extent_hook,
......
...@@ -51,6 +51,7 @@ ...@@ -51,6 +51,7 @@
#include "volumes.h" #include "volumes.h"
#include "locking.h" #include "locking.h"
#include "inode-map.h" #include "inode-map.h"
#include "backref.h"
/* Mask out flags that are inappropriate for the given type of inode. */ /* Mask out flags that are inappropriate for the given type of inode. */
static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
...@@ -2890,6 +2891,144 @@ static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, ...@@ -2890,6 +2891,144 @@ static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
return ret; return ret;
} }
static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
{
int ret = 0;
int i;
unsigned long rel_ptr;
int size;
struct btrfs_ioctl_ino_path_args *ipa = NULL;
struct inode_fs_paths *ipath = NULL;
struct btrfs_path *path;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
ipa = memdup_user(arg, sizeof(*ipa));
if (IS_ERR(ipa)) {
ret = PTR_ERR(ipa);
ipa = NULL;
goto out;
}
size = min_t(u32, ipa->size, 4096);
ipath = init_ipath(size, root, path);
if (IS_ERR(ipath)) {
ret = PTR_ERR(ipath);
ipath = NULL;
goto out;
}
ret = paths_from_inode(ipa->inum, ipath);
if (ret < 0)
goto out;
for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
rel_ptr = ipath->fspath->str[i] - (char *)ipath->fspath->str;
ipath->fspath->str[i] = (void *)rel_ptr;
}
ret = copy_to_user(ipa->fspath, ipath->fspath, size);
if (ret) {
ret = -EFAULT;
goto out;
}
out:
btrfs_free_path(path);
free_ipath(ipath);
kfree(ipa);
return ret;
}
static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
{
struct btrfs_data_container *inodes = ctx;
const size_t c = 3 * sizeof(u64);
if (inodes->bytes_left >= c) {
inodes->bytes_left -= c;
inodes->val[inodes->elem_cnt] = inum;
inodes->val[inodes->elem_cnt + 1] = offset;
inodes->val[inodes->elem_cnt + 2] = root;
inodes->elem_cnt += 3;
} else {
inodes->bytes_missing += c - inodes->bytes_left;
inodes->bytes_left = 0;
inodes->elem_missed += 3;
}
return 0;
}
static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
void __user *arg)
{
int ret = 0;
int size;
u64 extent_offset;
struct btrfs_ioctl_logical_ino_args *loi;
struct btrfs_data_container *inodes = NULL;
struct btrfs_path *path = NULL;
struct btrfs_key key;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
loi = memdup_user(arg, sizeof(*loi));
if (IS_ERR(loi)) {
ret = PTR_ERR(loi);
loi = NULL;
goto out;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
size = min_t(u32, loi->size, 4096);
inodes = init_data_container(size);
if (IS_ERR(inodes)) {
ret = PTR_ERR(inodes);
inodes = NULL;
goto out;
}
ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
ret = -ENOENT;
if (ret < 0)
goto out;
extent_offset = loi->logical - key.objectid;
ret = iterate_extent_inodes(root->fs_info, path, key.objectid,
extent_offset, build_ino_list, inodes);
if (ret < 0)
goto out;
ret = copy_to_user(loi->inodes, inodes, size);
if (ret)
ret = -EFAULT;
out:
btrfs_free_path(path);
kfree(inodes);
kfree(loi);
return ret;
}
long btrfs_ioctl(struct file *file, unsigned int long btrfs_ioctl(struct file *file, unsigned int
cmd, unsigned long arg) cmd, unsigned long arg)
{ {
...@@ -2947,6 +3086,10 @@ long btrfs_ioctl(struct file *file, unsigned int ...@@ -2947,6 +3086,10 @@ long btrfs_ioctl(struct file *file, unsigned int
return btrfs_ioctl_tree_search(file, argp); return btrfs_ioctl_tree_search(file, argp);
case BTRFS_IOC_INO_LOOKUP: case BTRFS_IOC_INO_LOOKUP:
return btrfs_ioctl_ino_lookup(file, argp); return btrfs_ioctl_ino_lookup(file, argp);
case BTRFS_IOC_INO_PATHS:
return btrfs_ioctl_ino_to_path(root, argp);
case BTRFS_IOC_LOGICAL_INO:
return btrfs_ioctl_logical_to_ino(root, argp);
case BTRFS_IOC_SPACE_INFO: case BTRFS_IOC_SPACE_INFO:
return btrfs_ioctl_space_info(root, argp); return btrfs_ioctl_space_info(root, argp);
case BTRFS_IOC_SYNC: case BTRFS_IOC_SYNC:
......
...@@ -193,6 +193,31 @@ struct btrfs_ioctl_space_args { ...@@ -193,6 +193,31 @@ struct btrfs_ioctl_space_args {
struct btrfs_ioctl_space_info spaces[0]; struct btrfs_ioctl_space_info spaces[0];
}; };
struct btrfs_data_container {
__u32 bytes_left; /* out -- bytes not needed to deliver output */
__u32 bytes_missing; /* out -- additional bytes needed for result */
__u32 elem_cnt; /* out */
__u32 elem_missed; /* out */
union {
char *str[0]; /* out */
__u64 val[0]; /* out */
};
};
struct btrfs_ioctl_ino_path_args {
__u64 inum; /* in */
__u32 size; /* in */
__u64 reserved[4];
struct btrfs_data_container *fspath; /* out */
};
struct btrfs_ioctl_logical_ino_args {
__u64 logical; /* in */
__u32 size; /* in */
__u64 reserved[4];
struct btrfs_data_container *inodes; /* out */
};
#define BTRFS_IOC_SNAP_CREATE _IOW(BTRFS_IOCTL_MAGIC, 1, \ #define BTRFS_IOC_SNAP_CREATE _IOW(BTRFS_IOCTL_MAGIC, 1, \
struct btrfs_ioctl_vol_args) struct btrfs_ioctl_vol_args)
#define BTRFS_IOC_DEFRAG _IOW(BTRFS_IOCTL_MAGIC, 2, \ #define BTRFS_IOC_DEFRAG _IOW(BTRFS_IOCTL_MAGIC, 2, \
...@@ -248,4 +273,9 @@ struct btrfs_ioctl_space_args { ...@@ -248,4 +273,9 @@ struct btrfs_ioctl_space_args {
struct btrfs_ioctl_dev_info_args) struct btrfs_ioctl_dev_info_args)
#define BTRFS_IOC_FS_INFO _IOR(BTRFS_IOCTL_MAGIC, 31, \ #define BTRFS_IOC_FS_INFO _IOR(BTRFS_IOCTL_MAGIC, 31, \
struct btrfs_ioctl_fs_info_args) struct btrfs_ioctl_fs_info_args)
#define BTRFS_IOC_INO_PATHS _IOWR(BTRFS_IOCTL_MAGIC, 35, \
struct btrfs_ioctl_ino_path_args)
#define BTRFS_IOC_LOGICAL_INO _IOWR(BTRFS_IOCTL_MAGIC, 36, \
struct btrfs_ioctl_ino_path_args)
#endif #endif
...@@ -247,7 +247,7 @@ int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, ...@@ -247,7 +247,7 @@ int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info, static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
struct btrfs_device *dev, u64 logical, struct btrfs_device *dev, u64 logical,
struct btrfs_multi_bio *multi) struct btrfs_bio *multi)
{ {
int ret; int ret;
int looped = 0; int looped = 0;
...@@ -327,7 +327,7 @@ static struct reada_extent *reada_find_extent(struct btrfs_root *root, ...@@ -327,7 +327,7 @@ static struct reada_extent *reada_find_extent(struct btrfs_root *root,
struct reada_extent *re = NULL; struct reada_extent *re = NULL;
struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
struct btrfs_multi_bio *multi = NULL; struct btrfs_bio *multi = NULL;
struct btrfs_device *dev; struct btrfs_device *dev;
u32 blocksize; u32 blocksize;
u64 length; u64 length;
......
...@@ -17,10 +17,14 @@ ...@@ -17,10 +17,14 @@
*/ */
#include <linux/blkdev.h> #include <linux/blkdev.h>
#include <linux/ratelimit.h>
#include "ctree.h" #include "ctree.h"
#include "volumes.h" #include "volumes.h"
#include "disk-io.h" #include "disk-io.h"
#include "ordered-data.h" #include "ordered-data.h"
#include "transaction.h"
#include "backref.h"
#include "extent_io.h"
/* /*
* This is only the first step towards a full-features scrub. It reads all * This is only the first step towards a full-features scrub. It reads all
...@@ -60,7 +64,7 @@ static void scrub_fixup(struct scrub_bio *sbio, int ix); ...@@ -60,7 +64,7 @@ static void scrub_fixup(struct scrub_bio *sbio, int ix);
struct scrub_page { struct scrub_page {
u64 flags; /* extent flags */ u64 flags; /* extent flags */
u64 generation; u64 generation;
u64 mirror_num; int mirror_num;
int have_csum; int have_csum;
u8 csum[BTRFS_CSUM_SIZE]; u8 csum[BTRFS_CSUM_SIZE];
}; };
...@@ -84,6 +88,7 @@ struct scrub_dev { ...@@ -84,6 +88,7 @@ struct scrub_dev {
int first_free; int first_free;
int curr; int curr;
atomic_t in_flight; atomic_t in_flight;
atomic_t fixup_cnt;
spinlock_t list_lock; spinlock_t list_lock;
wait_queue_head_t list_wait; wait_queue_head_t list_wait;
u16 csum_size; u16 csum_size;
...@@ -97,6 +102,27 @@ struct scrub_dev { ...@@ -97,6 +102,27 @@ struct scrub_dev {
spinlock_t stat_lock; spinlock_t stat_lock;
}; };
struct scrub_fixup_nodatasum {
struct scrub_dev *sdev;
u64 logical;
struct btrfs_root *root;
struct btrfs_work work;
int mirror_num;
};
struct scrub_warning {
struct btrfs_path *path;
u64 extent_item_size;
char *scratch_buf;
char *msg_buf;
const char *errstr;
sector_t sector;
u64 logical;
struct btrfs_device *dev;
int msg_bufsize;
int scratch_bufsize;
};
static void scrub_free_csums(struct scrub_dev *sdev) static void scrub_free_csums(struct scrub_dev *sdev)
{ {
while (!list_empty(&sdev->csum_list)) { while (!list_empty(&sdev->csum_list)) {
...@@ -172,12 +198,13 @@ struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev) ...@@ -172,12 +198,13 @@ struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
if (i != SCRUB_BIOS_PER_DEV-1) if (i != SCRUB_BIOS_PER_DEV-1)
sdev->bios[i]->next_free = i + 1; sdev->bios[i]->next_free = i + 1;
else else
sdev->bios[i]->next_free = -1; sdev->bios[i]->next_free = -1;
} }
sdev->first_free = 0; sdev->first_free = 0;
sdev->curr = -1; sdev->curr = -1;
atomic_set(&sdev->in_flight, 0); atomic_set(&sdev->in_flight, 0);
atomic_set(&sdev->fixup_cnt, 0);
atomic_set(&sdev->cancel_req, 0); atomic_set(&sdev->cancel_req, 0);
sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy); sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
INIT_LIST_HEAD(&sdev->csum_list); INIT_LIST_HEAD(&sdev->csum_list);
...@@ -192,24 +219,361 @@ struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev) ...@@ -192,24 +219,361 @@ struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
return ERR_PTR(-ENOMEM); return ERR_PTR(-ENOMEM);
} }
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
{
u64 isize;
u32 nlink;
int ret;
int i;
struct extent_buffer *eb;
struct btrfs_inode_item *inode_item;
struct scrub_warning *swarn = ctx;
struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
struct inode_fs_paths *ipath = NULL;
struct btrfs_root *local_root;
struct btrfs_key root_key;
root_key.objectid = root;
root_key.type = BTRFS_ROOT_ITEM_KEY;
root_key.offset = (u64)-1;
local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
if (IS_ERR(local_root)) {
ret = PTR_ERR(local_root);
goto err;
}
ret = inode_item_info(inum, 0, local_root, swarn->path);
if (ret) {
btrfs_release_path(swarn->path);
goto err;
}
eb = swarn->path->nodes[0];
inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
struct btrfs_inode_item);
isize = btrfs_inode_size(eb, inode_item);
nlink = btrfs_inode_nlink(eb, inode_item);
btrfs_release_path(swarn->path);
ipath = init_ipath(4096, local_root, swarn->path);
ret = paths_from_inode(inum, ipath);
if (ret < 0)
goto err;
/*
* we deliberately ignore the bit ipath might have been too small to
* hold all of the paths here
*/
for (i = 0; i < ipath->fspath->elem_cnt; ++i)
printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
"%s, sector %llu, root %llu, inode %llu, offset %llu, "
"length %llu, links %u (path: %s)\n", swarn->errstr,
swarn->logical, swarn->dev->name,
(unsigned long long)swarn->sector, root, inum, offset,
min(isize - offset, (u64)PAGE_SIZE), nlink,
ipath->fspath->str[i]);
free_ipath(ipath);
return 0;
err:
printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
"resolving failed with ret=%d\n", swarn->errstr,
swarn->logical, swarn->dev->name,
(unsigned long long)swarn->sector, root, inum, offset, ret);
free_ipath(ipath);
return 0;
}
static void scrub_print_warning(const char *errstr, struct scrub_bio *sbio,
int ix)
{
struct btrfs_device *dev = sbio->sdev->dev;
struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
struct btrfs_path *path;
struct btrfs_key found_key;
struct extent_buffer *eb;
struct btrfs_extent_item *ei;
struct scrub_warning swarn;
u32 item_size;
int ret;
u64 ref_root;
u8 ref_level;
unsigned long ptr = 0;
const int bufsize = 4096;
u64 extent_offset;
path = btrfs_alloc_path();
swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
swarn.sector = (sbio->physical + ix * PAGE_SIZE) >> 9;
swarn.logical = sbio->logical + ix * PAGE_SIZE;
swarn.errstr = errstr;
swarn.dev = dev;
swarn.msg_bufsize = bufsize;
swarn.scratch_bufsize = bufsize;
if (!path || !swarn.scratch_buf || !swarn.msg_buf)
goto out;
ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
if (ret < 0)
goto out;
extent_offset = swarn.logical - found_key.objectid;
swarn.extent_item_size = found_key.offset;
eb = path->nodes[0];
ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
item_size = btrfs_item_size_nr(eb, path->slots[0]);
if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
do {
ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
&ref_root, &ref_level);
printk(KERN_WARNING "%s at logical %llu on dev %s, "
"sector %llu: metadata %s (level %d) in tree "
"%llu\n", errstr, swarn.logical, dev->name,
(unsigned long long)swarn.sector,
ref_level ? "node" : "leaf",
ret < 0 ? -1 : ref_level,
ret < 0 ? -1 : ref_root);
} while (ret != 1);
} else {
swarn.path = path;
iterate_extent_inodes(fs_info, path, found_key.objectid,
extent_offset,
scrub_print_warning_inode, &swarn);
}
out:
btrfs_free_path(path);
kfree(swarn.scratch_buf);
kfree(swarn.msg_buf);
}
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
{
struct page *page = NULL;
unsigned long index;
struct scrub_fixup_nodatasum *fixup = ctx;
int ret;
int corrected = 0;
struct btrfs_key key;
struct inode *inode = NULL;
u64 end = offset + PAGE_SIZE - 1;
struct btrfs_root *local_root;
key.objectid = root;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
if (IS_ERR(local_root))
return PTR_ERR(local_root);
key.type = BTRFS_INODE_ITEM_KEY;
key.objectid = inum;
key.offset = 0;
inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
if (IS_ERR(inode))
return PTR_ERR(inode);
index = offset >> PAGE_CACHE_SHIFT;
page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
if (!page) {
ret = -ENOMEM;
goto out;
}
if (PageUptodate(page)) {
struct btrfs_mapping_tree *map_tree;
if (PageDirty(page)) {
/*
* we need to write the data to the defect sector. the
* data that was in that sector is not in memory,
* because the page was modified. we must not write the
* modified page to that sector.
*
* TODO: what could be done here: wait for the delalloc
* runner to write out that page (might involve
* COW) and see whether the sector is still
* referenced afterwards.
*
* For the meantime, we'll treat this error
* incorrectable, although there is a chance that a
* later scrub will find the bad sector again and that
* there's no dirty page in memory, then.
*/
ret = -EIO;
goto out;
}
map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
fixup->logical, page,
fixup->mirror_num);
unlock_page(page);
corrected = !ret;
} else {
/*
* we need to get good data first. the general readpage path
* will call repair_io_failure for us, we just have to make
* sure we read the bad mirror.
*/
ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
EXTENT_DAMAGED, GFP_NOFS);
if (ret) {
/* set_extent_bits should give proper error */
WARN_ON(ret > 0);
if (ret > 0)
ret = -EFAULT;
goto out;
}
ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
btrfs_get_extent,
fixup->mirror_num);
wait_on_page_locked(page);
corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
end, EXTENT_DAMAGED, 0, NULL);
if (!corrected)
clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
EXTENT_DAMAGED, GFP_NOFS);
}
out:
if (page)
put_page(page);
if (inode)
iput(inode);
if (ret < 0)
return ret;
if (ret == 0 && corrected) {
/*
* we only need to call readpage for one of the inodes belonging
* to this extent. so make iterate_extent_inodes stop
*/
return 1;
}
return -EIO;
}
static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
int ret;
struct scrub_fixup_nodatasum *fixup;
struct scrub_dev *sdev;
struct btrfs_trans_handle *trans = NULL;
struct btrfs_fs_info *fs_info;
struct btrfs_path *path;
int uncorrectable = 0;
fixup = container_of(work, struct scrub_fixup_nodatasum, work);
sdev = fixup->sdev;
fs_info = fixup->root->fs_info;
path = btrfs_alloc_path();
if (!path) {
spin_lock(&sdev->stat_lock);
++sdev->stat.malloc_errors;
spin_unlock(&sdev->stat_lock);
uncorrectable = 1;
goto out;
}
trans = btrfs_join_transaction(fixup->root);
if (IS_ERR(trans)) {
uncorrectable = 1;
goto out;
}
/*
* the idea is to trigger a regular read through the standard path. we
* read a page from the (failed) logical address by specifying the
* corresponding copynum of the failed sector. thus, that readpage is
* expected to fail.
* that is the point where on-the-fly error correction will kick in
* (once it's finished) and rewrite the failed sector if a good copy
* can be found.
*/
ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
path, scrub_fixup_readpage,
fixup);
if (ret < 0) {
uncorrectable = 1;
goto out;
}
WARN_ON(ret != 1);
spin_lock(&sdev->stat_lock);
++sdev->stat.corrected_errors;
spin_unlock(&sdev->stat_lock);
out:
if (trans && !IS_ERR(trans))
btrfs_end_transaction(trans, fixup->root);
if (uncorrectable) {
spin_lock(&sdev->stat_lock);
++sdev->stat.uncorrectable_errors;
spin_unlock(&sdev->stat_lock);
printk_ratelimited(KERN_ERR "btrfs: unable to fixup "
"(nodatasum) error at logical %llu\n",
fixup->logical);
}
btrfs_free_path(path);
kfree(fixup);
/* see caller why we're pretending to be paused in the scrub counters */
mutex_lock(&fs_info->scrub_lock);
atomic_dec(&fs_info->scrubs_running);
atomic_dec(&fs_info->scrubs_paused);
mutex_unlock(&fs_info->scrub_lock);
atomic_dec(&sdev->fixup_cnt);
wake_up(&fs_info->scrub_pause_wait);
wake_up(&sdev->list_wait);
}
/* /*
* scrub_recheck_error gets called when either verification of the page * scrub_recheck_error gets called when either verification of the page
* failed or the bio failed to read, e.g. with EIO. In the latter case, * failed or the bio failed to read, e.g. with EIO. In the latter case,
* recheck_error gets called for every page in the bio, even though only * recheck_error gets called for every page in the bio, even though only
* one may be bad * one may be bad
*/ */
static void scrub_recheck_error(struct scrub_bio *sbio, int ix) static int scrub_recheck_error(struct scrub_bio *sbio, int ix)
{ {
struct scrub_dev *sdev = sbio->sdev;
u64 sector = (sbio->physical + ix * PAGE_SIZE) >> 9;
static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
if (sbio->err) { if (sbio->err) {
if (scrub_fixup_io(READ, sbio->sdev->dev->bdev, if (scrub_fixup_io(READ, sbio->sdev->dev->bdev, sector,
(sbio->physical + ix * PAGE_SIZE) >> 9,
sbio->bio->bi_io_vec[ix].bv_page) == 0) { sbio->bio->bi_io_vec[ix].bv_page) == 0) {
if (scrub_fixup_check(sbio, ix) == 0) if (scrub_fixup_check(sbio, ix) == 0)
return; return 0;
} }
if (__ratelimit(&_rs))
scrub_print_warning("i/o error", sbio, ix);
} else {
if (__ratelimit(&_rs))
scrub_print_warning("checksum error", sbio, ix);
} }
spin_lock(&sdev->stat_lock);
++sdev->stat.read_errors;
spin_unlock(&sdev->stat_lock);
scrub_fixup(sbio, ix); scrub_fixup(sbio, ix);
return 1;
} }
static int scrub_fixup_check(struct scrub_bio *sbio, int ix) static int scrub_fixup_check(struct scrub_bio *sbio, int ix)
...@@ -247,7 +611,8 @@ static void scrub_fixup(struct scrub_bio *sbio, int ix) ...@@ -247,7 +611,8 @@ static void scrub_fixup(struct scrub_bio *sbio, int ix)
struct scrub_dev *sdev = sbio->sdev; struct scrub_dev *sdev = sbio->sdev;
struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info; struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
struct btrfs_multi_bio *multi = NULL; struct btrfs_bio *bbio = NULL;
struct scrub_fixup_nodatasum *fixup;
u64 logical = sbio->logical + ix * PAGE_SIZE; u64 logical = sbio->logical + ix * PAGE_SIZE;
u64 length; u64 length;
int i; int i;
...@@ -256,18 +621,36 @@ static void scrub_fixup(struct scrub_bio *sbio, int ix) ...@@ -256,18 +621,36 @@ static void scrub_fixup(struct scrub_bio *sbio, int ix)
if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) && if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) &&
(sbio->spag[ix].have_csum == 0)) { (sbio->spag[ix].have_csum == 0)) {
fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
if (!fixup)
goto uncorrectable;
fixup->sdev = sdev;
fixup->logical = logical;
fixup->root = fs_info->extent_root;
fixup->mirror_num = sbio->spag[ix].mirror_num;
/* /*
* nodatasum, don't try to fix anything * increment scrubs_running to prevent cancel requests from
* FIXME: we can do better, open the inode and trigger a * completing as long as a fixup worker is running. we must also
* writeback * increment scrubs_paused to prevent deadlocking on pause
* requests used for transactions commits (as the worker uses a
* transaction context). it is safe to regard the fixup worker
* as paused for all matters practical. effectively, we only
* avoid cancellation requests from completing.
*/ */
goto uncorrectable; mutex_lock(&fs_info->scrub_lock);
atomic_inc(&fs_info->scrubs_running);
atomic_inc(&fs_info->scrubs_paused);
mutex_unlock(&fs_info->scrub_lock);
atomic_inc(&sdev->fixup_cnt);
fixup->work.func = scrub_fixup_nodatasum;
btrfs_queue_worker(&fs_info->scrub_workers, &fixup->work);
return;
} }
length = PAGE_SIZE; length = PAGE_SIZE;
ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length,
&multi, 0); &bbio, 0);
if (ret || !multi || length < PAGE_SIZE) { if (ret || !bbio || length < PAGE_SIZE) {
printk(KERN_ERR printk(KERN_ERR
"scrub_fixup: btrfs_map_block failed us for %llu\n", "scrub_fixup: btrfs_map_block failed us for %llu\n",
(unsigned long long)logical); (unsigned long long)logical);
...@@ -275,19 +658,19 @@ static void scrub_fixup(struct scrub_bio *sbio, int ix) ...@@ -275,19 +658,19 @@ static void scrub_fixup(struct scrub_bio *sbio, int ix)
return; return;
} }
if (multi->num_stripes == 1) if (bbio->num_stripes == 1)
/* there aren't any replicas */ /* there aren't any replicas */
goto uncorrectable; goto uncorrectable;
/* /*
* first find a good copy * first find a good copy
*/ */
for (i = 0; i < multi->num_stripes; ++i) { for (i = 0; i < bbio->num_stripes; ++i) {
if (i == sbio->spag[ix].mirror_num) if (i + 1 == sbio->spag[ix].mirror_num)
continue; continue;
if (scrub_fixup_io(READ, multi->stripes[i].dev->bdev, if (scrub_fixup_io(READ, bbio->stripes[i].dev->bdev,
multi->stripes[i].physical >> 9, bbio->stripes[i].physical >> 9,
sbio->bio->bi_io_vec[ix].bv_page)) { sbio->bio->bi_io_vec[ix].bv_page)) {
/* I/O-error, this is not a good copy */ /* I/O-error, this is not a good copy */
continue; continue;
...@@ -296,7 +679,7 @@ static void scrub_fixup(struct scrub_bio *sbio, int ix) ...@@ -296,7 +679,7 @@ static void scrub_fixup(struct scrub_bio *sbio, int ix)
if (scrub_fixup_check(sbio, ix) == 0) if (scrub_fixup_check(sbio, ix) == 0)
break; break;
} }
if (i == multi->num_stripes) if (i == bbio->num_stripes)
goto uncorrectable; goto uncorrectable;
if (!sdev->readonly) { if (!sdev->readonly) {
...@@ -311,25 +694,23 @@ static void scrub_fixup(struct scrub_bio *sbio, int ix) ...@@ -311,25 +694,23 @@ static void scrub_fixup(struct scrub_bio *sbio, int ix)
} }
} }
kfree(multi); kfree(bbio);
spin_lock(&sdev->stat_lock); spin_lock(&sdev->stat_lock);
++sdev->stat.corrected_errors; ++sdev->stat.corrected_errors;
spin_unlock(&sdev->stat_lock); spin_unlock(&sdev->stat_lock);
if (printk_ratelimit()) printk_ratelimited(KERN_ERR "btrfs: fixed up error at logical %llu\n",
printk(KERN_ERR "btrfs: fixed up at %llu\n", (unsigned long long)logical);
(unsigned long long)logical);
return; return;
uncorrectable: uncorrectable:
kfree(multi); kfree(bbio);
spin_lock(&sdev->stat_lock); spin_lock(&sdev->stat_lock);
++sdev->stat.uncorrectable_errors; ++sdev->stat.uncorrectable_errors;
spin_unlock(&sdev->stat_lock); spin_unlock(&sdev->stat_lock);
if (printk_ratelimit()) printk_ratelimited(KERN_ERR "btrfs: unable to fixup (regular) error at "
printk(KERN_ERR "btrfs: unable to fixup at %llu\n", "logical %llu\n", (unsigned long long)logical);
(unsigned long long)logical);
} }
static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector, static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
...@@ -379,8 +760,14 @@ static void scrub_checksum(struct btrfs_work *work) ...@@ -379,8 +760,14 @@ static void scrub_checksum(struct btrfs_work *work)
int ret; int ret;
if (sbio->err) { if (sbio->err) {
ret = 0;
for (i = 0; i < sbio->count; ++i) for (i = 0; i < sbio->count; ++i)
scrub_recheck_error(sbio, i); ret |= scrub_recheck_error(sbio, i);
if (!ret) {
spin_lock(&sdev->stat_lock);
++sdev->stat.unverified_errors;
spin_unlock(&sdev->stat_lock);
}
sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1); sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
sbio->bio->bi_flags |= 1 << BIO_UPTODATE; sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
...@@ -393,10 +780,6 @@ static void scrub_checksum(struct btrfs_work *work) ...@@ -393,10 +780,6 @@ static void scrub_checksum(struct btrfs_work *work)
bi->bv_offset = 0; bi->bv_offset = 0;
bi->bv_len = PAGE_SIZE; bi->bv_len = PAGE_SIZE;
} }
spin_lock(&sdev->stat_lock);
++sdev->stat.read_errors;
spin_unlock(&sdev->stat_lock);
goto out; goto out;
} }
for (i = 0; i < sbio->count; ++i) { for (i = 0; i < sbio->count; ++i) {
...@@ -417,8 +800,14 @@ static void scrub_checksum(struct btrfs_work *work) ...@@ -417,8 +800,14 @@ static void scrub_checksum(struct btrfs_work *work)
WARN_ON(1); WARN_ON(1);
} }
kunmap_atomic(buffer, KM_USER0); kunmap_atomic(buffer, KM_USER0);
if (ret) if (ret) {
scrub_recheck_error(sbio, i); ret = scrub_recheck_error(sbio, i);
if (!ret) {
spin_lock(&sdev->stat_lock);
++sdev->stat.unverified_errors;
spin_unlock(&sdev->stat_lock);
}
}
} }
out: out:
...@@ -601,7 +990,7 @@ static int scrub_submit(struct scrub_dev *sdev) ...@@ -601,7 +990,7 @@ static int scrub_submit(struct scrub_dev *sdev)
} }
static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len, static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len,
u64 physical, u64 flags, u64 gen, u64 mirror_num, u64 physical, u64 flags, u64 gen, int mirror_num,
u8 *csum, int force) u8 *csum, int force)
{ {
struct scrub_bio *sbio; struct scrub_bio *sbio;
...@@ -698,7 +1087,7 @@ static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len, ...@@ -698,7 +1087,7 @@ static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
/* scrub extent tries to collect up to 64 kB for each bio */ /* scrub extent tries to collect up to 64 kB for each bio */
static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len, static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
u64 physical, u64 flags, u64 gen, u64 mirror_num) u64 physical, u64 flags, u64 gen, int mirror_num)
{ {
int ret; int ret;
u8 csum[BTRFS_CSUM_SIZE]; u8 csum[BTRFS_CSUM_SIZE];
...@@ -743,7 +1132,7 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev, ...@@ -743,7 +1132,7 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
u64 physical; u64 physical;
u64 logical; u64 logical;
u64 generation; u64 generation;
u64 mirror_num; int mirror_num;
struct reada_control *reada1; struct reada_control *reada1;
struct reada_control *reada2; struct reada_control *reada2;
struct btrfs_key key_start; struct btrfs_key key_start;
...@@ -758,21 +1147,21 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev, ...@@ -758,21 +1147,21 @@ static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
if (map->type & BTRFS_BLOCK_GROUP_RAID0) { if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
offset = map->stripe_len * num; offset = map->stripe_len * num;
increment = map->stripe_len * map->num_stripes; increment = map->stripe_len * map->num_stripes;
mirror_num = 0; mirror_num = 1;
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
int factor = map->num_stripes / map->sub_stripes; int factor = map->num_stripes / map->sub_stripes;
offset = map->stripe_len * (num / map->sub_stripes); offset = map->stripe_len * (num / map->sub_stripes);
increment = map->stripe_len * factor; increment = map->stripe_len * factor;
mirror_num = num % map->sub_stripes; mirror_num = num % map->sub_stripes + 1;
} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
increment = map->stripe_len; increment = map->stripe_len;
mirror_num = num % map->num_stripes; mirror_num = num % map->num_stripes + 1;
} else if (map->type & BTRFS_BLOCK_GROUP_DUP) { } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
increment = map->stripe_len; increment = map->stripe_len;
mirror_num = num % map->num_stripes; mirror_num = num % map->num_stripes + 1;
} else { } else {
increment = map->stripe_len; increment = map->stripe_len;
mirror_num = 0; mirror_num = 1;
} }
path = btrfs_alloc_path(); path = btrfs_alloc_path();
...@@ -1241,10 +1630,11 @@ int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end, ...@@ -1241,10 +1630,11 @@ int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
ret = scrub_enumerate_chunks(sdev, start, end); ret = scrub_enumerate_chunks(sdev, start, end);
wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0); wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
atomic_dec(&fs_info->scrubs_running); atomic_dec(&fs_info->scrubs_running);
wake_up(&fs_info->scrub_pause_wait); wake_up(&fs_info->scrub_pause_wait);
wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
if (progress) if (progress)
memcpy(progress, &sdev->stat, sizeof(*progress)); memcpy(progress, &sdev->stat, sizeof(*progress));
......
...@@ -2880,7 +2880,7 @@ static int find_live_mirror(struct map_lookup *map, int first, int num, ...@@ -2880,7 +2880,7 @@ static int find_live_mirror(struct map_lookup *map, int first, int num,
static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
u64 logical, u64 *length, u64 logical, u64 *length,
struct btrfs_multi_bio **multi_ret, struct btrfs_bio **bbio_ret,
int mirror_num) int mirror_num)
{ {
struct extent_map *em; struct extent_map *em;
...@@ -2898,18 +2898,18 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, ...@@ -2898,18 +2898,18 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
int i; int i;
int num_stripes; int num_stripes;
int max_errors = 0; int max_errors = 0;
struct btrfs_multi_bio *multi = NULL; struct btrfs_bio *bbio = NULL;
if (multi_ret && !(rw & (REQ_WRITE | REQ_DISCARD))) if (bbio_ret && !(rw & (REQ_WRITE | REQ_DISCARD)))
stripes_allocated = 1; stripes_allocated = 1;
again: again:
if (multi_ret) { if (bbio_ret) {
multi = kzalloc(btrfs_multi_bio_size(stripes_allocated), bbio = kzalloc(btrfs_bio_size(stripes_allocated),
GFP_NOFS); GFP_NOFS);
if (!multi) if (!bbio)
return -ENOMEM; return -ENOMEM;
atomic_set(&multi->error, 0); atomic_set(&bbio->error, 0);
} }
read_lock(&em_tree->lock); read_lock(&em_tree->lock);
...@@ -2930,7 +2930,7 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, ...@@ -2930,7 +2930,7 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
if (mirror_num > map->num_stripes) if (mirror_num > map->num_stripes)
mirror_num = 0; mirror_num = 0;
/* if our multi bio struct is too small, back off and try again */ /* if our btrfs_bio struct is too small, back off and try again */
if (rw & REQ_WRITE) { if (rw & REQ_WRITE) {
if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_DUP)) { BTRFS_BLOCK_GROUP_DUP)) {
...@@ -2949,11 +2949,11 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, ...@@ -2949,11 +2949,11 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
stripes_required = map->num_stripes; stripes_required = map->num_stripes;
} }
} }
if (multi_ret && (rw & (REQ_WRITE | REQ_DISCARD)) && if (bbio_ret && (rw & (REQ_WRITE | REQ_DISCARD)) &&
stripes_allocated < stripes_required) { stripes_allocated < stripes_required) {
stripes_allocated = map->num_stripes; stripes_allocated = map->num_stripes;
free_extent_map(em); free_extent_map(em);
kfree(multi); kfree(bbio);
goto again; goto again;
} }
stripe_nr = offset; stripe_nr = offset;
...@@ -2982,7 +2982,7 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, ...@@ -2982,7 +2982,7 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
*length = em->len - offset; *length = em->len - offset;
} }
if (!multi_ret) if (!bbio_ret)
goto out; goto out;
num_stripes = 1; num_stripes = 1;
...@@ -3007,13 +3007,17 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, ...@@ -3007,13 +3007,17 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
stripe_index = find_live_mirror(map, 0, stripe_index = find_live_mirror(map, 0,
map->num_stripes, map->num_stripes,
current->pid % map->num_stripes); current->pid % map->num_stripes);
mirror_num = stripe_index + 1;
} }
} else if (map->type & BTRFS_BLOCK_GROUP_DUP) { } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
if (rw & (REQ_WRITE | REQ_DISCARD)) if (rw & (REQ_WRITE | REQ_DISCARD)) {
num_stripes = map->num_stripes; num_stripes = map->num_stripes;
else if (mirror_num) } else if (mirror_num) {
stripe_index = mirror_num - 1; stripe_index = mirror_num - 1;
} else {
mirror_num = 1;
}
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
int factor = map->num_stripes / map->sub_stripes; int factor = map->num_stripes / map->sub_stripes;
...@@ -3033,6 +3037,7 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, ...@@ -3033,6 +3037,7 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
stripe_index = find_live_mirror(map, stripe_index, stripe_index = find_live_mirror(map, stripe_index,
map->sub_stripes, stripe_index + map->sub_stripes, stripe_index +
current->pid % map->sub_stripes); current->pid % map->sub_stripes);
mirror_num = stripe_index + 1;
} }
} else { } else {
/* /*
...@@ -3041,15 +3046,16 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, ...@@ -3041,15 +3046,16 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
* stripe_index is the number of our device in the stripe array * stripe_index is the number of our device in the stripe array
*/ */
stripe_index = do_div(stripe_nr, map->num_stripes); stripe_index = do_div(stripe_nr, map->num_stripes);
mirror_num = stripe_index + 1;
} }
BUG_ON(stripe_index >= map->num_stripes); BUG_ON(stripe_index >= map->num_stripes);
if (rw & REQ_DISCARD) { if (rw & REQ_DISCARD) {
for (i = 0; i < num_stripes; i++) { for (i = 0; i < num_stripes; i++) {
multi->stripes[i].physical = bbio->stripes[i].physical =
map->stripes[stripe_index].physical + map->stripes[stripe_index].physical +
stripe_offset + stripe_nr * map->stripe_len; stripe_offset + stripe_nr * map->stripe_len;
multi->stripes[i].dev = map->stripes[stripe_index].dev; bbio->stripes[i].dev = map->stripes[stripe_index].dev;
if (map->type & BTRFS_BLOCK_GROUP_RAID0) { if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
u64 stripes; u64 stripes;
...@@ -3070,16 +3076,16 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, ...@@ -3070,16 +3076,16 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
} }
stripes = stripe_nr_end - 1 - j; stripes = stripe_nr_end - 1 - j;
do_div(stripes, map->num_stripes); do_div(stripes, map->num_stripes);
multi->stripes[i].length = map->stripe_len * bbio->stripes[i].length = map->stripe_len *
(stripes - stripe_nr + 1); (stripes - stripe_nr + 1);
if (i == 0) { if (i == 0) {
multi->stripes[i].length -= bbio->stripes[i].length -=
stripe_offset; stripe_offset;
stripe_offset = 0; stripe_offset = 0;
} }
if (stripe_index == last_stripe) if (stripe_index == last_stripe)
multi->stripes[i].length -= bbio->stripes[i].length -=
stripe_end_offset; stripe_end_offset;
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
u64 stripes; u64 stripes;
...@@ -3104,11 +3110,11 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, ...@@ -3104,11 +3110,11 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
} }
stripes = stripe_nr_end - 1 - j; stripes = stripe_nr_end - 1 - j;
do_div(stripes, factor); do_div(stripes, factor);
multi->stripes[i].length = map->stripe_len * bbio->stripes[i].length = map->stripe_len *
(stripes - stripe_nr + 1); (stripes - stripe_nr + 1);
if (i < map->sub_stripes) { if (i < map->sub_stripes) {
multi->stripes[i].length -= bbio->stripes[i].length -=
stripe_offset; stripe_offset;
if (i == map->sub_stripes - 1) if (i == map->sub_stripes - 1)
stripe_offset = 0; stripe_offset = 0;
...@@ -3116,11 +3122,11 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, ...@@ -3116,11 +3122,11 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
if (stripe_index >= last_stripe && if (stripe_index >= last_stripe &&
stripe_index <= (last_stripe + stripe_index <= (last_stripe +
map->sub_stripes - 1)) { map->sub_stripes - 1)) {
multi->stripes[i].length -= bbio->stripes[i].length -=
stripe_end_offset; stripe_end_offset;
} }
} else } else
multi->stripes[i].length = *length; bbio->stripes[i].length = *length;
stripe_index++; stripe_index++;
if (stripe_index == map->num_stripes) { if (stripe_index == map->num_stripes) {
...@@ -3131,19 +3137,20 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, ...@@ -3131,19 +3137,20 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
} }
} else { } else {
for (i = 0; i < num_stripes; i++) { for (i = 0; i < num_stripes; i++) {
multi->stripes[i].physical = bbio->stripes[i].physical =
map->stripes[stripe_index].physical + map->stripes[stripe_index].physical +
stripe_offset + stripe_offset +
stripe_nr * map->stripe_len; stripe_nr * map->stripe_len;
multi->stripes[i].dev = bbio->stripes[i].dev =
map->stripes[stripe_index].dev; map->stripes[stripe_index].dev;
stripe_index++; stripe_index++;
} }
} }
if (multi_ret) { if (bbio_ret) {
*multi_ret = multi; *bbio_ret = bbio;
multi->num_stripes = num_stripes; bbio->num_stripes = num_stripes;
multi->max_errors = max_errors; bbio->max_errors = max_errors;
bbio->mirror_num = mirror_num;
} }
out: out:
free_extent_map(em); free_extent_map(em);
...@@ -3152,9 +3159,9 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, ...@@ -3152,9 +3159,9 @@ static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
u64 logical, u64 *length, u64 logical, u64 *length,
struct btrfs_multi_bio **multi_ret, int mirror_num) struct btrfs_bio **bbio_ret, int mirror_num)
{ {
return __btrfs_map_block(map_tree, rw, logical, length, multi_ret, return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
mirror_num); mirror_num);
} }
...@@ -3223,28 +3230,30 @@ int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, ...@@ -3223,28 +3230,30 @@ int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
return 0; return 0;
} }
static void end_bio_multi_stripe(struct bio *bio, int err) static void btrfs_end_bio(struct bio *bio, int err)
{ {
struct btrfs_multi_bio *multi = bio->bi_private; struct btrfs_bio *bbio = bio->bi_private;
int is_orig_bio = 0; int is_orig_bio = 0;
if (err) if (err)
atomic_inc(&multi->error); atomic_inc(&bbio->error);
if (bio == multi->orig_bio) if (bio == bbio->orig_bio)
is_orig_bio = 1; is_orig_bio = 1;
if (atomic_dec_and_test(&multi->stripes_pending)) { if (atomic_dec_and_test(&bbio->stripes_pending)) {
if (!is_orig_bio) { if (!is_orig_bio) {
bio_put(bio); bio_put(bio);
bio = multi->orig_bio; bio = bbio->orig_bio;
} }
bio->bi_private = multi->private; bio->bi_private = bbio->private;
bio->bi_end_io = multi->end_io; bio->bi_end_io = bbio->end_io;
bio->bi_bdev = (struct block_device *)
(unsigned long)bbio->mirror_num;
/* only send an error to the higher layers if it is /* only send an error to the higher layers if it is
* beyond the tolerance of the multi-bio * beyond the tolerance of the multi-bio
*/ */
if (atomic_read(&multi->error) > multi->max_errors) { if (atomic_read(&bbio->error) > bbio->max_errors) {
err = -EIO; err = -EIO;
} else if (err) { } else if (err) {
/* /*
...@@ -3254,7 +3263,7 @@ static void end_bio_multi_stripe(struct bio *bio, int err) ...@@ -3254,7 +3263,7 @@ static void end_bio_multi_stripe(struct bio *bio, int err)
set_bit(BIO_UPTODATE, &bio->bi_flags); set_bit(BIO_UPTODATE, &bio->bi_flags);
err = 0; err = 0;
} }
kfree(multi); kfree(bbio);
bio_endio(bio, err); bio_endio(bio, err);
} else if (!is_orig_bio) { } else if (!is_orig_bio) {
...@@ -3334,20 +3343,20 @@ int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, ...@@ -3334,20 +3343,20 @@ int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
u64 logical = (u64)bio->bi_sector << 9; u64 logical = (u64)bio->bi_sector << 9;
u64 length = 0; u64 length = 0;
u64 map_length; u64 map_length;
struct btrfs_multi_bio *multi = NULL;
int ret; int ret;
int dev_nr = 0; int dev_nr = 0;
int total_devs = 1; int total_devs = 1;
struct btrfs_bio *bbio = NULL;
length = bio->bi_size; length = bio->bi_size;
map_tree = &root->fs_info->mapping_tree; map_tree = &root->fs_info->mapping_tree;
map_length = length; map_length = length;
ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi, ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
mirror_num); mirror_num);
BUG_ON(ret); BUG_ON(ret);
total_devs = multi->num_stripes; total_devs = bbio->num_stripes;
if (map_length < length) { if (map_length < length) {
printk(KERN_CRIT "mapping failed logical %llu bio len %llu " printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
"len %llu\n", (unsigned long long)logical, "len %llu\n", (unsigned long long)logical,
...@@ -3355,25 +3364,28 @@ int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, ...@@ -3355,25 +3364,28 @@ int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
(unsigned long long)map_length); (unsigned long long)map_length);
BUG(); BUG();
} }
multi->end_io = first_bio->bi_end_io;
multi->private = first_bio->bi_private; bbio->orig_bio = first_bio;
multi->orig_bio = first_bio; bbio->private = first_bio->bi_private;
atomic_set(&multi->stripes_pending, multi->num_stripes); bbio->end_io = first_bio->bi_end_io;
atomic_set(&bbio->stripes_pending, bbio->num_stripes);
while (dev_nr < total_devs) { while (dev_nr < total_devs) {
if (total_devs > 1) { if (dev_nr < total_devs - 1) {
if (dev_nr < total_devs - 1) { bio = bio_clone(first_bio, GFP_NOFS);
bio = bio_clone(first_bio, GFP_NOFS); BUG_ON(!bio);
BUG_ON(!bio); } else {
} else { bio = first_bio;
bio = first_bio;
}
bio->bi_private = multi;
bio->bi_end_io = end_bio_multi_stripe;
} }
bio->bi_sector = multi->stripes[dev_nr].physical >> 9; bio->bi_private = bbio;
dev = multi->stripes[dev_nr].dev; bio->bi_end_io = btrfs_end_bio;
bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
dev = bbio->stripes[dev_nr].dev;
if (dev && dev->bdev && (rw != WRITE || dev->writeable)) { if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
"(%s id %llu), size=%u\n", rw,
(u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
dev->name, dev->devid, bio->bi_size);
bio->bi_bdev = dev->bdev; bio->bi_bdev = dev->bdev;
if (async_submit) if (async_submit)
schedule_bio(root, dev, rw, bio); schedule_bio(root, dev, rw, bio);
...@@ -3386,8 +3398,6 @@ int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, ...@@ -3386,8 +3398,6 @@ int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
} }
dev_nr++; dev_nr++;
} }
if (total_devs == 1)
kfree(multi);
return 0; return 0;
} }
......
...@@ -144,7 +144,10 @@ struct btrfs_bio_stripe { ...@@ -144,7 +144,10 @@ struct btrfs_bio_stripe {
u64 length; /* only used for discard mappings */ u64 length; /* only used for discard mappings */
}; };
struct btrfs_multi_bio { struct btrfs_bio;
typedef void (btrfs_bio_end_io_t) (struct btrfs_bio *bio, int err);
struct btrfs_bio {
atomic_t stripes_pending; atomic_t stripes_pending;
bio_end_io_t *end_io; bio_end_io_t *end_io;
struct bio *orig_bio; struct bio *orig_bio;
...@@ -152,6 +155,7 @@ struct btrfs_multi_bio { ...@@ -152,6 +155,7 @@ struct btrfs_multi_bio {
atomic_t error; atomic_t error;
int max_errors; int max_errors;
int num_stripes; int num_stripes;
int mirror_num;
struct btrfs_bio_stripe stripes[]; struct btrfs_bio_stripe stripes[];
}; };
...@@ -179,7 +183,7 @@ struct map_lookup { ...@@ -179,7 +183,7 @@ struct map_lookup {
int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
u64 end, u64 *length); u64 end, u64 *length);
#define btrfs_multi_bio_size(n) (sizeof(struct btrfs_multi_bio) + \ #define btrfs_bio_size(n) (sizeof(struct btrfs_bio) + \
(sizeof(struct btrfs_bio_stripe) * (n))) (sizeof(struct btrfs_bio_stripe) * (n)))
int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
...@@ -188,7 +192,7 @@ int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, ...@@ -188,7 +192,7 @@ int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
u64 chunk_offset, u64 start, u64 num_bytes); u64 chunk_offset, u64 start, u64 num_bytes);
int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
u64 logical, u64 *length, u64 logical, u64 *length,
struct btrfs_multi_bio **multi_ret, int mirror_num); struct btrfs_bio **bbio_ret, int mirror_num);
int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
u64 chunk_start, u64 physical, u64 devid, u64 chunk_start, u64 physical, u64 devid,
u64 **logical, int *naddrs, int *stripe_len); u64 **logical, int *naddrs, int *stripe_len);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册