提交 4df98b3f 编写于 作者: T Thomas Gleixner 提交者: Greg Kroah-Hartman

x86/speculation/mds: Conditionally clear CPU buffers on idle entry

commit 07f07f55a29cb705e221eda7894dd67ab81ef343 upstream

Add a static key which controls the invocation of the CPU buffer clear
mechanism on idle entry. This is independent of other MDS mitigations
because the idle entry invocation to mitigate the potential leakage due to
store buffer repartitioning is only necessary on SMT systems.

Add the actual invocations to the different halt/mwait variants which
covers all usage sites. mwaitx is not patched as it's not available on
Intel CPUs.

The buffer clear is only invoked before entering the C-State to prevent
that stale data from the idling CPU is spilled to the Hyper-Thread sibling
after the Store buffer got repartitioned and all entries are available to
the non idle sibling.

When coming out of idle the store buffer is partitioned again so each
sibling has half of it available. Now CPU which returned from idle could be
speculatively exposed to contents of the sibling, but the buffers are
flushed either on exit to user space or on VMENTER.

When later on conditional buffer clearing is implemented on top of this,
then there is no action required either because before returning to user
space the context switch will set the condition flag which causes a flush
on the return to user path.

Note, that the buffer clearing on idle is only sensible on CPUs which are
solely affected by MSBDS and not any other variant of MDS because the other
MDS variants cannot be mitigated when SMT is enabled, so the buffer
clearing on idle would be a window dressing exercise.

This intentionally does not handle the case in the acpi/processor_idle
driver which uses the legacy IO port interface for C-State transitions for
two reasons:

 - The acpi/processor_idle driver was replaced by the intel_idle driver
   almost a decade ago. Anything Nehalem upwards supports it and defaults
   to that new driver.

 - The legacy IO port interface is likely to be used on older and therefore
   unaffected CPUs or on systems which do not receive microcode updates
   anymore, so there is no point in adding that.
Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
Reviewed-by: NBorislav Petkov <bp@suse.de>
Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: NFrederic Weisbecker <frederic@kernel.org>
Reviewed-by: NJon Masters <jcm@redhat.com>
Tested-by: NJon Masters <jcm@redhat.com>
Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
上级 b39dc9a8
...@@ -149,3 +149,45 @@ Mitigation points ...@@ -149,3 +149,45 @@ Mitigation points
This takes the paranoid exit path only when the INT1 breakpoint is in This takes the paranoid exit path only when the INT1 breakpoint is in
kernel space. #DB on a user space address takes the regular exit path, kernel space. #DB on a user space address takes the regular exit path,
so no extra mitigation required. so no extra mitigation required.
2. C-State transition
^^^^^^^^^^^^^^^^^^^^^
When a CPU goes idle and enters a C-State the CPU buffers need to be
cleared on affected CPUs when SMT is active. This addresses the
repartitioning of the store buffer when one of the Hyper-Threads enters
a C-State.
When SMT is inactive, i.e. either the CPU does not support it or all
sibling threads are offline CPU buffer clearing is not required.
The idle clearing is enabled on CPUs which are only affected by MSBDS
and not by any other MDS variant. The other MDS variants cannot be
protected against cross Hyper-Thread attacks because the Fill Buffer and
the Load Ports are shared. So on CPUs affected by other variants, the
idle clearing would be a window dressing exercise and is therefore not
activated.
The invocation is controlled by the static key mds_idle_clear which is
switched depending on the chosen mitigation mode and the SMT state of
the system.
The buffer clear is only invoked before entering the C-State to prevent
that stale data from the idling CPU from spilling to the Hyper-Thread
sibling after the store buffer got repartitioned and all entries are
available to the non idle sibling.
When coming out of idle the store buffer is partitioned again so each
sibling has half of it available. The back from idle CPU could be then
speculatively exposed to contents of the sibling. The buffers are
flushed either on exit to user space or on VMENTER so malicious code
in user space or the guest cannot speculatively access them.
The mitigation is hooked into all variants of halt()/mwait(), but does
not cover the legacy ACPI IO-Port mechanism because the ACPI idle driver
has been superseded by the intel_idle driver around 2010 and is
preferred on all affected CPUs which are expected to gain the MD_CLEAR
functionality in microcode. Aside of that the IO-Port mechanism is a
legacy interface which is only used on older systems which are either
not affected or do not receive microcode updates anymore.
...@@ -6,6 +6,8 @@ ...@@ -6,6 +6,8 @@
#ifndef __ASSEMBLY__ #ifndef __ASSEMBLY__
#include <asm/nospec-branch.h>
/* Provide __cpuidle; we can't safely include <linux/cpu.h> */ /* Provide __cpuidle; we can't safely include <linux/cpu.h> */
#define __cpuidle __attribute__((__section__(".cpuidle.text"))) #define __cpuidle __attribute__((__section__(".cpuidle.text")))
...@@ -54,11 +56,13 @@ static inline void native_irq_enable(void) ...@@ -54,11 +56,13 @@ static inline void native_irq_enable(void)
static inline __cpuidle void native_safe_halt(void) static inline __cpuidle void native_safe_halt(void)
{ {
mds_idle_clear_cpu_buffers();
asm volatile("sti; hlt": : :"memory"); asm volatile("sti; hlt": : :"memory");
} }
static inline __cpuidle void native_halt(void) static inline __cpuidle void native_halt(void)
{ {
mds_idle_clear_cpu_buffers();
asm volatile("hlt": : :"memory"); asm volatile("hlt": : :"memory");
} }
......
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
#include <linux/sched/idle.h> #include <linux/sched/idle.h>
#include <asm/cpufeature.h> #include <asm/cpufeature.h>
#include <asm/nospec-branch.h>
#define MWAIT_SUBSTATE_MASK 0xf #define MWAIT_SUBSTATE_MASK 0xf
#define MWAIT_CSTATE_MASK 0xf #define MWAIT_CSTATE_MASK 0xf
...@@ -40,6 +41,8 @@ static inline void __monitorx(const void *eax, unsigned long ecx, ...@@ -40,6 +41,8 @@ static inline void __monitorx(const void *eax, unsigned long ecx,
static inline void __mwait(unsigned long eax, unsigned long ecx) static inline void __mwait(unsigned long eax, unsigned long ecx)
{ {
mds_idle_clear_cpu_buffers();
/* "mwait %eax, %ecx;" */ /* "mwait %eax, %ecx;" */
asm volatile(".byte 0x0f, 0x01, 0xc9;" asm volatile(".byte 0x0f, 0x01, 0xc9;"
:: "a" (eax), "c" (ecx)); :: "a" (eax), "c" (ecx));
...@@ -74,6 +77,8 @@ static inline void __mwait(unsigned long eax, unsigned long ecx) ...@@ -74,6 +77,8 @@ static inline void __mwait(unsigned long eax, unsigned long ecx)
static inline void __mwaitx(unsigned long eax, unsigned long ebx, static inline void __mwaitx(unsigned long eax, unsigned long ebx,
unsigned long ecx) unsigned long ecx)
{ {
/* No MDS buffer clear as this is AMD/HYGON only */
/* "mwaitx %eax, %ebx, %ecx;" */ /* "mwaitx %eax, %ebx, %ecx;" */
asm volatile(".byte 0x0f, 0x01, 0xfb;" asm volatile(".byte 0x0f, 0x01, 0xfb;"
:: "a" (eax), "b" (ebx), "c" (ecx)); :: "a" (eax), "b" (ebx), "c" (ecx));
...@@ -81,6 +86,8 @@ static inline void __mwaitx(unsigned long eax, unsigned long ebx, ...@@ -81,6 +86,8 @@ static inline void __mwaitx(unsigned long eax, unsigned long ebx,
static inline void __sti_mwait(unsigned long eax, unsigned long ecx) static inline void __sti_mwait(unsigned long eax, unsigned long ecx)
{ {
mds_idle_clear_cpu_buffers();
trace_hardirqs_on(); trace_hardirqs_on();
/* "mwait %eax, %ecx;" */ /* "mwait %eax, %ecx;" */
asm volatile("sti; .byte 0x0f, 0x01, 0xc9;" asm volatile("sti; .byte 0x0f, 0x01, 0xc9;"
......
...@@ -318,6 +318,7 @@ DECLARE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); ...@@ -318,6 +318,7 @@ DECLARE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
DECLARE_STATIC_KEY_FALSE(switch_mm_always_ibpb); DECLARE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
DECLARE_STATIC_KEY_FALSE(mds_user_clear); DECLARE_STATIC_KEY_FALSE(mds_user_clear);
DECLARE_STATIC_KEY_FALSE(mds_idle_clear);
#include <asm/segment.h> #include <asm/segment.h>
...@@ -355,6 +356,17 @@ static inline void mds_user_clear_cpu_buffers(void) ...@@ -355,6 +356,17 @@ static inline void mds_user_clear_cpu_buffers(void)
mds_clear_cpu_buffers(); mds_clear_cpu_buffers();
} }
/**
* mds_idle_clear_cpu_buffers - Mitigation for MDS vulnerability
*
* Clear CPU buffers if the corresponding static key is enabled
*/
static inline void mds_idle_clear_cpu_buffers(void)
{
if (static_branch_likely(&mds_idle_clear))
mds_clear_cpu_buffers();
}
#endif /* __ASSEMBLY__ */ #endif /* __ASSEMBLY__ */
/* /*
......
...@@ -64,6 +64,9 @@ DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb); ...@@ -64,6 +64,9 @@ DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
/* Control MDS CPU buffer clear before returning to user space */ /* Control MDS CPU buffer clear before returning to user space */
DEFINE_STATIC_KEY_FALSE(mds_user_clear); DEFINE_STATIC_KEY_FALSE(mds_user_clear);
EXPORT_SYMBOL_GPL(mds_user_clear); EXPORT_SYMBOL_GPL(mds_user_clear);
/* Control MDS CPU buffer clear before idling (halt, mwait) */
DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
EXPORT_SYMBOL_GPL(mds_idle_clear);
void __init check_bugs(void) void __init check_bugs(void)
{ {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册