提交 5a8d651a 编写于 作者: F Felipe Balbi

usb: gadget: move gadget API functions to udc-core

instead of defining all functions as static inlines,
let's move them to udc-core and export them with
EXPORT_SYMBOL_GPL, that way we can make sure that
only GPL drivers will use them.

As a side effect, it'll be nicer to add tracepoints
to the gadget API.

While at that, also fix Kconfig dependencies to
avoid randconfig build failures.
Acked-By: NSebastian Reichel <sre@kernel.org>
Acked-by: NPeter Chen <peter.chen@nxp.com>
Signed-off-by: NFelipe Balbi <felipe.balbi@linux.intel.com>
上级 d6dc2e76
...@@ -176,6 +176,7 @@ config TWL4030_USB ...@@ -176,6 +176,7 @@ config TWL4030_USB
tristate "TWL4030 USB Transceiver Driver" tristate "TWL4030 USB Transceiver Driver"
depends on TWL4030_CORE && REGULATOR_TWL4030 && USB_MUSB_OMAP2PLUS depends on TWL4030_CORE && REGULATOR_TWL4030 && USB_MUSB_OMAP2PLUS
depends on USB_SUPPORT depends on USB_SUPPORT
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't 'y'
select GENERIC_PHY select GENERIC_PHY
select USB_PHY select USB_PHY
help help
......
...@@ -309,6 +309,7 @@ config BATTERY_RX51 ...@@ -309,6 +309,7 @@ config BATTERY_RX51
config CHARGER_ISP1704 config CHARGER_ISP1704
tristate "ISP1704 USB Charger Detection" tristate "ISP1704 USB Charger Detection"
depends on USB_PHY depends on USB_PHY
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
help help
Say Y to enable support for USB Charger Detection with Say Y to enable support for USB Charger Detection with
ISP1707/ISP1704 USB transceivers. ISP1707/ISP1704 USB transceivers.
......
...@@ -59,6 +59,579 @@ static int udc_bind_to_driver(struct usb_udc *udc, ...@@ -59,6 +59,579 @@ static int udc_bind_to_driver(struct usb_udc *udc,
/* ------------------------------------------------------------------------- */ /* ------------------------------------------------------------------------- */
/**
* usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
* @ep:the endpoint being configured
* @maxpacket_limit:value of maximum packet size limit
*
* This function should be used only in UDC drivers to initialize endpoint
* (usually in probe function).
*/
void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
unsigned maxpacket_limit)
{
ep->maxpacket_limit = maxpacket_limit;
ep->maxpacket = maxpacket_limit;
}
EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
/**
* usb_ep_enable - configure endpoint, making it usable
* @ep:the endpoint being configured. may not be the endpoint named "ep0".
* drivers discover endpoints through the ep_list of a usb_gadget.
*
* When configurations are set, or when interface settings change, the driver
* will enable or disable the relevant endpoints. while it is enabled, an
* endpoint may be used for i/o until the driver receives a disconnect() from
* the host or until the endpoint is disabled.
*
* the ep0 implementation (which calls this routine) must ensure that the
* hardware capabilities of each endpoint match the descriptor provided
* for it. for example, an endpoint named "ep2in-bulk" would be usable
* for interrupt transfers as well as bulk, but it likely couldn't be used
* for iso transfers or for endpoint 14. some endpoints are fully
* configurable, with more generic names like "ep-a". (remember that for
* USB, "in" means "towards the USB master".)
*
* returns zero, or a negative error code.
*/
int usb_ep_enable(struct usb_ep *ep)
{
int ret;
if (ep->enabled)
return 0;
ret = ep->ops->enable(ep, ep->desc);
if (ret)
return ret;
ep->enabled = true;
return 0;
}
EXPORT_SYMBOL_GPL(usb_ep_enable);
/**
* usb_ep_disable - endpoint is no longer usable
* @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
*
* no other task may be using this endpoint when this is called.
* any pending and uncompleted requests will complete with status
* indicating disconnect (-ESHUTDOWN) before this call returns.
* gadget drivers must call usb_ep_enable() again before queueing
* requests to the endpoint.
*
* returns zero, or a negative error code.
*/
int usb_ep_disable(struct usb_ep *ep)
{
int ret;
if (!ep->enabled)
return 0;
ret = ep->ops->disable(ep);
if (ret)
return ret;
ep->enabled = false;
return 0;
}
EXPORT_SYMBOL_GPL(usb_ep_disable);
/**
* usb_ep_alloc_request - allocate a request object to use with this endpoint
* @ep:the endpoint to be used with with the request
* @gfp_flags:GFP_* flags to use
*
* Request objects must be allocated with this call, since they normally
* need controller-specific setup and may even need endpoint-specific
* resources such as allocation of DMA descriptors.
* Requests may be submitted with usb_ep_queue(), and receive a single
* completion callback. Free requests with usb_ep_free_request(), when
* they are no longer needed.
*
* Returns the request, or null if one could not be allocated.
*/
struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
gfp_t gfp_flags)
{
return ep->ops->alloc_request(ep, gfp_flags);
}
EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
/**
* usb_ep_free_request - frees a request object
* @ep:the endpoint associated with the request
* @req:the request being freed
*
* Reverses the effect of usb_ep_alloc_request().
* Caller guarantees the request is not queued, and that it will
* no longer be requeued (or otherwise used).
*/
void usb_ep_free_request(struct usb_ep *ep,
struct usb_request *req)
{
ep->ops->free_request(ep, req);
}
EXPORT_SYMBOL_GPL(usb_ep_free_request);
/**
* usb_ep_queue - queues (submits) an I/O request to an endpoint.
* @ep:the endpoint associated with the request
* @req:the request being submitted
* @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
* pre-allocate all necessary memory with the request.
*
* This tells the device controller to perform the specified request through
* that endpoint (reading or writing a buffer). When the request completes,
* including being canceled by usb_ep_dequeue(), the request's completion
* routine is called to return the request to the driver. Any endpoint
* (except control endpoints like ep0) may have more than one transfer
* request queued; they complete in FIFO order. Once a gadget driver
* submits a request, that request may not be examined or modified until it
* is given back to that driver through the completion callback.
*
* Each request is turned into one or more packets. The controller driver
* never merges adjacent requests into the same packet. OUT transfers
* will sometimes use data that's already buffered in the hardware.
* Drivers can rely on the fact that the first byte of the request's buffer
* always corresponds to the first byte of some USB packet, for both
* IN and OUT transfers.
*
* Bulk endpoints can queue any amount of data; the transfer is packetized
* automatically. The last packet will be short if the request doesn't fill it
* out completely. Zero length packets (ZLPs) should be avoided in portable
* protocols since not all usb hardware can successfully handle zero length
* packets. (ZLPs may be explicitly written, and may be implicitly written if
* the request 'zero' flag is set.) Bulk endpoints may also be used
* for interrupt transfers; but the reverse is not true, and some endpoints
* won't support every interrupt transfer. (Such as 768 byte packets.)
*
* Interrupt-only endpoints are less functional than bulk endpoints, for
* example by not supporting queueing or not handling buffers that are
* larger than the endpoint's maxpacket size. They may also treat data
* toggle differently.
*
* Control endpoints ... after getting a setup() callback, the driver queues
* one response (even if it would be zero length). That enables the
* status ack, after transferring data as specified in the response. Setup
* functions may return negative error codes to generate protocol stalls.
* (Note that some USB device controllers disallow protocol stall responses
* in some cases.) When control responses are deferred (the response is
* written after the setup callback returns), then usb_ep_set_halt() may be
* used on ep0 to trigger protocol stalls. Depending on the controller,
* it may not be possible to trigger a status-stage protocol stall when the
* data stage is over, that is, from within the response's completion
* routine.
*
* For periodic endpoints, like interrupt or isochronous ones, the usb host
* arranges to poll once per interval, and the gadget driver usually will
* have queued some data to transfer at that time.
*
* Returns zero, or a negative error code. Endpoints that are not enabled
* report errors; errors will also be
* reported when the usb peripheral is disconnected.
*/
int usb_ep_queue(struct usb_ep *ep,
struct usb_request *req, gfp_t gfp_flags)
{
if (WARN_ON_ONCE(!ep->enabled && ep->address))
return -ESHUTDOWN;
return ep->ops->queue(ep, req, gfp_flags);
}
EXPORT_SYMBOL_GPL(usb_ep_queue);
/**
* usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
* @ep:the endpoint associated with the request
* @req:the request being canceled
*
* If the request is still active on the endpoint, it is dequeued and its
* completion routine is called (with status -ECONNRESET); else a negative
* error code is returned. This is guaranteed to happen before the call to
* usb_ep_dequeue() returns.
*
* Note that some hardware can't clear out write fifos (to unlink the request
* at the head of the queue) except as part of disconnecting from usb. Such
* restrictions prevent drivers from supporting configuration changes,
* even to configuration zero (a "chapter 9" requirement).
*/
int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
return ep->ops->dequeue(ep, req);
}
EXPORT_SYMBOL_GPL(usb_ep_dequeue);
/**
* usb_ep_set_halt - sets the endpoint halt feature.
* @ep: the non-isochronous endpoint being stalled
*
* Use this to stall an endpoint, perhaps as an error report.
* Except for control endpoints,
* the endpoint stays halted (will not stream any data) until the host
* clears this feature; drivers may need to empty the endpoint's request
* queue first, to make sure no inappropriate transfers happen.
*
* Note that while an endpoint CLEAR_FEATURE will be invisible to the
* gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
* current altsetting, see usb_ep_clear_halt(). When switching altsettings,
* it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
*
* Returns zero, or a negative error code. On success, this call sets
* underlying hardware state that blocks data transfers.
* Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
* transfer requests are still queued, or if the controller hardware
* (usually a FIFO) still holds bytes that the host hasn't collected.
*/
int usb_ep_set_halt(struct usb_ep *ep)
{
return ep->ops->set_halt(ep, 1);
}
EXPORT_SYMBOL_GPL(usb_ep_set_halt);
/**
* usb_ep_clear_halt - clears endpoint halt, and resets toggle
* @ep:the bulk or interrupt endpoint being reset
*
* Use this when responding to the standard usb "set interface" request,
* for endpoints that aren't reconfigured, after clearing any other state
* in the endpoint's i/o queue.
*
* Returns zero, or a negative error code. On success, this call clears
* the underlying hardware state reflecting endpoint halt and data toggle.
* Note that some hardware can't support this request (like pxa2xx_udc),
* and accordingly can't correctly implement interface altsettings.
*/
int usb_ep_clear_halt(struct usb_ep *ep)
{
return ep->ops->set_halt(ep, 0);
}
EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
/**
* usb_ep_set_wedge - sets the halt feature and ignores clear requests
* @ep: the endpoint being wedged
*
* Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
* requests. If the gadget driver clears the halt status, it will
* automatically unwedge the endpoint.
*
* Returns zero on success, else negative errno.
*/
int usb_ep_set_wedge(struct usb_ep *ep)
{
if (ep->ops->set_wedge)
return ep->ops->set_wedge(ep);
else
return ep->ops->set_halt(ep, 1);
}
EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
/**
* usb_ep_fifo_status - returns number of bytes in fifo, or error
* @ep: the endpoint whose fifo status is being checked.
*
* FIFO endpoints may have "unclaimed data" in them in certain cases,
* such as after aborted transfers. Hosts may not have collected all
* the IN data written by the gadget driver (and reported by a request
* completion). The gadget driver may not have collected all the data
* written OUT to it by the host. Drivers that need precise handling for
* fault reporting or recovery may need to use this call.
*
* This returns the number of such bytes in the fifo, or a negative
* errno if the endpoint doesn't use a FIFO or doesn't support such
* precise handling.
*/
int usb_ep_fifo_status(struct usb_ep *ep)
{
if (ep->ops->fifo_status)
return ep->ops->fifo_status(ep);
else
return -EOPNOTSUPP;
}
EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
/**
* usb_ep_fifo_flush - flushes contents of a fifo
* @ep: the endpoint whose fifo is being flushed.
*
* This call may be used to flush the "unclaimed data" that may exist in
* an endpoint fifo after abnormal transaction terminations. The call
* must never be used except when endpoint is not being used for any
* protocol translation.
*/
void usb_ep_fifo_flush(struct usb_ep *ep)
{
if (ep->ops->fifo_flush)
ep->ops->fifo_flush(ep);
}
EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
/* ------------------------------------------------------------------------- */
/**
* usb_gadget_frame_number - returns the current frame number
* @gadget: controller that reports the frame number
*
* Returns the usb frame number, normally eleven bits from a SOF packet,
* or negative errno if this device doesn't support this capability.
*/
int usb_gadget_frame_number(struct usb_gadget *gadget)
{
return gadget->ops->get_frame(gadget);
}
EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
/**
* usb_gadget_wakeup - tries to wake up the host connected to this gadget
* @gadget: controller used to wake up the host
*
* Returns zero on success, else negative error code if the hardware
* doesn't support such attempts, or its support has not been enabled
* by the usb host. Drivers must return device descriptors that report
* their ability to support this, or hosts won't enable it.
*
* This may also try to use SRP to wake the host and start enumeration,
* even if OTG isn't otherwise in use. OTG devices may also start
* remote wakeup even when hosts don't explicitly enable it.
*/
int usb_gadget_wakeup(struct usb_gadget *gadget)
{
if (!gadget->ops->wakeup)
return -EOPNOTSUPP;
return gadget->ops->wakeup(gadget);
}
EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
/**
* usb_gadget_set_selfpowered - sets the device selfpowered feature.
* @gadget:the device being declared as self-powered
*
* this affects the device status reported by the hardware driver
* to reflect that it now has a local power supply.
*
* returns zero on success, else negative errno.
*/
int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
{
if (!gadget->ops->set_selfpowered)
return -EOPNOTSUPP;
return gadget->ops->set_selfpowered(gadget, 1);
}
EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
/**
* usb_gadget_clear_selfpowered - clear the device selfpowered feature.
* @gadget:the device being declared as bus-powered
*
* this affects the device status reported by the hardware driver.
* some hardware may not support bus-powered operation, in which
* case this feature's value can never change.
*
* returns zero on success, else negative errno.
*/
int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
{
if (!gadget->ops->set_selfpowered)
return -EOPNOTSUPP;
return gadget->ops->set_selfpowered(gadget, 0);
}
EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
/**
* usb_gadget_vbus_connect - Notify controller that VBUS is powered
* @gadget:The device which now has VBUS power.
* Context: can sleep
*
* This call is used by a driver for an external transceiver (or GPIO)
* that detects a VBUS power session starting. Common responses include
* resuming the controller, activating the D+ (or D-) pullup to let the
* host detect that a USB device is attached, and starting to draw power
* (8mA or possibly more, especially after SET_CONFIGURATION).
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_vbus_connect(struct usb_gadget *gadget)
{
if (!gadget->ops->vbus_session)
return -EOPNOTSUPP;
return gadget->ops->vbus_session(gadget, 1);
}
EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
/**
* usb_gadget_vbus_draw - constrain controller's VBUS power usage
* @gadget:The device whose VBUS usage is being described
* @mA:How much current to draw, in milliAmperes. This should be twice
* the value listed in the configuration descriptor bMaxPower field.
*
* This call is used by gadget drivers during SET_CONFIGURATION calls,
* reporting how much power the device may consume. For example, this
* could affect how quickly batteries are recharged.
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
if (!gadget->ops->vbus_draw)
return -EOPNOTSUPP;
return gadget->ops->vbus_draw(gadget, mA);
}
EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
/**
* usb_gadget_vbus_disconnect - notify controller about VBUS session end
* @gadget:the device whose VBUS supply is being described
* Context: can sleep
*
* This call is used by a driver for an external transceiver (or GPIO)
* that detects a VBUS power session ending. Common responses include
* reversing everything done in usb_gadget_vbus_connect().
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
{
if (!gadget->ops->vbus_session)
return -EOPNOTSUPP;
return gadget->ops->vbus_session(gadget, 0);
}
EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
/**
* usb_gadget_connect - software-controlled connect to USB host
* @gadget:the peripheral being connected
*
* Enables the D+ (or potentially D-) pullup. The host will start
* enumerating this gadget when the pullup is active and a VBUS session
* is active (the link is powered). This pullup is always enabled unless
* usb_gadget_disconnect() has been used to disable it.
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_connect(struct usb_gadget *gadget)
{
int ret;
if (!gadget->ops->pullup)
return -EOPNOTSUPP;
if (gadget->deactivated) {
/*
* If gadget is deactivated we only save new state.
* Gadget will be connected automatically after activation.
*/
gadget->connected = true;
return 0;
}
ret = gadget->ops->pullup(gadget, 1);
if (!ret)
gadget->connected = 1;
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_connect);
/**
* usb_gadget_disconnect - software-controlled disconnect from USB host
* @gadget:the peripheral being disconnected
*
* Disables the D+ (or potentially D-) pullup, which the host may see
* as a disconnect (when a VBUS session is active). Not all systems
* support software pullup controls.
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_disconnect(struct usb_gadget *gadget)
{
int ret;
if (!gadget->ops->pullup)
return -EOPNOTSUPP;
if (gadget->deactivated) {
/*
* If gadget is deactivated we only save new state.
* Gadget will stay disconnected after activation.
*/
gadget->connected = false;
return 0;
}
ret = gadget->ops->pullup(gadget, 0);
if (!ret)
gadget->connected = 0;
return ret;
}
EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
/**
* usb_gadget_deactivate - deactivate function which is not ready to work
* @gadget: the peripheral being deactivated
*
* This routine may be used during the gadget driver bind() call to prevent
* the peripheral from ever being visible to the USB host, unless later
* usb_gadget_activate() is called. For example, user mode components may
* need to be activated before the system can talk to hosts.
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_deactivate(struct usb_gadget *gadget)
{
int ret;
if (gadget->deactivated)
return 0;
if (gadget->connected) {
ret = usb_gadget_disconnect(gadget);
if (ret)
return ret;
/*
* If gadget was being connected before deactivation, we want
* to reconnect it in usb_gadget_activate().
*/
gadget->connected = true;
}
gadget->deactivated = true;
return 0;
}
EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
/**
* usb_gadget_activate - activate function which is not ready to work
* @gadget: the peripheral being activated
*
* This routine activates gadget which was previously deactivated with
* usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
*
* Returns zero on success, else negative errno.
*/
int usb_gadget_activate(struct usb_gadget *gadget)
{
if (!gadget->deactivated)
return 0;
gadget->deactivated = false;
/*
* If gadget has been connected before deactivation, or became connected
* while it was being deactivated, we call usb_gadget_connect().
*/
if (gadget->connected)
return usb_gadget_connect(gadget);
return 0;
}
EXPORT_SYMBOL_GPL(usb_gadget_activate);
/* ------------------------------------------------------------------------- */
#ifdef CONFIG_HAS_DMA #ifdef CONFIG_HAS_DMA
int usb_gadget_map_request_by_dev(struct device *dev, int usb_gadget_map_request_by_dev(struct device *dev,
......
...@@ -180,7 +180,7 @@ config USB_EHCI_MXC ...@@ -180,7 +180,7 @@ config USB_EHCI_MXC
config USB_EHCI_HCD_OMAP config USB_EHCI_HCD_OMAP
tristate "EHCI support for OMAP3 and later chips" tristate "EHCI support for OMAP3 and later chips"
depends on ARCH_OMAP depends on ARCH_OMAP
select NOP_USB_XCEIV depends on NOP_USB_XCEIV
default y default y
---help--- ---help---
Enables support for the on-chip EHCI controller on Enables support for the on-chip EHCI controller on
......
...@@ -21,6 +21,7 @@ config AB8500_USB ...@@ -21,6 +21,7 @@ config AB8500_USB
config FSL_USB2_OTG config FSL_USB2_OTG
bool "Freescale USB OTG Transceiver Driver" bool "Freescale USB OTG Transceiver Driver"
depends on USB_EHCI_FSL && USB_FSL_USB2 && USB_OTG_FSM && PM depends on USB_EHCI_FSL && USB_FSL_USB2 && USB_OTG_FSM && PM
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
select USB_PHY select USB_PHY
help help
Enable this to support Freescale USB OTG transceiver. Enable this to support Freescale USB OTG transceiver.
...@@ -29,6 +30,7 @@ config ISP1301_OMAP ...@@ -29,6 +30,7 @@ config ISP1301_OMAP
tristate "Philips ISP1301 with OMAP OTG" tristate "Philips ISP1301 with OMAP OTG"
depends on I2C && ARCH_OMAP_OTG depends on I2C && ARCH_OMAP_OTG
depends on USB depends on USB
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
select USB_PHY select USB_PHY
help help
If you say yes here you get support for the Philips ISP1301 If you say yes here you get support for the Philips ISP1301
...@@ -43,7 +45,7 @@ config ISP1301_OMAP ...@@ -43,7 +45,7 @@ config ISP1301_OMAP
config KEYSTONE_USB_PHY config KEYSTONE_USB_PHY
tristate "Keystone USB PHY Driver" tristate "Keystone USB PHY Driver"
depends on ARCH_KEYSTONE || COMPILE_TEST depends on ARCH_KEYSTONE || COMPILE_TEST
select NOP_USB_XCEIV depends on NOP_USB_XCEIV
help help
Enable this to support Keystone USB phy. This driver provides Enable this to support Keystone USB phy. This driver provides
interface to interact with USB 2.0 and USB 3.0 PHY that is part interface to interact with USB 2.0 and USB 3.0 PHY that is part
...@@ -51,6 +53,7 @@ config KEYSTONE_USB_PHY ...@@ -51,6 +53,7 @@ config KEYSTONE_USB_PHY
config NOP_USB_XCEIV config NOP_USB_XCEIV
tristate "NOP USB Transceiver Driver" tristate "NOP USB Transceiver Driver"
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, NOP can't be built-in
select USB_PHY select USB_PHY
help help
This driver is to be used by all the usb transceiver which are either This driver is to be used by all the usb transceiver which are either
...@@ -63,9 +66,9 @@ config AM335X_CONTROL_USB ...@@ -63,9 +66,9 @@ config AM335X_CONTROL_USB
config AM335X_PHY_USB config AM335X_PHY_USB
tristate "AM335x USB PHY Driver" tristate "AM335x USB PHY Driver"
depends on ARM || COMPILE_TEST depends on ARM || COMPILE_TEST
depends on NOP_USB_XCEIV
select USB_PHY select USB_PHY
select AM335X_CONTROL_USB select AM335X_CONTROL_USB
select NOP_USB_XCEIV
select USB_COMMON select USB_COMMON
help help
This driver provides PHY support for that phy which part for the This driver provides PHY support for that phy which part for the
...@@ -92,6 +95,7 @@ config TWL6030_USB ...@@ -92,6 +95,7 @@ config TWL6030_USB
config USB_GPIO_VBUS config USB_GPIO_VBUS
tristate "GPIO based peripheral-only VBUS sensing 'transceiver'" tristate "GPIO based peripheral-only VBUS sensing 'transceiver'"
depends on GPIOLIB || COMPILE_TEST depends on GPIOLIB || COMPILE_TEST
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
select USB_PHY select USB_PHY
help help
Provides simple GPIO VBUS sensing for controllers with an Provides simple GPIO VBUS sensing for controllers with an
...@@ -112,6 +116,7 @@ config OMAP_OTG ...@@ -112,6 +116,7 @@ config OMAP_OTG
config TAHVO_USB config TAHVO_USB
tristate "Tahvo USB transceiver driver" tristate "Tahvo USB transceiver driver"
depends on MFD_RETU && EXTCON depends on MFD_RETU && EXTCON
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
select USB_PHY select USB_PHY
help help
Enable this to support USB transceiver on Tahvo. This is used Enable this to support USB transceiver on Tahvo. This is used
...@@ -140,6 +145,7 @@ config USB_ISP1301 ...@@ -140,6 +145,7 @@ config USB_ISP1301
config USB_MSM_OTG config USB_MSM_OTG
tristate "Qualcomm on-chip USB OTG controller support" tristate "Qualcomm on-chip USB OTG controller support"
depends on (USB || USB_GADGET) && (ARCH_QCOM || COMPILE_TEST) depends on (USB || USB_GADGET) && (ARCH_QCOM || COMPILE_TEST)
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
depends on RESET_CONTROLLER depends on RESET_CONTROLLER
depends on EXTCON depends on EXTCON
select USB_PHY select USB_PHY
...@@ -169,6 +175,7 @@ config USB_QCOM_8X16_PHY ...@@ -169,6 +175,7 @@ config USB_QCOM_8X16_PHY
config USB_MV_OTG config USB_MV_OTG
tristate "Marvell USB OTG support" tristate "Marvell USB OTG support"
depends on USB_EHCI_MV && USB_MV_UDC && PM && USB_OTG depends on USB_EHCI_MV && USB_MV_UDC && PM && USB_OTG
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
select USB_PHY select USB_PHY
help help
Say Y here if you want to build Marvell USB OTG transciever Say Y here if you want to build Marvell USB OTG transciever
......
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册