提交 4205e6ef 编写于 作者: J John W. Linville

Merge branch 'master' of...

Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-next into for-davem
上级 cef401de 9ebea382
Failed to load branches. Please try again.
......@@ -17,10 +17,12 @@ HCI
HCI registers as an nfc device with NFC Core. Requests coming from userspace are
routed through netlink sockets to NFC Core and then to HCI. From this point,
they are translated in a sequence of HCI commands sent to the HCI layer in the
host controller (the chip). The sending context blocks while waiting for the
response to arrive.
host controller (the chip). Commands can be executed synchronously (the sending
context blocks waiting for response) or asynchronously (the response is returned
from HCI Rx context).
HCI events can also be received from the host controller. They will be handled
and a translation will be forwarded to NFC Core as needed.
and a translation will be forwarded to NFC Core as needed. There are hooks to
let the HCI driver handle proprietary events or override standard behavior.
HCI uses 2 execution contexts:
- one for executing commands : nfc_hci_msg_tx_work(). Only one command
can be executing at any given moment.
......@@ -33,6 +35,8 @@ The Session initialization is an HCI standard which must unfortunately
support proprietary gates. This is the reason why the driver will pass a list
of proprietary gates that must be part of the session. HCI will ensure all
those gates have pipes connected when the hci device is set up.
In case the chip supports pre-opened gates and pseudo-static pipes, the driver
can pass that information to HCI core.
HCI Gates and Pipes
-------------------
......@@ -46,6 +50,13 @@ without knowing the pipe connected to it.
Driver interface
----------------
A driver is generally written in two parts : the physical link management and
the HCI management. This makes it easier to maintain a driver for a chip that
can be connected using various phy (i2c, spi, ...)
HCI Management
--------------
A driver would normally register itself with HCI and provide the following
entry points:
......@@ -53,58 +64,113 @@ struct nfc_hci_ops {
int (*open)(struct nfc_hci_dev *hdev);
void (*close)(struct nfc_hci_dev *hdev);
int (*hci_ready) (struct nfc_hci_dev *hdev);
int (*xmit)(struct nfc_hci_dev *hdev, struct sk_buff *skb);
int (*start_poll)(struct nfc_hci_dev *hdev, u32 protocols);
int (*target_from_gate)(struct nfc_hci_dev *hdev, u8 gate,
struct nfc_target *target);
int (*xmit) (struct nfc_hci_dev *hdev, struct sk_buff *skb);
int (*start_poll) (struct nfc_hci_dev *hdev,
u32 im_protocols, u32 tm_protocols);
int (*dep_link_up)(struct nfc_hci_dev *hdev, struct nfc_target *target,
u8 comm_mode, u8 *gb, size_t gb_len);
int (*dep_link_down)(struct nfc_hci_dev *hdev);
int (*target_from_gate) (struct nfc_hci_dev *hdev, u8 gate,
struct nfc_target *target);
int (*complete_target_discovered) (struct nfc_hci_dev *hdev, u8 gate,
struct nfc_target *target);
int (*data_exchange) (struct nfc_hci_dev *hdev,
struct nfc_target *target,
struct sk_buff *skb, struct sk_buff **res_skb);
int (*im_transceive) (struct nfc_hci_dev *hdev,
struct nfc_target *target, struct sk_buff *skb,
data_exchange_cb_t cb, void *cb_context);
int (*tm_send)(struct nfc_hci_dev *hdev, struct sk_buff *skb);
int (*check_presence)(struct nfc_hci_dev *hdev,
struct nfc_target *target);
int (*event_received)(struct nfc_hci_dev *hdev, u8 gate, u8 event,
struct sk_buff *skb);
};
- open() and close() shall turn the hardware on and off.
- hci_ready() is an optional entry point that is called right after the hci
session has been set up. The driver can use it to do additional initialization
that must be performed using HCI commands.
- xmit() shall simply write a frame to the chip.
- xmit() shall simply write a frame to the physical link.
- start_poll() is an optional entrypoint that shall set the hardware in polling
mode. This must be implemented only if the hardware uses proprietary gates or a
mechanism slightly different from the HCI standard.
- dep_link_up() is called after a p2p target has been detected, to finish
the p2p connection setup with hardware parameters that need to be passed back
to nfc core.
- dep_link_down() is called to bring the p2p link down.
- target_from_gate() is an optional entrypoint to return the nfc protocols
corresponding to a proprietary gate.
- complete_target_discovered() is an optional entry point to let the driver
perform additional proprietary processing necessary to auto activate the
discovered target.
- data_exchange() must be implemented by the driver if proprietary HCI commands
- im_transceive() must be implemented by the driver if proprietary HCI commands
are required to send data to the tag. Some tag types will require custom
commands, others can be written to using the standard HCI commands. The driver
can check the tag type and either do proprietary processing, or return 1 to ask
for standard processing.
for standard processing. The data exchange command itself must be sent
asynchronously.
- tm_send() is called to send data in the case of a p2p connection
- check_presence() is an optional entry point that will be called regularly
by the core to check that an activated tag is still in the field. If this is
not implemented, the core will not be able to push tag_lost events to the user
space
- event_received() is called to handle an event coming from the chip. Driver
can handle the event or return 1 to let HCI attempt standard processing.
On the rx path, the driver is responsible to push incoming HCP frames to HCI
using nfc_hci_recv_frame(). HCI will take care of re-aggregation and handling
This must be done from a context that can sleep.
SHDLC
-----
PHY Management
--------------
The physical link (i2c, ...) management is defined by the following struture:
struct nfc_phy_ops {
int (*write)(void *dev_id, struct sk_buff *skb);
int (*enable)(void *dev_id);
void (*disable)(void *dev_id);
};
enable(): turn the phy on (power on), make it ready to transfer data
disable(): turn the phy off
write(): Send a data frame to the chip. Note that to enable higher
layers such as an llc to store the frame for re-emission, this function must
not alter the skb. It must also not return a positive result (return 0 for
success, negative for failure).
Data coming from the chip shall be sent directly to nfc_hci_recv_frame().
LLC
---
Communication between the CPU and the chip often requires some link layer
protocol. Those are isolated as modules managed by the HCI layer. There are
currently two modules : nop (raw transfert) and shdlc.
A new llc must implement the following functions:
struct nfc_llc_ops {
void *(*init) (struct nfc_hci_dev *hdev, xmit_to_drv_t xmit_to_drv,
rcv_to_hci_t rcv_to_hci, int tx_headroom,
int tx_tailroom, int *rx_headroom, int *rx_tailroom,
llc_failure_t llc_failure);
void (*deinit) (struct nfc_llc *llc);
int (*start) (struct nfc_llc *llc);
int (*stop) (struct nfc_llc *llc);
void (*rcv_from_drv) (struct nfc_llc *llc, struct sk_buff *skb);
int (*xmit_from_hci) (struct nfc_llc *llc, struct sk_buff *skb);
};
- init() : allocate and init your private storage
- deinit() : cleanup
- start() : establish the logical connection
- stop () : terminate the logical connection
- rcv_from_drv() : handle data coming from the chip, going to HCI
- xmit_from_hci() : handle data sent by HCI, going to the chip
Most chips use shdlc to ensure integrity and delivery ordering of the HCP
frames between the host controller (the chip) and hosts (entities connected
to the chip, like the cpu). In order to simplify writing the driver, an shdlc
layer is available for use by the driver.
When used, the driver actually registers with shdlc, and shdlc will register
with HCI. HCI sees shdlc as the driver and thus send its HCP frames
through shdlc->xmit.
SHDLC adds a new execution context (nfc_shdlc_sm_work()) to run its state
machine and handle both its rx and tx path.
The llc must be registered with nfc before it can be used. Do that by
calling nfc_llc_register(const char *name, struct nfc_llc_ops *ops);
Again, note that the llc does not handle the physical link. It is thus very
easy to mix any physical link with any llc for a given chip driver.
Included Drivers
----------------
......@@ -117,10 +183,12 @@ Execution Contexts
The execution contexts are the following:
- IRQ handler (IRQH):
fast, cannot sleep. stores incoming frames into an shdlc rx queue
fast, cannot sleep. sends incoming frames to HCI where they are passed to
the current llc. In case of shdlc, the frame is queued in shdlc rx queue.
- SHDLC State Machine worker (SMW)
handles shdlc rx & tx queues. Dispatches HCI cmd responses.
Only when llc_shdlc is used: handles shdlc rx & tx queues.
Dispatches HCI cmd responses.
- HCI Tx Cmd worker (MSGTXWQ)
Serializes execution of HCI commands. Completes execution in case of response
......@@ -166,6 +234,15 @@ waiting command execution. Response processing involves invoking the completion
callback that was provided by nfc_hci_msg_tx_work() when it sent the command.
The completion callback will then wake the syscall context.
It is also possible to execute the command asynchronously using this API:
static int nfc_hci_execute_cmd_async(struct nfc_hci_dev *hdev, u8 pipe, u8 cmd,
const u8 *param, size_t param_len,
data_exchange_cb_t cb, void *cb_context)
The workflow is the same, except that the API call returns immediately, and
the callback will be called with the result from the SMW context.
Workflow receiving an HCI event or command
------------------------------------------
......
Kernel driver for the NXP Semiconductors PN544 Near Field
Communication chip
Author: Jari Vanhala
Contact: Matti Aaltonen (matti.j.aaltonen at nokia.com)
General
-------
The PN544 is an integrated transmission module for contactless
communication. The driver goes under drives/nfc/ and is compiled as a
module named "pn544". It registers a misc device and creates a device
file named "/dev/pn544".
module named "pn544".
Host Interfaces: I2C, SPI and HSU, this driver supports currently only I2C.
The Interface
-------------
The driver offers a sysfs interface for a hardware test and an IOCTL
interface for selecting between two operating modes. There are read,
write and poll functions for transferring messages. The two operating
modes are the normal (HCI) mode and the firmware update mode.
PN544 is controlled by sending messages from the userspace to the
chip. The main function of the driver is just to pass those messages
without caring about the message content.
Protocols
---------
......@@ -47,68 +30,3 @@ and third (LSB) bytes of the message. The maximum FW message length is
For the ETSI HCI specification see
http://www.etsi.org/WebSite/Technologies/ProtocolSpecification.aspx
The Hardware Test
-----------------
The idea of the test is that it can performed by reading from the
corresponding sysfs file. The test is implemented in the board file
and it should test that PN544 can be put into the firmware update
mode. If the test is not implemented the sysfs file does not get
created.
Example:
> cat /sys/module/pn544/drivers/i2c\:pn544/3-002b/nfc_test
1
Normal Operation
----------------
PN544 is powered up when the device file is opened, otherwise it's
turned off. Only one instance can use the device at a time.
Userspace applications control PN544 with HCI messages. The hardware
sends an interrupt when data is available for reading. Data is
physically read when the read function is called by a userspace
application. Poll() checks the read interrupt state. Configuration and
self testing are also done from the userspace using read and write.
Example platform data:
static int rx71_pn544_nfc_request_resources(struct i2c_client *client)
{
/* Get and setup the HW resources for the device */
}
static void rx71_pn544_nfc_free_resources(void)
{
/* Release the HW resources */
}
static void rx71_pn544_nfc_enable(int fw)
{
/* Turn the device on */
}
static int rx71_pn544_nfc_test(void)
{
/*
* Put the device into the FW update mode
* and then back to the normal mode.
* Check the behavior and return one on success,
* zero on failure.
*/
}
static void rx71_pn544_nfc_disable(void)
{
/* turn the power off */
}
static struct pn544_nfc_platform_data rx71_nfc_data = {
.request_resources = rx71_pn544_nfc_request_resources,
.free_resources = rx71_pn544_nfc_free_resources,
.enable = rx71_pn544_nfc_enable,
.test = rx71_pn544_nfc_test,
.disable = rx71_pn544_nfc_disable,
};
......@@ -62,7 +62,7 @@ static int __init uart8250_init_bcma(void)
p->mapbase = (unsigned int) bcma_port->regs;
p->membase = (void *) bcma_port->regs;
p->irq = bcma_port->irq + 2;
p->irq = bcma_port->irq;
p->uartclk = bcma_port->baud_base;
p->regshift = bcma_port->reg_shift;
p->iotype = UPIO_MEM;
......
......@@ -31,6 +31,8 @@ int __init bcma_bus_early_register(struct bcma_bus *bus,
int bcma_bus_suspend(struct bcma_bus *bus);
int bcma_bus_resume(struct bcma_bus *bus);
#endif
struct bcma_device *bcma_find_core_unit(struct bcma_bus *bus, u16 coreid,
u8 unit);
/* scan.c */
int bcma_bus_scan(struct bcma_bus *bus);
......
......@@ -329,7 +329,7 @@ void bcma_chipco_serial_init(struct bcma_drv_cc *cc)
return;
}
irq = bcma_core_mips_irq(cc->core);
irq = bcma_core_irq(cc->core);
/* Determine the registers of the UARTs */
cc->nr_serial_ports = (cc->capabilities & BCMA_CC_CAP_NRUART);
......
......@@ -74,28 +74,41 @@ static u32 bcma_core_mips_irqflag(struct bcma_device *dev)
return dev->core_index;
flag = bcma_aread32(dev, BCMA_MIPS_OOBSELOUTA30);
return flag & 0x1F;
if (flag)
return flag & 0x1F;
else
return 0x3f;
}
/* Get the MIPS IRQ assignment for a specified device.
* If unassigned, 0 is returned.
* If disabled, 5 is returned.
* If not supported, 6 is returned.
*/
unsigned int bcma_core_mips_irq(struct bcma_device *dev)
static unsigned int bcma_core_mips_irq(struct bcma_device *dev)
{
struct bcma_device *mdev = dev->bus->drv_mips.core;
u32 irqflag;
unsigned int irq;
irqflag = bcma_core_mips_irqflag(dev);
if (irqflag == 0x3f)
return 6;
for (irq = 1; irq <= 4; irq++)
for (irq = 0; irq <= 4; irq++)
if (bcma_read32(mdev, BCMA_MIPS_MIPS74K_INTMASK(irq)) &
(1 << irqflag))
return irq;
return 0;
return 5;
}
unsigned int bcma_core_irq(struct bcma_device *dev)
{
unsigned int mips_irq = bcma_core_mips_irq(dev);
return mips_irq <= 4 ? mips_irq + 2 : 0;
}
EXPORT_SYMBOL(bcma_core_mips_irq);
EXPORT_SYMBOL(bcma_core_irq);
static void bcma_core_mips_set_irq(struct bcma_device *dev, unsigned int irq)
{
......@@ -114,7 +127,7 @@ static void bcma_core_mips_set_irq(struct bcma_device *dev, unsigned int irq)
bcma_write32(mdev, BCMA_MIPS_MIPS74K_INTMASK(0),
bcma_read32(mdev, BCMA_MIPS_MIPS74K_INTMASK(0)) &
~(1 << irqflag));
else
else if (oldirq != 5)
bcma_write32(mdev, BCMA_MIPS_MIPS74K_INTMASK(oldirq), 0);
/* assign the new one */
......@@ -123,9 +136,9 @@ static void bcma_core_mips_set_irq(struct bcma_device *dev, unsigned int irq)
bcma_read32(mdev, BCMA_MIPS_MIPS74K_INTMASK(0)) |
(1 << irqflag));
} else {
u32 oldirqflag = bcma_read32(mdev,
BCMA_MIPS_MIPS74K_INTMASK(irq));
if (oldirqflag) {
u32 irqinitmask = bcma_read32(mdev,
BCMA_MIPS_MIPS74K_INTMASK(irq));
if (irqinitmask) {
struct bcma_device *core;
/* backplane irq line is in use, find out who uses
......@@ -133,7 +146,7 @@ static void bcma_core_mips_set_irq(struct bcma_device *dev, unsigned int irq)
*/
list_for_each_entry(core, &bus->cores, list) {
if ((1 << bcma_core_mips_irqflag(core)) ==
oldirqflag) {
irqinitmask) {
bcma_core_mips_set_irq(core, 0);
break;
}
......@@ -143,15 +156,31 @@ static void bcma_core_mips_set_irq(struct bcma_device *dev, unsigned int irq)
1 << irqflag);
}
bcma_info(bus, "set_irq: core 0x%04x, irq %d => %d\n",
dev->id.id, oldirq + 2, irq + 2);
bcma_debug(bus, "set_irq: core 0x%04x, irq %d => %d\n",
dev->id.id, oldirq <= 4 ? oldirq + 2 : 0, irq + 2);
}
static void bcma_core_mips_set_irq_name(struct bcma_bus *bus, unsigned int irq,
u16 coreid, u8 unit)
{
struct bcma_device *core;
core = bcma_find_core_unit(bus, coreid, unit);
if (!core) {
bcma_warn(bus,
"Can not find core (id: 0x%x, unit %i) for IRQ configuration.\n",
coreid, unit);
return;
}
bcma_core_mips_set_irq(core, irq);
}
static void bcma_core_mips_print_irq(struct bcma_device *dev, unsigned int irq)
{
int i;
static const char *irq_name[] = {"2(S)", "3", "4", "5", "6", "D", "I"};
printk(KERN_INFO KBUILD_MODNAME ": core 0x%04x, irq :", dev->id.id);
printk(KERN_DEBUG KBUILD_MODNAME ": core 0x%04x, irq :", dev->id.id);
for (i = 0; i <= 6; i++)
printk(" %s%s", irq_name[i], i == irq ? "*" : " ");
printk("\n");
......@@ -227,6 +256,32 @@ void bcma_core_mips_early_init(struct bcma_drv_mips *mcore)
mcore->early_setup_done = true;
}
static void bcma_fix_i2s_irqflag(struct bcma_bus *bus)
{
struct bcma_device *cpu, *pcie, *i2s;
/* Fixup the interrupts in 4716/4748 for i2s core (2010 Broadcom SDK)
* (IRQ flags > 7 are ignored when setting the interrupt masks)
*/
if (bus->chipinfo.id != BCMA_CHIP_ID_BCM4716 &&
bus->chipinfo.id != BCMA_CHIP_ID_BCM4748)
return;
cpu = bcma_find_core(bus, BCMA_CORE_MIPS_74K);
pcie = bcma_find_core(bus, BCMA_CORE_PCIE);
i2s = bcma_find_core(bus, BCMA_CORE_I2S);
if (cpu && pcie && i2s &&
bcma_aread32(cpu, BCMA_MIPS_OOBSELINA74) == 0x08060504 &&
bcma_aread32(pcie, BCMA_MIPS_OOBSELINA74) == 0x08060504 &&
bcma_aread32(i2s, BCMA_MIPS_OOBSELOUTA30) == 0x88) {
bcma_awrite32(cpu, BCMA_MIPS_OOBSELINA74, 0x07060504);
bcma_awrite32(pcie, BCMA_MIPS_OOBSELINA74, 0x07060504);
bcma_awrite32(i2s, BCMA_MIPS_OOBSELOUTA30, 0x87);
bcma_debug(bus,
"Moved i2s interrupt to oob line 7 instead of 8\n");
}
}
void bcma_core_mips_init(struct bcma_drv_mips *mcore)
{
struct bcma_bus *bus;
......@@ -236,43 +291,55 @@ void bcma_core_mips_init(struct bcma_drv_mips *mcore)
if (mcore->setup_done)
return;
bcma_info(bus, "Initializing MIPS core...\n");
bcma_debug(bus, "Initializing MIPS core...\n");
bcma_core_mips_early_init(mcore);
mcore->assigned_irqs = 1;
/* Assign IRQs to all cores on the bus */
list_for_each_entry(core, &bus->cores, list) {
int mips_irq;
if (core->irq)
continue;
mips_irq = bcma_core_mips_irq(core);
if (mips_irq > 4)
core->irq = 0;
else
core->irq = mips_irq + 2;
if (core->irq > 5)
continue;
switch (core->id.id) {
case BCMA_CORE_PCI:
case BCMA_CORE_PCIE:
case BCMA_CORE_ETHERNET:
case BCMA_CORE_ETHERNET_GBIT:
case BCMA_CORE_MAC_GBIT:
case BCMA_CORE_80211:
case BCMA_CORE_USB20_HOST:
/* These devices get their own IRQ line if available,
* the rest goes on IRQ0
*/
if (mcore->assigned_irqs <= 4)
bcma_core_mips_set_irq(core,
mcore->assigned_irqs++);
break;
bcma_fix_i2s_irqflag(bus);
switch (bus->chipinfo.id) {
case BCMA_CHIP_ID_BCM4716:
case BCMA_CHIP_ID_BCM4748:
bcma_core_mips_set_irq_name(bus, 1, BCMA_CORE_80211, 0);
bcma_core_mips_set_irq_name(bus, 2, BCMA_CORE_MAC_GBIT, 0);
bcma_core_mips_set_irq_name(bus, 3, BCMA_CORE_USB20_HOST, 0);
bcma_core_mips_set_irq_name(bus, 4, BCMA_CORE_PCIE, 0);
bcma_core_mips_set_irq_name(bus, 0, BCMA_CORE_CHIPCOMMON, 0);
bcma_core_mips_set_irq_name(bus, 0, BCMA_CORE_I2S, 0);
break;
case BCMA_CHIP_ID_BCM5356:
case BCMA_CHIP_ID_BCM47162:
case BCMA_CHIP_ID_BCM53572:
bcma_core_mips_set_irq_name(bus, 1, BCMA_CORE_80211, 0);
bcma_core_mips_set_irq_name(bus, 2, BCMA_CORE_MAC_GBIT, 0);
bcma_core_mips_set_irq_name(bus, 0, BCMA_CORE_CHIPCOMMON, 0);
break;
case BCMA_CHIP_ID_BCM5357:
case BCMA_CHIP_ID_BCM4749:
bcma_core_mips_set_irq_name(bus, 1, BCMA_CORE_80211, 0);
bcma_core_mips_set_irq_name(bus, 2, BCMA_CORE_MAC_GBIT, 0);
bcma_core_mips_set_irq_name(bus, 3, BCMA_CORE_USB20_HOST, 0);
bcma_core_mips_set_irq_name(bus, 0, BCMA_CORE_CHIPCOMMON, 0);
bcma_core_mips_set_irq_name(bus, 0, BCMA_CORE_I2S, 0);
break;
case BCMA_CHIP_ID_BCM4706:
bcma_core_mips_set_irq_name(bus, 1, BCMA_CORE_PCIE, 0);
bcma_core_mips_set_irq_name(bus, 2, BCMA_CORE_4706_MAC_GBIT,
0);
bcma_core_mips_set_irq_name(bus, 3, BCMA_CORE_PCIE, 1);
bcma_core_mips_set_irq_name(bus, 4, BCMA_CORE_USB20_HOST, 0);
bcma_core_mips_set_irq_name(bus, 0, BCMA_CORE_4706_CHIPCOMMON,
0);
break;
default:
list_for_each_entry(core, &bus->cores, list) {
core->irq = bcma_core_irq(core);
}
bcma_err(bus,
"Unknown device (0x%x) found, can not configure IRQs\n",
bus->chipinfo.id);
}
bcma_info(bus, "IRQ reconfiguration done\n");
bcma_debug(bus, "IRQ reconfiguration done\n");
bcma_core_mips_dump_irq(bus);
mcore->setup_done = true;
......
......@@ -94,19 +94,19 @@ static int bcma_extpci_read_config(struct bcma_drv_pci *pc, unsigned int dev,
if (dev == 0) {
/* we support only two functions on device 0 */
if (func > 1)
return -EINVAL;
goto out;
/* accesses to config registers with offsets >= 256
* requires indirect access.
*/
if (off >= PCI_CONFIG_SPACE_SIZE) {
addr = (func << 12);
addr |= (off & 0x0FFF);
addr |= (off & 0x0FFC);
val = bcma_pcie_read_config(pc, addr);
} else {
addr = BCMA_CORE_PCI_PCICFG0;
addr |= (func << 8);
addr |= (off & 0xfc);
addr |= (off & 0xFC);
val = pcicore_read32(pc, addr);
}
} else {
......@@ -119,11 +119,9 @@ static int bcma_extpci_read_config(struct bcma_drv_pci *pc, unsigned int dev,
goto out;
if (mips_busprobe32(val, mmio)) {
val = 0xffffffff;
val = 0xFFFFFFFF;
goto unmap;
}
val = readl(mmio);
}
val >>= (8 * (off & 3));
......@@ -151,7 +149,7 @@ static int bcma_extpci_write_config(struct bcma_drv_pci *pc, unsigned int dev,
const void *buf, int len)
{
int err = -EINVAL;
u32 addr = 0, val = 0;
u32 addr, val;
void __iomem *mmio = 0;
u16 chipid = pc->core->bus->chipinfo.id;
......@@ -159,16 +157,22 @@ static int bcma_extpci_write_config(struct bcma_drv_pci *pc, unsigned int dev,
if (unlikely(len != 1 && len != 2 && len != 4))
goto out;
if (dev == 0) {
/* we support only two functions on device 0 */
if (func > 1)
goto out;
/* accesses to config registers with offsets >= 256
* requires indirect access.
*/
if (off < PCI_CONFIG_SPACE_SIZE) {
addr = pc->core->addr + BCMA_CORE_PCI_PCICFG0;
if (off >= PCI_CONFIG_SPACE_SIZE) {
addr = (func << 12);
addr |= (off & 0x0FFC);
val = bcma_pcie_read_config(pc, addr);
} else {
addr = BCMA_CORE_PCI_PCICFG0;
addr |= (func << 8);
addr |= (off & 0xfc);
mmio = ioremap_nocache(addr, sizeof(val));
if (!mmio)
goto out;
addr |= (off & 0xFC);
val = pcicore_read32(pc, addr);
}
} else {
addr = bcma_get_cfgspace_addr(pc, dev, func, off);
......@@ -180,19 +184,17 @@ static int bcma_extpci_write_config(struct bcma_drv_pci *pc, unsigned int dev,
goto out;
if (mips_busprobe32(val, mmio)) {
val = 0xffffffff;
val = 0xFFFFFFFF;
goto unmap;
}
}
switch (len) {
case 1:
val = readl(mmio);
val &= ~(0xFF << (8 * (off & 3)));
val |= *((const u8 *)buf) << (8 * (off & 3));
break;
case 2:
val = readl(mmio);
val &= ~(0xFFFF << (8 * (off & 3)));
val |= *((const u16 *)buf) << (8 * (off & 3));
break;
......@@ -200,13 +202,14 @@ static int bcma_extpci_write_config(struct bcma_drv_pci *pc, unsigned int dev,
val = *((const u32 *)buf);
break;
}
if (dev == 0 && !addr) {
if (dev == 0) {
/* accesses to config registers with offsets >= 256
* requires indirect access.
*/
addr = (func << 12);
addr |= (off & 0x0FFF);
bcma_pcie_write_config(pc, addr, val);
if (off >= PCI_CONFIG_SPACE_SIZE)
bcma_pcie_write_config(pc, addr, val);
else
pcicore_write32(pc, addr, val);
} else {
writel(val, mmio);
......@@ -276,7 +279,7 @@ static u8 bcma_find_pci_capability(struct bcma_drv_pci *pc, unsigned int dev,
/* check for Header type 0 */
bcma_extpci_read_config(pc, dev, func, PCI_HEADER_TYPE, &byte_val,
sizeof(u8));
if ((byte_val & 0x7f) != PCI_HEADER_TYPE_NORMAL)
if ((byte_val & 0x7F) != PCI_HEADER_TYPE_NORMAL)
return cap_ptr;
/* check if the capability pointer field exists */
......@@ -426,7 +429,7 @@ void bcma_core_pci_hostmode_init(struct bcma_drv_pci *pc)
/* Reset RC */
usleep_range(3000, 5000);
pcicore_write32(pc, BCMA_CORE_PCI_CTL, BCMA_CORE_PCI_CTL_RST_OE);
usleep_range(1000, 2000);
msleep(50);
pcicore_write32(pc, BCMA_CORE_PCI_CTL, BCMA_CORE_PCI_CTL_RST |
BCMA_CORE_PCI_CTL_RST_OE);
......@@ -488,6 +491,17 @@ void bcma_core_pci_hostmode_init(struct bcma_drv_pci *pc)
bcma_core_pci_enable_crs(pc);
if (bus->chipinfo.id == BCMA_CHIP_ID_BCM4706 ||
bus->chipinfo.id == BCMA_CHIP_ID_BCM4716) {
u16 val16;
bcma_extpci_read_config(pc, 0, 0, BCMA_CORE_PCI_CFG_DEVCTRL,
&val16, sizeof(val16));
val16 |= (2 << 5); /* Max payload size of 512 */
val16 |= (2 << 12); /* MRRS 512 */
bcma_extpci_write_config(pc, 0, 0, BCMA_CORE_PCI_CFG_DEVCTRL,
&val16, sizeof(val16));
}
/* Enable PCI bridge BAR0 memory & master access */
tmp = PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY;
bcma_extpci_write_config(pc, 0, 0, PCI_COMMAND, &tmp, sizeof(tmp));
......@@ -576,7 +590,7 @@ int bcma_core_pci_plat_dev_init(struct pci_dev *dev)
pr_info("PCI: Fixing up device %s\n", pci_name(dev));
/* Fix up interrupt lines */
dev->irq = bcma_core_mips_irq(pc_host->pdev->core) + 2;
dev->irq = bcma_core_irq(pc_host->pdev->core);
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, dev->irq);
return 0;
......@@ -595,6 +609,6 @@ int bcma_core_pci_pcibios_map_irq(const struct pci_dev *dev)
pc_host = container_of(dev->bus->ops, struct bcma_drv_pci_host,
pci_ops);
return bcma_core_mips_irq(pc_host->pdev->core) + 2;
return bcma_core_irq(pc_host->pdev->core);
}
EXPORT_SYMBOL(bcma_core_pci_pcibios_map_irq);
......@@ -81,8 +81,8 @@ struct bcma_device *bcma_find_core(struct bcma_bus *bus, u16 coreid)
}
EXPORT_SYMBOL_GPL(bcma_find_core);
static struct bcma_device *bcma_find_core_unit(struct bcma_bus *bus, u16 coreid,
u8 unit)
struct bcma_device *bcma_find_core_unit(struct bcma_bus *bus, u16 coreid,
u8 unit)
{
struct bcma_device *core;
......
......@@ -77,10 +77,15 @@ static struct usb_device_id ath3k_table[] = {
{ USB_DEVICE(0x0CF3, 0x311D) },
{ USB_DEVICE(0x13d3, 0x3375) },
{ USB_DEVICE(0x04CA, 0x3005) },
{ USB_DEVICE(0x04CA, 0x3006) },
{ USB_DEVICE(0x04CA, 0x3008) },
{ USB_DEVICE(0x13d3, 0x3362) },
{ USB_DEVICE(0x0CF3, 0xE004) },
{ USB_DEVICE(0x0930, 0x0219) },
{ USB_DEVICE(0x0489, 0xe057) },
{ USB_DEVICE(0x13d3, 0x3393) },
{ USB_DEVICE(0x0489, 0xe04e) },
{ USB_DEVICE(0x0489, 0xe056) },
/* Atheros AR5BBU12 with sflash firmware */
{ USB_DEVICE(0x0489, 0xE02C) },
......@@ -104,10 +109,15 @@ static struct usb_device_id ath3k_blist_tbl[] = {
{ USB_DEVICE(0x0cf3, 0x311D), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3375), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3005), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3006), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3008), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3362), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0xe004), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0930, 0x0219), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe057), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3393), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe04e), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe056), .driver_info = BTUSB_ATH3012 },
/* Atheros AR5BBU22 with sflash firmware */
{ USB_DEVICE(0x0489, 0xE03C), .driver_info = BTUSB_ATH3012 },
......
......@@ -135,10 +135,15 @@ static struct usb_device_id blacklist_table[] = {
{ USB_DEVICE(0x0cf3, 0x311d), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3375), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3005), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3006), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x04ca, 0x3008), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3362), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0cf3, 0xe004), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0930, 0x0219), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe057), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x13d3, 0x3393), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe04e), .driver_info = BTUSB_ATH3012 },
{ USB_DEVICE(0x0489, 0xe056), .driver_info = BTUSB_ATH3012 },
/* Atheros AR5BBU12 with sflash firmware */
{ USB_DEVICE(0x0489, 0xe02c), .driver_info = BTUSB_IGNORE },
......
......@@ -240,13 +240,14 @@ static const struct ath_ops ath5k_common_ops = {
* Driver Initialization *
\***********************/
static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
static void ath5k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath5k_hw *ah = hw->priv;
struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
return ath_reg_notifier_apply(wiphy, request, regulatory);
ath_reg_notifier_apply(wiphy, request, regulatory);
}
/********************\
......
......@@ -3492,8 +3492,8 @@ void ath6kl_cfg80211_stop_all(struct ath6kl *ar)
ath6kl_cfg80211_stop(vif);
}
static int ath6kl_cfg80211_reg_notify(struct wiphy *wiphy,
struct regulatory_request *request)
static void ath6kl_cfg80211_reg_notify(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ath6kl *ar = wiphy_priv(wiphy);
u32 rates[IEEE80211_NUM_BANDS];
......@@ -3506,17 +3506,13 @@ static int ath6kl_cfg80211_reg_notify(struct wiphy *wiphy,
request->processed ? " processed" : "",
request->initiator, request->user_reg_hint_type);
/*
* As firmware is not able intersect regdoms, we can only listen to
* cellular hints.
*/
if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
return -EOPNOTSUPP;
return;
ret = ath6kl_wmi_set_regdomain_cmd(ar->wmi, request->alpha2);
if (ret) {
ath6kl_err("failed to set regdomain: %d\n", ret);
return ret;
return;
}
/*
......@@ -3536,10 +3532,8 @@ static int ath6kl_cfg80211_reg_notify(struct wiphy *wiphy,
if (ret) {
ath6kl_err("failed to start scan for a regdomain change: %d\n",
ret);
return ret;
return;
}
return 0;
}
static int ath6kl_cfg80211_vif_init(struct ath6kl_vif *vif)
......
......@@ -86,29 +86,25 @@ static int ath_ahb_probe(struct platform_device *pdev)
if (!pdev->dev.platform_data) {
dev_err(&pdev->dev, "no platform data specified\n");
ret = -EINVAL;
goto err_out;
return -EINVAL;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
dev_err(&pdev->dev, "no memory resource found\n");
ret = -ENXIO;
goto err_out;
return -ENXIO;
}
mem = ioremap_nocache(res->start, resource_size(res));
mem = devm_ioremap_nocache(&pdev->dev, res->start, resource_size(res));
if (mem == NULL) {
dev_err(&pdev->dev, "ioremap failed\n");
ret = -ENOMEM;
goto err_out;
return -ENOMEM;
}
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (res == NULL) {
dev_err(&pdev->dev, "no IRQ resource found\n");
ret = -ENXIO;
goto err_iounmap;
return -ENXIO;
}
irq = res->start;
......@@ -116,8 +112,7 @@ static int ath_ahb_probe(struct platform_device *pdev)
hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
if (hw == NULL) {
dev_err(&pdev->dev, "no memory for ieee80211_hw\n");
ret = -ENOMEM;
goto err_iounmap;
return -ENOMEM;
}
SET_IEEE80211_DEV(hw, &pdev->dev);
......@@ -156,9 +151,6 @@ static int ath_ahb_probe(struct platform_device *pdev)
err_free_hw:
ieee80211_free_hw(hw);
platform_set_drvdata(pdev, NULL);
err_iounmap:
iounmap(mem);
err_out:
return ret;
}
......@@ -168,12 +160,10 @@ static int ath_ahb_remove(struct platform_device *pdev)
if (hw) {
struct ath_softc *sc = hw->priv;
void __iomem *mem = sc->mem;
ath9k_deinit_device(sc);
free_irq(sc->irq, sc);
ieee80211_free_hw(sc->hw);
iounmap(mem);
platform_set_drvdata(pdev, NULL);
}
......
......@@ -152,7 +152,8 @@ static void ath9k_hw_set_ofdm_nil(struct ath_hw *ah, u8 immunityLevel,
ath_dbg(common, ANI, "**** ofdmlevel %d=>%d, rssi=%d[lo=%d hi=%d]\n",
aniState->ofdmNoiseImmunityLevel,
immunityLevel, BEACON_RSSI(ah),
aniState->rssiThrLow, aniState->rssiThrHigh);
ATH9K_ANI_RSSI_THR_LOW,
ATH9K_ANI_RSSI_THR_HIGH);
if (!scan)
aniState->ofdmNoiseImmunityLevel = immunityLevel;
......@@ -173,7 +174,7 @@ static void ath9k_hw_set_ofdm_nil(struct ath_hw *ah, u8 immunityLevel,
weak_sig = entry_ofdm->ofdm_weak_signal_on;
if (ah->opmode == NL80211_IFTYPE_STATION &&
BEACON_RSSI(ah) <= aniState->rssiThrHigh)
BEACON_RSSI(ah) <= ATH9K_ANI_RSSI_THR_HIGH)
weak_sig = true;
if (aniState->ofdmWeakSigDetect != weak_sig)
......@@ -216,11 +217,11 @@ static void ath9k_hw_set_cck_nil(struct ath_hw *ah, u_int8_t immunityLevel,
ath_dbg(common, ANI, "**** ccklevel %d=>%d, rssi=%d[lo=%d hi=%d]\n",
aniState->cckNoiseImmunityLevel, immunityLevel,
BEACON_RSSI(ah), aniState->rssiThrLow,
aniState->rssiThrHigh);
BEACON_RSSI(ah), ATH9K_ANI_RSSI_THR_LOW,
ATH9K_ANI_RSSI_THR_HIGH);
if (ah->opmode == NL80211_IFTYPE_STATION &&
BEACON_RSSI(ah) <= aniState->rssiThrLow &&
BEACON_RSSI(ah) <= ATH9K_ANI_RSSI_THR_LOW &&
immunityLevel > ATH9K_ANI_CCK_MAX_LEVEL_LOW_RSSI)
immunityLevel = ATH9K_ANI_CCK_MAX_LEVEL_LOW_RSSI;
......@@ -418,9 +419,6 @@ void ath9k_hw_ani_monitor(struct ath_hw *ah, struct ath9k_channel *chan)
return;
aniState = &ah->curchan->ani;
if (WARN_ON(!aniState))
return;
if (!ath9k_hw_ani_read_counters(ah))
return;
......@@ -489,23 +487,6 @@ void ath9k_hw_disable_mib_counters(struct ath_hw *ah)
}
EXPORT_SYMBOL(ath9k_hw_disable_mib_counters);
void ath9k_hw_ani_setup(struct ath_hw *ah)
{
int i;
static const int totalSizeDesired[] = { -55, -55, -55, -55, -62 };
static const int coarseHigh[] = { -14, -14, -14, -14, -12 };
static const int coarseLow[] = { -64, -64, -64, -64, -70 };
static const int firpwr[] = { -78, -78, -78, -78, -80 };
for (i = 0; i < 5; i++) {
ah->totalSizeDesired[i] = totalSizeDesired[i];
ah->coarse_high[i] = coarseHigh[i];
ah->coarse_low[i] = coarseLow[i];
ah->firpwr[i] = firpwr[i];
}
}
void ath9k_hw_ani_init(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
......@@ -531,8 +512,6 @@ void ath9k_hw_ani_init(struct ath_hw *ah)
ani->ofdmsTurn = true;
ani->rssiThrHigh = ATH9K_ANI_RSSI_THR_HIGH;
ani->rssiThrLow = ATH9K_ANI_RSSI_THR_LOW;
ani->ofdmWeakSigDetect = ATH9K_ANI_USE_OFDM_WEAK_SIG;
ani->cckNoiseImmunityLevel = ATH9K_ANI_CCK_DEF_LEVEL;
ani->ofdmNoiseImmunityLevel = ATH9K_ANI_OFDM_DEF_LEVEL;
......
......@@ -104,7 +104,6 @@ struct ath9k_ani_default {
};
struct ar5416AniState {
struct ath9k_channel *c;
u8 noiseImmunityLevel;
u8 ofdmNoiseImmunityLevel;
u8 cckNoiseImmunityLevel;
......@@ -113,15 +112,9 @@ struct ar5416AniState {
u8 spurImmunityLevel;
u8 firstepLevel;
u8 ofdmWeakSigDetect;
u8 cckWeakSigThreshold;
u32 listenTime;
int32_t rssiThrLow;
int32_t rssiThrHigh;
u32 ofdmPhyErrCount;
u32 cckPhyErrCount;
int16_t pktRssi[2];
int16_t ofdmErrRssi[2];
int16_t cckErrRssi[2];
struct ath9k_ani_default iniDef;
};
......@@ -147,7 +140,6 @@ struct ar5416Stats {
void ath9k_enable_mib_counters(struct ath_hw *ah);
void ath9k_hw_disable_mib_counters(struct ath_hw *ah);
void ath9k_hw_ani_setup(struct ath_hw *ah);
void ath9k_hw_ani_init(struct ath_hw *ah);
#endif /* ANI_H */
......@@ -466,7 +466,7 @@ static const u32 ar5416Bank0[][2] = {
};
static const u32 ar5416BB_RfGain[][3] = {
/* Addr 5G_HT20 5G_HT40 */
/* Addr 5G 2G */
{0x00009a00, 0x00000000, 0x00000000},
{0x00009a04, 0x00000040, 0x00000040},
{0x00009a08, 0x00000080, 0x00000080},
......@@ -546,12 +546,12 @@ static const u32 ar5416Bank2[][2] = {
};
static const u32 ar5416Bank3[][3] = {
/* Addr 5G_HT20 5G_HT40 */
/* Addr 5G 2G */
{0x000098f0, 0x01400018, 0x01c00018},
};
static const u32 ar5416Bank6[][3] = {
/* Addr 5G_HT20 5G_HT40 */
/* Addr 5G 2G */
{0x0000989c, 0x00000000, 0x00000000},
{0x0000989c, 0x00000000, 0x00000000},
{0x0000989c, 0x00000000, 0x00000000},
......@@ -588,7 +588,7 @@ static const u32 ar5416Bank6[][3] = {
};
static const u32 ar5416Bank6TPC[][3] = {
/* Addr 5G_HT20 5G_HT40 */
/* Addr 5G 2G */
{0x0000989c, 0x00000000, 0x00000000},
{0x0000989c, 0x00000000, 0x00000000},
{0x0000989c, 0x00000000, 0x00000000},
......
......@@ -470,16 +470,15 @@ static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
{
#define ATH_ALLOC_BANK(bank, size) do { \
bank = kzalloc((sizeof(u32) * size), GFP_KERNEL); \
if (!bank) { \
ath_err(common, "Cannot allocate RF banks\n"); \
return -ENOMEM; \
} \
bank = devm_kzalloc(ah->dev, sizeof(u32) * size, GFP_KERNEL); \
if (!bank) \
goto error; \
} while (0);
struct ath_common *common = ath9k_hw_common(ah);
BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
if (AR_SREV_9280_20_OR_LATER(ah))
return 0;
ATH_ALLOC_BANK(ah->analogBank0Data, ah->iniBank0.ia_rows);
ATH_ALLOC_BANK(ah->analogBank1Data, ah->iniBank1.ia_rows);
......@@ -492,35 +491,12 @@ static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
return 0;
#undef ATH_ALLOC_BANK
error:
ath_err(common, "Cannot allocate RF banks\n");
return -ENOMEM;
}
/**
* ar5008_hw_rf_free_ext_banks - Free memory for analog bank scratch buffers
* @ah: atheros hardware struture
* For the external AR2133/AR5133 radios banks.
*/
static void ar5008_hw_rf_free_ext_banks(struct ath_hw *ah)
{
#define ATH_FREE_BANK(bank) do { \
kfree(bank); \
bank = NULL; \
} while (0);
BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
ATH_FREE_BANK(ah->analogBank0Data);
ATH_FREE_BANK(ah->analogBank1Data);
ATH_FREE_BANK(ah->analogBank2Data);
ATH_FREE_BANK(ah->analogBank3Data);
ATH_FREE_BANK(ah->analogBank6Data);
ATH_FREE_BANK(ah->analogBank6TPCData);
ATH_FREE_BANK(ah->analogBank7Data);
ATH_FREE_BANK(ah->bank6Temp);
#undef ATH_FREE_BANK
}
/* *
* ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
* @ah: atheros hardware structure
......@@ -1380,7 +1356,7 @@ static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
conf->radar_inband = 8;
}
void ar5008_hw_attach_phy_ops(struct ath_hw *ah)
int ar5008_hw_attach_phy_ops(struct ath_hw *ah)
{
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
static const u32 ar5416_cca_regs[6] = {
......@@ -1391,12 +1367,15 @@ void ar5008_hw_attach_phy_ops(struct ath_hw *ah)
AR_PHY_CH1_EXT_CCA,
AR_PHY_CH2_EXT_CCA
};
int ret;
ret = ar5008_hw_rf_alloc_ext_banks(ah);
if (ret)
return ret;
priv_ops->rf_set_freq = ar5008_hw_set_channel;
priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
priv_ops->rf_alloc_ext_banks = ar5008_hw_rf_alloc_ext_banks;
priv_ops->rf_free_ext_banks = ar5008_hw_rf_free_ext_banks;
priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
priv_ops->init_bb = ar5008_hw_init_bb;
......@@ -1421,4 +1400,5 @@ void ar5008_hw_attach_phy_ops(struct ath_hw *ah)
ar5008_hw_set_nf_limits(ah);
ar5008_hw_set_radar_conf(ah);
memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
return 0;
}
......@@ -460,7 +460,7 @@ static const u32 ar5416Common_9100[][2] = {
};
static const u32 ar5416Bank6_9100[][3] = {
/* Addr 5G_HT20 5G_HT40 */
/* Addr 5G 2G */
{0x0000989c, 0x00000000, 0x00000000},
{0x0000989c, 0x00000000, 0x00000000},
{0x0000989c, 0x00000000, 0x00000000},
......@@ -497,7 +497,7 @@ static const u32 ar5416Bank6_9100[][3] = {
};
static const u32 ar5416Bank6TPC_9100[][3] = {
/* Addr 5G_HT20 5G_HT40 */
/* Addr 5G 2G */
{0x0000989c, 0x00000000, 0x00000000},
{0x0000989c, 0x00000000, 0x00000000},
{0x0000989c, 0x00000000, 0x00000000},
......
......@@ -23,13 +23,13 @@
/* General hardware code for the A5008/AR9001/AR9002 hadware families */
static void ar9002_hw_init_mode_regs(struct ath_hw *ah)
static int ar9002_hw_init_mode_regs(struct ath_hw *ah)
{
if (AR_SREV_9271(ah)) {
INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271);
INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271);
INIT_INI_ARRAY(&ah->iniModes_9271_ANI_reg, ar9271Modes_9271_ANI_reg);
return;
return 0;
}
if (ah->config.pcie_clock_req)
......@@ -102,9 +102,9 @@ static void ar9002_hw_init_mode_regs(struct ath_hw *ah)
u32 size = sizeof(u32) * addac->ia_rows * addac->ia_columns;
u32 *data;
data = kmalloc(size, GFP_KERNEL);
data = devm_kzalloc(ah->dev, size, GFP_KERNEL);
if (!data)
return;
return -ENOMEM;
memcpy(data, addac->ia_array, size);
addac->ia_array = data;
......@@ -120,6 +120,7 @@ static void ar9002_hw_init_mode_regs(struct ath_hw *ah)
INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
ar9287Common_japan_2484_cck_fir_coeff_9287_1_1);
}
return 0;
}
static void ar9280_20_hw_init_rxgain_ini(struct ath_hw *ah)
......@@ -409,22 +410,30 @@ void ar9002_hw_enable_async_fifo(struct ath_hw *ah)
}
/* Sets up the AR5008/AR9001/AR9002 hardware familiy callbacks */
void ar9002_hw_attach_ops(struct ath_hw *ah)
int ar9002_hw_attach_ops(struct ath_hw *ah)
{
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
struct ath_hw_ops *ops = ath9k_hw_ops(ah);
int ret;
ret = ar9002_hw_init_mode_regs(ah);
if (ret)
return ret;
priv_ops->init_mode_regs = ar9002_hw_init_mode_regs;
priv_ops->init_mode_gain_regs = ar9002_hw_init_mode_gain_regs;
ops->config_pci_powersave = ar9002_hw_configpcipowersave;
ar5008_hw_attach_phy_ops(ah);
ret = ar5008_hw_attach_phy_ops(ah);
if (ret)
return ret;
if (AR_SREV_9280_20_OR_LATER(ah))
ar9002_hw_attach_phy_ops(ah);
ar9002_hw_attach_calib_ops(ah);
ar9002_hw_attach_mac_ops(ah);
return 0;
}
void ar9002_hw_load_ani_reg(struct ath_hw *ah, struct ath9k_channel *chan)
......
......@@ -555,14 +555,73 @@ static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
}
static void ar9002_hw_spectral_scan_config(struct ath_hw *ah,
struct ath_spec_scan *param)
{
u8 count;
if (!param->enabled) {
REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_ENABLE);
return;
}
REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
if (param->short_repeat)
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
else
REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
/* on AR92xx, the highest bit of count will make the the chip send
* spectral samples endlessly. Check if this really was intended,
* and fix otherwise.
*/
count = param->count;
if (param->endless)
count = 0x80;
else if (count & 0x80)
count = 0x7f;
REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_COUNT, count);
REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
return;
}
static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah)
{
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
/* Activate spectral scan */
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_ACTIVE);
}
static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
/* Poll for spectral scan complete */
if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_ACTIVE,
0, AH_WAIT_TIMEOUT)) {
ath_err(common, "spectral scan wait failed\n");
return;
}
}
void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
{
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
struct ath_hw_ops *ops = ath9k_hw_ops(ah);
priv_ops->set_rf_regs = NULL;
priv_ops->rf_alloc_ext_banks = NULL;
priv_ops->rf_free_ext_banks = NULL;
priv_ops->rf_set_freq = ar9002_hw_set_channel;
priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
priv_ops->olc_init = ar9002_olc_init;
......@@ -571,6 +630,9 @@ void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
ops->spectral_scan_config = ar9002_hw_spectral_scan_config;
ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger;
ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait;
ar9002_hw_set_nf_limits(ah);
}
......@@ -744,6 +744,186 @@ static const u32 ar9300Modes_high_ob_db_tx_gain_table_2p2[][5] = {
{0x00016868, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c},
};
static const u32 ar9300Modes_mixed_ob_db_tx_gain_table_2p2[][5] = {
/* Addr 5G_HT20 5G_HT40 2G_HT40 2G_HT20 */
{0x0000a2dc, 0x00033800, 0x00033800, 0x03aaa352, 0x03aaa352},
{0x0000a2e0, 0x0003c000, 0x0003c000, 0x03ccc584, 0x03ccc584},
{0x0000a2e4, 0x03fc0000, 0x03fc0000, 0x03f0f800, 0x03f0f800},
{0x0000a2e8, 0x00000000, 0x00000000, 0x03ff0000, 0x03ff0000},
{0x0000a410, 0x000050d9, 0x000050d9, 0x000050d9, 0x000050d9},
{0x0000a500, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a504, 0x06000003, 0x06000003, 0x04000002, 0x04000002},
{0x0000a508, 0x0a000020, 0x0a000020, 0x08000004, 0x08000004},
{0x0000a50c, 0x10000023, 0x10000023, 0x0b000200, 0x0b000200},
{0x0000a510, 0x16000220, 0x16000220, 0x0f000202, 0x0f000202},
{0x0000a514, 0x1c000223, 0x1c000223, 0x11000400, 0x11000400},
{0x0000a518, 0x21002220, 0x21002220, 0x15000402, 0x15000402},
{0x0000a51c, 0x27002223, 0x27002223, 0x19000404, 0x19000404},
{0x0000a520, 0x2b022220, 0x2b022220, 0x1b000603, 0x1b000603},
{0x0000a524, 0x2f022222, 0x2f022222, 0x1f000a02, 0x1f000a02},
{0x0000a528, 0x34022225, 0x34022225, 0x23000a04, 0x23000a04},
{0x0000a52c, 0x3a02222a, 0x3a02222a, 0x26000a20, 0x26000a20},
{0x0000a530, 0x3e02222c, 0x3e02222c, 0x2a000e20, 0x2a000e20},
{0x0000a534, 0x4202242a, 0x4202242a, 0x2e000e22, 0x2e000e22},
{0x0000a538, 0x4702244a, 0x4702244a, 0x31000e24, 0x31000e24},
{0x0000a53c, 0x4b02244c, 0x4b02244c, 0x34001640, 0x34001640},
{0x0000a540, 0x4e02246c, 0x4e02246c, 0x38001660, 0x38001660},
{0x0000a544, 0x52022470, 0x52022470, 0x3b001861, 0x3b001861},
{0x0000a548, 0x55022490, 0x55022490, 0x3e001a81, 0x3e001a81},
{0x0000a54c, 0x59022492, 0x59022492, 0x42001a83, 0x42001a83},
{0x0000a550, 0x5d022692, 0x5d022692, 0x44001c84, 0x44001c84},
{0x0000a554, 0x61022892, 0x61022892, 0x48001ce3, 0x48001ce3},
{0x0000a558, 0x65024890, 0x65024890, 0x4c001ce5, 0x4c001ce5},
{0x0000a55c, 0x69024892, 0x69024892, 0x50001ce9, 0x50001ce9},
{0x0000a560, 0x6e024c92, 0x6e024c92, 0x54001ceb, 0x54001ceb},
{0x0000a564, 0x74026e92, 0x74026e92, 0x56001eec, 0x56001eec},
{0x0000a568, 0x74026e92, 0x74026e92, 0x56001eec, 0x56001eec},
{0x0000a56c, 0x74026e92, 0x74026e92, 0x56001eec, 0x56001eec},
{0x0000a570, 0x74026e92, 0x74026e92, 0x56001eec, 0x56001eec},
{0x0000a574, 0x74026e92, 0x74026e92, 0x56001eec, 0x56001eec},
{0x0000a578, 0x74026e92, 0x74026e92, 0x56001eec, 0x56001eec},
{0x0000a57c, 0x74026e92, 0x74026e92, 0x56001eec, 0x56001eec},
{0x0000a580, 0x00800000, 0x00800000, 0x00800000, 0x00800000},
{0x0000a584, 0x06800003, 0x06800003, 0x04800002, 0x04800002},
{0x0000a588, 0x0a800020, 0x0a800020, 0x08800004, 0x08800004},
{0x0000a58c, 0x10800023, 0x10800023, 0x0b800200, 0x0b800200},
{0x0000a590, 0x16800220, 0x16800220, 0x0f800202, 0x0f800202},
{0x0000a594, 0x1c800223, 0x1c800223, 0x11800400, 0x11800400},
{0x0000a598, 0x21802220, 0x21802220, 0x15800402, 0x15800402},
{0x0000a59c, 0x27802223, 0x27802223, 0x19800404, 0x19800404},
{0x0000a5a0, 0x2b822220, 0x2b822220, 0x1b800603, 0x1b800603},
{0x0000a5a4, 0x2f822222, 0x2f822222, 0x1f800a02, 0x1f800a02},
{0x0000a5a8, 0x34822225, 0x34822225, 0x23800a04, 0x23800a04},
{0x0000a5ac, 0x3a82222a, 0x3a82222a, 0x26800a20, 0x26800a20},
{0x0000a5b0, 0x3e82222c, 0x3e82222c, 0x2a800e20, 0x2a800e20},
{0x0000a5b4, 0x4282242a, 0x4282242a, 0x2e800e22, 0x2e800e22},
{0x0000a5b8, 0x4782244a, 0x4782244a, 0x31800e24, 0x31800e24},
{0x0000a5bc, 0x4b82244c, 0x4b82244c, 0x34801640, 0x34801640},
{0x0000a5c0, 0x4e82246c, 0x4e82246c, 0x38801660, 0x38801660},
{0x0000a5c4, 0x52822470, 0x52822470, 0x3b801861, 0x3b801861},
{0x0000a5c8, 0x55822490, 0x55822490, 0x3e801a81, 0x3e801a81},
{0x0000a5cc, 0x59822492, 0x59822492, 0x42801a83, 0x42801a83},
{0x0000a5d0, 0x5d822692, 0x5d822692, 0x44801c84, 0x44801c84},
{0x0000a5d4, 0x61822892, 0x61822892, 0x48801ce3, 0x48801ce3},
{0x0000a5d8, 0x65824890, 0x65824890, 0x4c801ce5, 0x4c801ce5},
{0x0000a5dc, 0x69824892, 0x69824892, 0x50801ce9, 0x50801ce9},
{0x0000a5e0, 0x6e824c92, 0x6e824c92, 0x54801ceb, 0x54801ceb},
{0x0000a5e4, 0x74826e92, 0x74826e92, 0x56801eec, 0x56801eec},
{0x0000a5e8, 0x74826e92, 0x74826e92, 0x56801eec, 0x56801eec},
{0x0000a5ec, 0x74826e92, 0x74826e92, 0x56801eec, 0x56801eec},
{0x0000a5f0, 0x74826e92, 0x74826e92, 0x56801eec, 0x56801eec},
{0x0000a5f4, 0x74826e92, 0x74826e92, 0x56801eec, 0x56801eec},
{0x0000a5f8, 0x74826e92, 0x74826e92, 0x56801eec, 0x56801eec},
{0x0000a5fc, 0x74826e92, 0x74826e92, 0x56801eec, 0x56801eec},
{0x0000a600, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a604, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a608, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a60c, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a610, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a614, 0x02004000, 0x02004000, 0x01404000, 0x01404000},
{0x0000a618, 0x02004801, 0x02004801, 0x01404501, 0x01404501},
{0x0000a61c, 0x02808a02, 0x02808a02, 0x02008501, 0x02008501},
{0x0000a620, 0x0380ce03, 0x0380ce03, 0x0280ca03, 0x0280ca03},
{0x0000a624, 0x04411104, 0x04411104, 0x03010c04, 0x03010c04},
{0x0000a628, 0x04411104, 0x04411104, 0x04014c04, 0x04014c04},
{0x0000a62c, 0x04411104, 0x04411104, 0x04015005, 0x04015005},
{0x0000a630, 0x04411104, 0x04411104, 0x04015005, 0x04015005},
{0x0000a634, 0x04411104, 0x04411104, 0x04015005, 0x04015005},
{0x0000a638, 0x04411104, 0x04411104, 0x04015005, 0x04015005},
{0x0000a63c, 0x04411104, 0x04411104, 0x04015005, 0x04015005},
{0x0000b2dc, 0x00033800, 0x00033800, 0x03aaa352, 0x03aaa352},
{0x0000b2e0, 0x0003c000, 0x0003c000, 0x03ccc584, 0x03ccc584},
{0x0000b2e4, 0x03fc0000, 0x03fc0000, 0x03f0f800, 0x03f0f800},
{0x0000b2e8, 0x00000000, 0x00000000, 0x03ff0000, 0x03ff0000},
{0x0000c2dc, 0x00033800, 0x00033800, 0x03aaa352, 0x03aaa352},
{0x0000c2e0, 0x0003c000, 0x0003c000, 0x03ccc584, 0x03ccc584},
{0x0000c2e4, 0x03fc0000, 0x03fc0000, 0x03f0f800, 0x03f0f800},
{0x0000c2e8, 0x00000000, 0x00000000, 0x03ff0000, 0x03ff0000},
{0x00016044, 0x012492d4, 0x012492d4, 0x056db2e4, 0x056db2e4},
{0x00016048, 0x66480001, 0x66480001, 0x8e480001, 0x8e480001},
{0x00016068, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c},
{0x00016444, 0x012492d4, 0x012492d4, 0x056db2e4, 0x056db2e4},
{0x00016448, 0x66480001, 0x66480001, 0x8e480001, 0x8e480001},
{0x00016468, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c},
{0x00016844, 0x012492d4, 0x012492d4, 0x056db2e4, 0x056db2e4},
{0x00016848, 0x66480001, 0x66480001, 0x8e480001, 0x8e480001},
{0x00016868, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c},
};
static const u32 ar9300Modes_type5_tx_gain_table_2p2[][5] = {
/* Addr 5G_HT20 5G_HT40 2G_HT40 2G_HT20 */
{0x0000a2dc, 0x000cfff0, 0x000cfff0, 0x03aaa352, 0x03aaa352},
{0x0000a2e0, 0x000f0000, 0x000f0000, 0x03ccc584, 0x03ccc584},
{0x0000a2e4, 0x03f00000, 0x03f00000, 0x03f0f800, 0x03f0f800},
{0x0000a2e8, 0x00000000, 0x00000000, 0x03ff0000, 0x03ff0000},
{0x0000a410, 0x000050d9, 0x000050d9, 0x000050d9, 0x000050d9},
{0x0000a500, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a504, 0x06000003, 0x06000003, 0x04000002, 0x04000002},
{0x0000a508, 0x0a000020, 0x0a000020, 0x08000004, 0x08000004},
{0x0000a50c, 0x10000023, 0x10000023, 0x0b000200, 0x0b000200},
{0x0000a510, 0x15000028, 0x15000028, 0x0f000202, 0x0f000202},
{0x0000a514, 0x1b00002b, 0x1b00002b, 0x12000400, 0x12000400},
{0x0000a518, 0x1f020028, 0x1f020028, 0x16000402, 0x16000402},
{0x0000a51c, 0x2502002b, 0x2502002b, 0x19000404, 0x19000404},
{0x0000a520, 0x2a04002a, 0x2a04002a, 0x1c000603, 0x1c000603},
{0x0000a524, 0x2e06002a, 0x2e06002a, 0x21000a02, 0x21000a02},
{0x0000a528, 0x3302202d, 0x3302202d, 0x25000a04, 0x25000a04},
{0x0000a52c, 0x3804202c, 0x3804202c, 0x28000a20, 0x28000a20},
{0x0000a530, 0x3c06202c, 0x3c06202c, 0x2c000e20, 0x2c000e20},
{0x0000a534, 0x4108202d, 0x4108202d, 0x30000e22, 0x30000e22},
{0x0000a538, 0x4506402d, 0x4506402d, 0x34000e24, 0x34000e24},
{0x0000a53c, 0x4906222d, 0x4906222d, 0x38001640, 0x38001640},
{0x0000a540, 0x4d062231, 0x4d062231, 0x3c001660, 0x3c001660},
{0x0000a544, 0x50082231, 0x50082231, 0x3f001861, 0x3f001861},
{0x0000a548, 0x5608422e, 0x5608422e, 0x43001a81, 0x43001a81},
{0x0000a54c, 0x5e08442e, 0x5e08442e, 0x47001a83, 0x47001a83},
{0x0000a550, 0x620a4431, 0x620a4431, 0x4a001c84, 0x4a001c84},
{0x0000a554, 0x640a4432, 0x640a4432, 0x4e001ce3, 0x4e001ce3},
{0x0000a558, 0x680a4434, 0x680a4434, 0x52001ce5, 0x52001ce5},
{0x0000a55c, 0x6c0a6434, 0x6c0a6434, 0x56001ce9, 0x56001ce9},
{0x0000a560, 0x6f0a6633, 0x6f0a6633, 0x5a001ceb, 0x5a001ceb},
{0x0000a564, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a568, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a56c, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a570, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a574, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a578, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a57c, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a600, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a604, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a608, 0x01804601, 0x01804601, 0x00000000, 0x00000000},
{0x0000a60c, 0x01804601, 0x01804601, 0x00000000, 0x00000000},
{0x0000a610, 0x01804601, 0x01804601, 0x00000000, 0x00000000},
{0x0000a614, 0x01804601, 0x01804601, 0x01404000, 0x01404000},
{0x0000a618, 0x01804601, 0x01804601, 0x01404501, 0x01404501},
{0x0000a61c, 0x01804601, 0x01804601, 0x02008501, 0x02008501},
{0x0000a620, 0x03408d02, 0x03408d02, 0x0280ca03, 0x0280ca03},
{0x0000a624, 0x0300cc03, 0x0300cc03, 0x03010c04, 0x03010c04},
{0x0000a628, 0x03410d04, 0x03410d04, 0x04014c04, 0x04014c04},
{0x0000a62c, 0x03410d04, 0x03410d04, 0x04015005, 0x04015005},
{0x0000a630, 0x03410d04, 0x03410d04, 0x04015005, 0x04015005},
{0x0000a634, 0x03410d04, 0x03410d04, 0x04015005, 0x04015005},
{0x0000a638, 0x03410d04, 0x03410d04, 0x04015005, 0x04015005},
{0x0000a63c, 0x03410d04, 0x03410d04, 0x04015005, 0x04015005},
{0x0000b2dc, 0x000cfff0, 0x000cfff0, 0x03aaa352, 0x03aaa352},
{0x0000b2e0, 0x000f0000, 0x000f0000, 0x03ccc584, 0x03ccc584},
{0x0000b2e4, 0x03f00000, 0x03f00000, 0x03f0f800, 0x03f0f800},
{0x0000b2e8, 0x00000000, 0x00000000, 0x03ff0000, 0x03ff0000},
{0x0000c2dc, 0x000cfff0, 0x000cfff0, 0x03aaa352, 0x03aaa352},
{0x0000c2e0, 0x000f0000, 0x000f0000, 0x03ccc584, 0x03ccc584},
{0x0000c2e4, 0x03f00000, 0x03f00000, 0x03f0f800, 0x03f0f800},
{0x0000c2e8, 0x00000000, 0x00000000, 0x03ff0000, 0x03ff0000},
{0x00016044, 0x012492d4, 0x012492d4, 0x012492d4, 0x012492d4},
{0x00016048, 0x65240001, 0x65240001, 0x66480001, 0x66480001},
{0x00016068, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c},
{0x00016444, 0x012492d4, 0x012492d4, 0x012492d4, 0x012492d4},
{0x00016448, 0x65240001, 0x65240001, 0x66480001, 0x66480001},
{0x00016468, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c},
{0x00016844, 0x012492d4, 0x012492d4, 0x012492d4, 0x012492d4},
{0x00016848, 0x65240001, 0x65240001, 0x66480001, 0x66480001},
{0x00016868, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c},
};
static const u32 ar9300Common_rx_gain_table_2p2[][2] = {
/* Addr allmodes */
{0x0000a000, 0x00010000},
......
......@@ -32,7 +32,6 @@ struct coeff {
enum ar9003_cal_types {
IQ_MISMATCH_CAL = BIT(0),
TEMP_COMP_CAL = BIT(1),
};
static void ar9003_hw_setup_calibration(struct ath_hw *ah,
......@@ -49,7 +48,7 @@ static void ar9003_hw_setup_calibration(struct ath_hw *ah,
*/
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX,
currCal->calData->calCountMax);
currCal->calData->calCountMax);
REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
ath_dbg(common, CALIBRATE,
......@@ -58,14 +57,8 @@ static void ar9003_hw_setup_calibration(struct ath_hw *ah,
/* Kick-off cal */
REG_SET_BIT(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
break;
case TEMP_COMP_CAL:
REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_THERM,
AR_PHY_65NM_CH0_THERM_LOCAL, 1);
REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_THERM,
AR_PHY_65NM_CH0_THERM_START, 1);
ath_dbg(common, CALIBRATE,
"starting Temperature Compensation Calibration\n");
default:
ath_err(common, "Invalid calibration type\n");
break;
}
}
......@@ -323,6 +316,14 @@ static const struct ath9k_percal_data iq_cal_single_sample = {
static void ar9003_hw_init_cal_settings(struct ath_hw *ah)
{
ah->iq_caldata.calData = &iq_cal_single_sample;
if (AR_SREV_9300_20_OR_LATER(ah)) {
ah->enabled_cals |= TX_IQ_CAL;
if (AR_SREV_9485_OR_LATER(ah) && !AR_SREV_9340(ah))
ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
}
ah->supp_cals = IQ_MISMATCH_CAL;
}
/*
......@@ -959,22 +960,70 @@ static void ar9003_hw_manual_peak_cal(struct ath_hw *ah, u8 chain, bool is_2g)
AR_PHY_65NM_RXRF_AGC_AGC_CAL_OVR, 0);
}
static void ar9003_hw_do_manual_peak_cal(struct ath_hw *ah,
struct ath9k_channel *chan)
{
int i;
if (!AR_SREV_9462(ah) && !AR_SREV_9565(ah))
return;
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->rxchainmask & (1 << i)))
continue;
ar9003_hw_manual_peak_cal(ah, i, IS_CHAN_2GHZ(chan));
}
}
static void ar9003_hw_cl_cal_post_proc(struct ath_hw *ah, bool is_reusable)
{
u32 cl_idx[AR9300_MAX_CHAINS] = { AR_PHY_CL_TAB_0,
AR_PHY_CL_TAB_1,
AR_PHY_CL_TAB_2 };
struct ath9k_hw_cal_data *caldata = ah->caldata;
bool txclcal_done = false;
int i, j;
if (!caldata || !(ah->enabled_cals & TX_CL_CAL))
return;
txclcal_done = !!(REG_READ(ah, AR_PHY_AGC_CONTROL) &
AR_PHY_AGC_CONTROL_CLC_SUCCESS);
if (caldata->done_txclcal_once) {
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
for (j = 0; j < MAX_CL_TAB_ENTRY; j++)
REG_WRITE(ah, CL_TAB_ENTRY(cl_idx[i]),
caldata->tx_clcal[i][j]);
}
} else if (is_reusable && txclcal_done) {
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
for (j = 0; j < MAX_CL_TAB_ENTRY; j++)
caldata->tx_clcal[i][j] =
REG_READ(ah, CL_TAB_ENTRY(cl_idx[i]));
}
caldata->done_txclcal_once = true;
}
}
static bool ar9003_hw_init_cal(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_cal_data *caldata = ah->caldata;
bool txiqcal_done = false, txclcal_done = false;
bool txiqcal_done = false;
bool is_reusable = true, status = true;
bool run_rtt_cal = false, run_agc_cal;
bool run_rtt_cal = false, run_agc_cal, sep_iq_cal = false;
bool rtt = !!(ah->caps.hw_caps & ATH9K_HW_CAP_RTT);
u32 agc_ctrl = 0, agc_supp_cals = AR_PHY_AGC_CONTROL_OFFSET_CAL |
AR_PHY_AGC_CONTROL_FLTR_CAL |
AR_PHY_AGC_CONTROL_PKDET_CAL;
int i, j;
u32 cl_idx[AR9300_MAX_CHAINS] = { AR_PHY_CL_TAB_0,
AR_PHY_CL_TAB_1,
AR_PHY_CL_TAB_2 };
ar9003_hw_set_chain_masks(ah, ah->caps.rx_chainmask, ah->caps.tx_chainmask);
if (rtt) {
if (!ar9003_hw_rtt_restore(ah, chan))
......@@ -1012,7 +1061,8 @@ static bool ar9003_hw_init_cal(struct ath_hw *ah,
}
}
if (!(ah->enabled_cals & TX_IQ_CAL))
if ((IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) ||
!(ah->enabled_cals & TX_IQ_CAL))
goto skip_tx_iqcal;
/* Do Tx IQ Calibration */
......@@ -1032,21 +1082,22 @@ static bool ar9003_hw_init_cal(struct ath_hw *ah,
REG_CLR_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0,
AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
txiqcal_done = run_agc_cal = true;
goto skip_tx_iqcal;
} else if (caldata && !caldata->done_txiqcal_once)
} else if (caldata && !caldata->done_txiqcal_once) {
run_agc_cal = true;
sep_iq_cal = true;
}
skip_tx_iqcal:
if (ath9k_hw_mci_is_enabled(ah) && IS_CHAN_2GHZ(chan) && run_agc_cal)
ar9003_mci_init_cal_req(ah, &is_reusable);
if (!(IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))) {
if (sep_iq_cal) {
txiqcal_done = ar9003_hw_tx_iq_cal_run(ah);
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
udelay(5);
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
}
skip_tx_iqcal:
if (run_agc_cal || !(ah->ah_flags & AH_FASTCC)) {
/* Calibrate the AGC */
REG_WRITE(ah, AR_PHY_AGC_CONTROL,
......@@ -1057,14 +1108,8 @@ static bool ar9003_hw_init_cal(struct ath_hw *ah,
status = ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_CAL,
0, AH_WAIT_TIMEOUT);
if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->rxchainmask & (1 << i)))
continue;
ar9003_hw_manual_peak_cal(ah, i,
IS_CHAN_2GHZ(chan));
}
}
ar9003_hw_do_manual_peak_cal(ah, chan);
}
if (ath9k_hw_mci_is_enabled(ah) && IS_CHAN_2GHZ(chan) && run_agc_cal)
......@@ -1089,31 +1134,7 @@ static bool ar9003_hw_init_cal(struct ath_hw *ah,
else if (caldata && caldata->done_txiqcal_once)
ar9003_hw_tx_iq_cal_reload(ah);
#define CL_TAB_ENTRY(reg_base) (reg_base + (4 * j))
if (caldata && (ah->enabled_cals & TX_CL_CAL)) {
txclcal_done = !!(REG_READ(ah, AR_PHY_AGC_CONTROL) &
AR_PHY_AGC_CONTROL_CLC_SUCCESS);
if (caldata->done_txclcal_once) {
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
for (j = 0; j < MAX_CL_TAB_ENTRY; j++)
REG_WRITE(ah, CL_TAB_ENTRY(cl_idx[i]),
caldata->tx_clcal[i][j]);
}
} else if (is_reusable && txclcal_done) {
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
for (j = 0; j < MAX_CL_TAB_ENTRY; j++)
caldata->tx_clcal[i][j] =
REG_READ(ah,
CL_TAB_ENTRY(cl_idx[i]));
}
caldata->done_txclcal_once = true;
}
}
#undef CL_TAB_ENTRY
ar9003_hw_cl_cal_post_proc(ah, is_reusable);
if (run_rtt_cal && caldata) {
if (is_reusable) {
......@@ -1131,20 +1152,10 @@ static bool ar9003_hw_init_cal(struct ath_hw *ah,
/* Initialize list pointers */
ah->cal_list = ah->cal_list_last = ah->cal_list_curr = NULL;
ah->supp_cals = IQ_MISMATCH_CAL;
if (ah->supp_cals & IQ_MISMATCH_CAL) {
INIT_CAL(&ah->iq_caldata);
INSERT_CAL(ah, &ah->iq_caldata);
ath_dbg(common, CALIBRATE, "enabling IQ Calibration\n");
}
if (ah->supp_cals & TEMP_COMP_CAL) {
INIT_CAL(&ah->tempCompCalData);
INSERT_CAL(ah, &ah->tempCompCalData);
ath_dbg(common, CALIBRATE,
"enabling Temperature Compensation Calibration\n");
}
INIT_CAL(&ah->iq_caldata);
INSERT_CAL(ah, &ah->iq_caldata);
ath_dbg(common, CALIBRATE, "enabling IQ Calibration\n");
/* Initialize current pointer to first element in list */
ah->cal_list_curr = ah->cal_list;
......
......@@ -4586,14 +4586,14 @@ static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
return 0;
}
static int ar9003_hw_power_control_override(struct ath_hw *ah,
int frequency,
int *correction,
int *voltage, int *temperature)
static void ar9003_hw_power_control_override(struct ath_hw *ah,
int frequency,
int *correction,
int *voltage, int *temperature)
{
int tempSlope = 0;
int temp_slope = 0, temp_slope1 = 0, temp_slope2 = 0;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
int f[8], t[8], i;
int f[8], t[8], t1[3], t2[3], i;
REG_RMW(ah, AR_PHY_TPC_11_B0,
(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
......@@ -4624,38 +4624,108 @@ static int ar9003_hw_power_control_override(struct ath_hw *ah,
* enable temperature compensation
* Need to use register names
*/
if (frequency < 4000)
tempSlope = eep->modalHeader2G.tempSlope;
else if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) {
for (i = 0; i < 8; i++) {
t[i] = eep->base_ext1.tempslopextension[i];
f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0);
if (frequency < 4000) {
temp_slope = eep->modalHeader2G.tempSlope;
} else {
if (AR_SREV_9550(ah)) {
t[0] = eep->base_ext1.tempslopextension[2];
t1[0] = eep->base_ext1.tempslopextension[3];
t2[0] = eep->base_ext1.tempslopextension[4];
f[0] = 5180;
t[1] = eep->modalHeader5G.tempSlope;
t1[1] = eep->base_ext1.tempslopextension[0];
t2[1] = eep->base_ext1.tempslopextension[1];
f[1] = 5500;
t[2] = eep->base_ext1.tempslopextension[5];
t1[2] = eep->base_ext1.tempslopextension[6];
t2[2] = eep->base_ext1.tempslopextension[7];
f[2] = 5785;
temp_slope = ar9003_hw_power_interpolate(frequency,
f, t, 3);
temp_slope1 = ar9003_hw_power_interpolate(frequency,
f, t1, 3);
temp_slope2 = ar9003_hw_power_interpolate(frequency,
f, t2, 3);
goto tempslope;
}
tempSlope = ar9003_hw_power_interpolate((s32) frequency,
f, t, 8);
} else if (eep->base_ext2.tempSlopeLow != 0) {
t[0] = eep->base_ext2.tempSlopeLow;
f[0] = 5180;
t[1] = eep->modalHeader5G.tempSlope;
f[1] = 5500;
t[2] = eep->base_ext2.tempSlopeHigh;
f[2] = 5785;
tempSlope = ar9003_hw_power_interpolate((s32) frequency,
f, t, 3);
} else
tempSlope = eep->modalHeader5G.tempSlope;
REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) {
for (i = 0; i < 8; i++) {
t[i] = eep->base_ext1.tempslopextension[i];
f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0);
}
temp_slope = ar9003_hw_power_interpolate((s32) frequency,
f, t, 8);
} else if (eep->base_ext2.tempSlopeLow != 0) {
t[0] = eep->base_ext2.tempSlopeLow;
f[0] = 5180;
t[1] = eep->modalHeader5G.tempSlope;
f[1] = 5500;
t[2] = eep->base_ext2.tempSlopeHigh;
f[2] = 5785;
temp_slope = ar9003_hw_power_interpolate((s32) frequency,
f, t, 3);
} else {
temp_slope = eep->modalHeader5G.tempSlope;
}
}
tempslope:
if (AR_SREV_9550(ah)) {
/*
* AR955x has tempSlope register for each chain.
* Check whether temp_compensation feature is enabled or not.
*/
if (eep->baseEepHeader.featureEnable & 0x1) {
if (frequency < 4000) {
REG_RMW_FIELD(ah, AR_PHY_TPC_19,
AR_PHY_TPC_19_ALPHA_THERM,
eep->base_ext2.tempSlopeLow);
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
AR_PHY_TPC_19_ALPHA_THERM,
temp_slope);
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
AR_PHY_TPC_19_ALPHA_THERM,
eep->base_ext2.tempSlopeHigh);
} else {
REG_RMW_FIELD(ah, AR_PHY_TPC_19,
AR_PHY_TPC_19_ALPHA_THERM,
temp_slope);
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
AR_PHY_TPC_19_ALPHA_THERM,
temp_slope1);
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
AR_PHY_TPC_19_ALPHA_THERM,
temp_slope2);
}
} else {
/*
* If temp compensation is not enabled,
* set all registers to 0.
*/
REG_RMW_FIELD(ah, AR_PHY_TPC_19,
AR_PHY_TPC_19_ALPHA_THERM, 0);
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
AR_PHY_TPC_19_ALPHA_THERM, 0);
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
AR_PHY_TPC_19_ALPHA_THERM, 0);
}
} else {
REG_RMW_FIELD(ah, AR_PHY_TPC_19,
AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
}
if (AR_SREV_9462_20(ah))
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
AR_PHY_TPC_19_B1_ALPHA_THERM, tempSlope);
AR_PHY_TPC_19_B1_ALPHA_THERM, temp_slope);
REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
temperature[0]);
return 0;
}
/* Apply the recorded correction values. */
......
......@@ -507,28 +507,59 @@ static void ar9003_tx_gain_table_mode4(struct ath_hw *ah)
else if (AR_SREV_9580(ah))
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9580_1p0_mixed_ob_db_tx_gain_table);
else
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9300Modes_mixed_ob_db_tx_gain_table_2p2);
}
static void ar9003_tx_gain_table_mode5(struct ath_hw *ah)
{
if (AR_SREV_9485_11(ah))
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9485Modes_green_ob_db_tx_gain_1_1);
else if (AR_SREV_9340(ah))
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9340Modes_ub124_tx_gain_table_1p0);
else if (AR_SREV_9580(ah))
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9580_1p0_type5_tx_gain_table);
else if (AR_SREV_9300_22(ah))
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9300Modes_type5_tx_gain_table_2p2);
}
static void ar9003_tx_gain_table_mode6(struct ath_hw *ah)
{
if (AR_SREV_9340(ah))
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9340Modes_low_ob_db_and_spur_tx_gain_table_1p0);
else if (AR_SREV_9485_11(ah))
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9485Modes_green_spur_ob_db_tx_gain_1_1);
else if (AR_SREV_9580(ah))
INIT_INI_ARRAY(&ah->iniModesTxGain,
ar9580_1p0_type6_tx_gain_table);
}
typedef void (*ath_txgain_tab)(struct ath_hw *ah);
static void ar9003_tx_gain_table_apply(struct ath_hw *ah)
{
switch (ar9003_hw_get_tx_gain_idx(ah)) {
case 0:
default:
ar9003_tx_gain_table_mode0(ah);
break;
case 1:
ar9003_tx_gain_table_mode1(ah);
break;
case 2:
ar9003_tx_gain_table_mode2(ah);
break;
case 3:
ar9003_tx_gain_table_mode3(ah);
break;
case 4:
ar9003_tx_gain_table_mode4(ah);
break;
}
static const ath_txgain_tab modes[] = {
ar9003_tx_gain_table_mode0,
ar9003_tx_gain_table_mode1,
ar9003_tx_gain_table_mode2,
ar9003_tx_gain_table_mode3,
ar9003_tx_gain_table_mode4,
ar9003_tx_gain_table_mode5,
ar9003_tx_gain_table_mode6,
};
int idx = ar9003_hw_get_tx_gain_idx(ah);
if (idx >= ARRAY_SIZE(modes))
idx = 0;
modes[idx](ah);
}
static void ar9003_rx_gain_table_mode0(struct ath_hw *ah)
......@@ -673,7 +704,7 @@ void ar9003_hw_attach_ops(struct ath_hw *ah)
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
struct ath_hw_ops *ops = ath9k_hw_ops(ah);
priv_ops->init_mode_regs = ar9003_hw_init_mode_regs;
ar9003_hw_init_mode_regs(ah);
priv_ops->init_mode_gain_regs = ar9003_hw_init_mode_gain_regs;
ops->config_pci_powersave = ar9003_hw_configpcipowersave;
......
......@@ -68,7 +68,7 @@ static const int m2ThreshExt_off = 127;
static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
{
u16 bMode, fracMode = 0, aModeRefSel = 0;
u32 freq, channelSel = 0, reg32 = 0;
u32 freq, chan_frac, div, channelSel = 0, reg32 = 0;
struct chan_centers centers;
int loadSynthChannel;
......@@ -77,9 +77,6 @@ static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
if (freq < 4800) { /* 2 GHz, fractional mode */
if (AR_SREV_9330(ah)) {
u32 chan_frac;
u32 div;
if (ah->is_clk_25mhz)
div = 75;
else
......@@ -89,34 +86,40 @@ static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
chan_frac = (((freq * 4) % div) * 0x20000) / div;
channelSel = (channelSel << 17) | chan_frac;
} else if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
u32 chan_frac;
/*
* freq_ref = 40 / (refdiva >> amoderefsel); where refdiva=1 and amoderefsel=0
* freq_ref = 40 / (refdiva >> amoderefsel);
* where refdiva=1 and amoderefsel=0
* ndiv = ((chan_mhz * 4) / 3) / freq_ref;
* chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000
*/
channelSel = (freq * 4) / 120;
chan_frac = (((freq * 4) % 120) * 0x20000) / 120;
channelSel = (channelSel << 17) | chan_frac;
} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
} else if (AR_SREV_9340(ah)) {
if (ah->is_clk_25mhz) {
u32 chan_frac;
channelSel = (freq * 2) / 75;
chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
channelSel = (channelSel << 17) | chan_frac;
} else
} else {
channelSel = CHANSEL_2G(freq) >> 1;
} else
}
} else if (AR_SREV_9550(ah)) {
if (ah->is_clk_25mhz)
div = 75;
else
div = 120;
channelSel = (freq * 4) / div;
chan_frac = (((freq * 4) % div) * 0x20000) / div;
channelSel = (channelSel << 17) | chan_frac;
} else {
channelSel = CHANSEL_2G(freq);
}
/* Set to 2G mode */
bMode = 1;
} else {
if ((AR_SREV_9340(ah) || AR_SREV_9550(ah)) &&
ah->is_clk_25mhz) {
u32 chan_frac;
channelSel = freq / 75;
chan_frac = ((freq % 75) * 0x20000) / 75;
channelSel = (channelSel << 17) | chan_frac;
......@@ -586,32 +589,19 @@ static void ar9003_hw_init_bb(struct ath_hw *ah,
ath9k_hw_synth_delay(ah, chan, synthDelay);
}
static void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
{
switch (rx) {
case 0x5:
if (ah->caps.tx_chainmask == 5 || ah->caps.rx_chainmask == 5)
REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
AR_PHY_SWAP_ALT_CHAIN);
case 0x3:
case 0x1:
case 0x2:
case 0x7:
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
break;
default:
break;
}
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
else
REG_WRITE(ah, AR_SELFGEN_MASK, tx);
tx = 3;
if (tx == 0x5) {
REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
AR_PHY_SWAP_ALT_CHAIN);
}
REG_WRITE(ah, AR_SELFGEN_MASK, tx);
}
/*
......@@ -1450,6 +1440,67 @@ static int ar9003_hw_fast_chan_change(struct ath_hw *ah,
return 0;
}
static void ar9003_hw_spectral_scan_config(struct ath_hw *ah,
struct ath_spec_scan *param)
{
u8 count;
if (!param->enabled) {
REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_ENABLE);
return;
}
REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
/* on AR93xx and newer, count = 0 will make the the chip send
* spectral samples endlessly. Check if this really was intended,
* and fix otherwise.
*/
count = param->count;
if (param->endless)
count = 0;
else if (param->count == 0)
count = 1;
if (param->short_repeat)
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
else
REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_COUNT, count);
REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
return;
}
static void ar9003_hw_spectral_scan_trigger(struct ath_hw *ah)
{
/* Activate spectral scan */
REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_ACTIVE);
}
static void ar9003_hw_spectral_scan_wait(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
/* Poll for spectral scan complete */
if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
AR_PHY_SPECTRAL_SCAN_ACTIVE,
0, AH_WAIT_TIMEOUT)) {
ath_err(common, "spectral scan wait failed\n");
return;
}
}
void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
{
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
......@@ -1483,6 +1534,9 @@ void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get;
ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set;
ops->antctrl_shared_chain_lnadiv = ar9003_hw_antctrl_shared_chain_lnadiv;
ops->spectral_scan_config = ar9003_hw_spectral_scan_config;
ops->spectral_scan_trigger = ar9003_hw_spectral_scan_trigger;
ops->spectral_scan_wait = ar9003_hw_spectral_scan_wait;
ar9003_hw_set_nf_limits(ah);
ar9003_hw_set_radar_conf(ah);
......
......@@ -1028,7 +1028,7 @@
#define AR_PHY_TPC_5_B2 (AR_SM2_BASE + 0x208)
#define AR_PHY_TPC_6_B2 (AR_SM2_BASE + 0x20c)
#define AR_PHY_TPC_11_B2 (AR_SM2_BASE + 0x220)
#define AR_PHY_PDADC_TAB_2 (AR_SM2_BASE + 0x240)
#define AR_PHY_TPC_19_B2 (AR_SM2_BASE + 0x240)
#define AR_PHY_TX_IQCAL_STATUS_B2 (AR_SM2_BASE + 0x48c)
#define AR_PHY_TX_IQCAL_CORR_COEFF_B2(_i) (AR_SM2_BASE + 0x450 + ((_i) << 2))
......
......@@ -1172,6 +1172,106 @@ static const u32 ar9340Modes_mixed_ob_db_tx_gain_table_1p0[][5] = {
{0x00016448, 0x24925666, 0x24925666, 0x8e481266, 0x8e481266},
};
static const u32 ar9340Modes_low_ob_db_and_spur_tx_gain_table_1p0[][5] = {
/* Addr 5G_HT20 5G_HT40 2G_HT40 2G_HT20 */
{0x0000a2dc, 0x0380c7fc, 0x0380c7fc, 0x03eaac5a, 0x03eaac5a},
{0x0000a2e0, 0x0000f800, 0x0000f800, 0x03f330ac, 0x03f330ac},
{0x0000a2e4, 0x03ff0000, 0x03ff0000, 0x03fc3f00, 0x03fc3f00},
{0x0000a2e8, 0x00000000, 0x00000000, 0x03ffc000, 0x03ffc000},
{0x0000a394, 0x00000444, 0x00000444, 0x00000404, 0x00000404},
{0x0000a410, 0x000050d9, 0x000050d9, 0x000050d9, 0x000050d9},
{0x0000a500, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a504, 0x06000003, 0x06000003, 0x02000001, 0x02000001},
{0x0000a508, 0x0a000020, 0x0a000020, 0x05000003, 0x05000003},
{0x0000a50c, 0x10000023, 0x10000023, 0x0a000005, 0x0a000005},
{0x0000a510, 0x16000220, 0x16000220, 0x0e000201, 0x0e000201},
{0x0000a514, 0x1c000223, 0x1c000223, 0x11000203, 0x11000203},
{0x0000a518, 0x21002220, 0x21002220, 0x14000401, 0x14000401},
{0x0000a51c, 0x27002223, 0x27002223, 0x18000403, 0x18000403},
{0x0000a520, 0x2b022220, 0x2b022220, 0x1b000602, 0x1b000602},
{0x0000a524, 0x2f022222, 0x2f022222, 0x1f000802, 0x1f000802},
{0x0000a528, 0x34022225, 0x34022225, 0x21000620, 0x21000620},
{0x0000a52c, 0x3a02222a, 0x3a02222a, 0x25000820, 0x25000820},
{0x0000a530, 0x3e02222c, 0x3e02222c, 0x29000822, 0x29000822},
{0x0000a534, 0x4202242a, 0x4202242a, 0x2d000824, 0x2d000824},
{0x0000a538, 0x4702244a, 0x4702244a, 0x30000828, 0x30000828},
{0x0000a53c, 0x4b02244c, 0x4b02244c, 0x3400082a, 0x3400082a},
{0x0000a540, 0x4e02246c, 0x4e02246c, 0x38000849, 0x38000849},
{0x0000a544, 0x5302266c, 0x5302266c, 0x3b000a2c, 0x3b000a2c},
{0x0000a548, 0x5702286c, 0x5702286c, 0x3e000e2b, 0x3e000e2b},
{0x0000a54c, 0x5c02486b, 0x5c02486b, 0x42000e2d, 0x42000e2d},
{0x0000a550, 0x61024a6c, 0x61024a6c, 0x4500124a, 0x4500124a},
{0x0000a554, 0x66026a6c, 0x66026a6c, 0x4900124c, 0x4900124c},
{0x0000a558, 0x6b026e6c, 0x6b026e6c, 0x4c00126c, 0x4c00126c},
{0x0000a55c, 0x7002708c, 0x7002708c, 0x4f00128c, 0x4f00128c},
{0x0000a560, 0x7302b08a, 0x7302b08a, 0x52001290, 0x52001290},
{0x0000a564, 0x7702b08c, 0x7702b08c, 0x56001292, 0x56001292},
{0x0000a568, 0x7702b08c, 0x7702b08c, 0x56001292, 0x56001292},
{0x0000a56c, 0x7702b08c, 0x7702b08c, 0x56001292, 0x56001292},
{0x0000a570, 0x7702b08c, 0x7702b08c, 0x56001292, 0x56001292},
{0x0000a574, 0x7702b08c, 0x7702b08c, 0x56001292, 0x56001292},
{0x0000a578, 0x7702b08c, 0x7702b08c, 0x56001292, 0x56001292},
{0x0000a57c, 0x7702b08c, 0x7702b08c, 0x56001292, 0x56001292},
{0x0000a580, 0x00800000, 0x00800000, 0x00800000, 0x00800000},
{0x0000a584, 0x06800003, 0x06800003, 0x02800001, 0x02800001},
{0x0000a588, 0x0a800020, 0x0a800020, 0x05800003, 0x05800003},
{0x0000a58c, 0x10800023, 0x10800023, 0x0a800005, 0x0a800005},
{0x0000a590, 0x16800220, 0x16800220, 0x0e800201, 0x0e800201},
{0x0000a594, 0x1c800223, 0x1c800223, 0x11800203, 0x11800203},
{0x0000a598, 0x21820220, 0x21820220, 0x14800401, 0x14800401},
{0x0000a59c, 0x27820223, 0x27820223, 0x18800403, 0x18800403},
{0x0000a5a0, 0x2b822220, 0x2b822220, 0x1b800602, 0x1b800602},
{0x0000a5a4, 0x2f822222, 0x2f822222, 0x1f800802, 0x1f800802},
{0x0000a5a8, 0x34822225, 0x34822225, 0x21800620, 0x21800620},
{0x0000a5ac, 0x3a82222a, 0x3a82222a, 0x25800820, 0x25800820},
{0x0000a5b0, 0x3e82222c, 0x3e82222c, 0x29800822, 0x29800822},
{0x0000a5b4, 0x4282242a, 0x4282242a, 0x2d800824, 0x2d800824},
{0x0000a5b8, 0x4782244a, 0x4782244a, 0x30800828, 0x30800828},
{0x0000a5bc, 0x4b82244c, 0x4b82244c, 0x3480082a, 0x3480082a},
{0x0000a5c0, 0x4e82246c, 0x4e82246c, 0x38800849, 0x38800849},
{0x0000a5c4, 0x5382266c, 0x5382266c, 0x3b800a2c, 0x3b800a2c},
{0x0000a5c8, 0x5782286c, 0x5782286c, 0x3e800e2b, 0x3e800e2b},
{0x0000a5cc, 0x5c84286b, 0x5c84286b, 0x42800e2d, 0x42800e2d},
{0x0000a5d0, 0x61842a6c, 0x61842a6c, 0x4580124a, 0x4580124a},
{0x0000a5d4, 0x66862a6c, 0x66862a6c, 0x4980124c, 0x4980124c},
{0x0000a5d8, 0x6b862e6c, 0x6b862e6c, 0x4c80126c, 0x4c80126c},
{0x0000a5dc, 0x7086308c, 0x7086308c, 0x4f80128c, 0x4f80128c},
{0x0000a5e0, 0x738a308a, 0x738a308a, 0x52801290, 0x52801290},
{0x0000a5e4, 0x778a308c, 0x778a308c, 0x56801292, 0x56801292},
{0x0000a5e8, 0x778a308c, 0x778a308c, 0x56801292, 0x56801292},
{0x0000a5ec, 0x778a308c, 0x778a308c, 0x56801292, 0x56801292},
{0x0000a5f0, 0x778a308c, 0x778a308c, 0x56801292, 0x56801292},
{0x0000a5f4, 0x778a308c, 0x778a308c, 0x56801292, 0x56801292},
{0x0000a5f8, 0x778a308c, 0x778a308c, 0x56801292, 0x56801292},
{0x0000a5fc, 0x778a308c, 0x778a308c, 0x56801292, 0x56801292},
{0x0000a600, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a604, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a608, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a60c, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a610, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a614, 0x01404000, 0x01404000, 0x01404501, 0x01404501},
{0x0000a618, 0x01404501, 0x01404501, 0x01404501, 0x01404501},
{0x0000a61c, 0x02008802, 0x02008802, 0x01404501, 0x01404501},
{0x0000a620, 0x0300cc03, 0x0300cc03, 0x03c0cf02, 0x03c0cf02},
{0x0000a624, 0x0300cc03, 0x0300cc03, 0x03c0cf03, 0x03c0cf03},
{0x0000a628, 0x0300cc03, 0x0300cc03, 0x04011004, 0x04011004},
{0x0000a62c, 0x03810c03, 0x03810c03, 0x05419405, 0x05419405},
{0x0000a630, 0x03810e04, 0x03810e04, 0x05419506, 0x05419506},
{0x0000a634, 0x03810e04, 0x03810e04, 0x05419506, 0x05419506},
{0x0000a638, 0x03810e04, 0x03810e04, 0x05419506, 0x05419506},
{0x0000a63c, 0x03810e04, 0x03810e04, 0x05419506, 0x05419506},
{0x0000b2dc, 0x0380c7fc, 0x0380c7fc, 0x03eaac5a, 0x03eaac5a},
{0x0000b2e0, 0x0000f800, 0x0000f800, 0x03f330ac, 0x03f330ac},
{0x0000b2e4, 0x03ff0000, 0x03ff0000, 0x03fc3f00, 0x03fc3f00},
{0x0000b2e8, 0x00000000, 0x00000000, 0x03ffc000, 0x03ffc000},
{0x00016044, 0x022492db, 0x022492db, 0x022492db, 0x022492db},
{0x00016048, 0x24925666, 0x24925666, 0x24925266, 0x24925266},
{0x00016280, 0x01000015, 0x01000015, 0x01001015, 0x01001015},
{0x00016288, 0xf0318000, 0xf0318000, 0xf0318000, 0xf0318000},
{0x00016444, 0x022492db, 0x022492db, 0x022492db, 0x022492db},
{0x00016448, 0x24925666, 0x24925666, 0x24925266, 0x24925266},
};
static const u32 ar9340_1p0_mac_core[][2] = {
/* Addr allmodes */
{0x00000008, 0x00000000},
......
......@@ -260,6 +260,79 @@ static const u32 ar9485Modes_high_power_tx_gain_1_1[][5] = {
{0x00016048, 0x6c924260, 0x6c924260, 0x6c924260, 0x6c924260},
};
static const u32 ar9485Modes_green_ob_db_tx_gain_1_1[][5] = {
/* Addr 5G_HT20 5G_HT40 2G_HT40 2G_HT20 */
{0x000098bc, 0x00000003, 0x00000003, 0x00000003, 0x00000003},
{0x0000a410, 0x000050d9, 0x000050d9, 0x000050d8, 0x000050d8},
{0x0000a458, 0x80000000, 0x80000000, 0x80000000, 0x80000000},
{0x0000a500, 0x00022200, 0x00022200, 0x00000006, 0x00000006},
{0x0000a504, 0x05062002, 0x05062002, 0x03000201, 0x03000201},
{0x0000a508, 0x0c002e00, 0x0c002e00, 0x06000203, 0x06000203},
{0x0000a50c, 0x11062202, 0x11062202, 0x0a000401, 0x0a000401},
{0x0000a510, 0x17022e00, 0x17022e00, 0x0e000403, 0x0e000403},
{0x0000a514, 0x1d000ec2, 0x1d000ec2, 0x12000405, 0x12000405},
{0x0000a518, 0x25020ec0, 0x25020ec0, 0x15000604, 0x15000604},
{0x0000a51c, 0x2b020ec3, 0x2b020ec3, 0x18000605, 0x18000605},
{0x0000a520, 0x2f001f04, 0x2f001f04, 0x1c000a04, 0x1c000a04},
{0x0000a524, 0x35001fc4, 0x35001fc4, 0x21000a06, 0x21000a06},
{0x0000a528, 0x3c022f04, 0x3c022f04, 0x29000a24, 0x29000a24},
{0x0000a52c, 0x41023e85, 0x41023e85, 0x2f000e21, 0x2f000e21},
{0x0000a530, 0x48023ec6, 0x48023ec6, 0x31000e20, 0x31000e20},
{0x0000a534, 0x4d023f01, 0x4d023f01, 0x33000e20, 0x33000e20},
{0x0000a538, 0x53023f4b, 0x53023f4b, 0x43000e62, 0x43000e62},
{0x0000a53c, 0x5a027f09, 0x5a027f09, 0x45000e63, 0x45000e63},
{0x0000a540, 0x5f027fc9, 0x5f027fc9, 0x49000e65, 0x49000e65},
{0x0000a544, 0x6502feca, 0x6502feca, 0x4b000e66, 0x4b000e66},
{0x0000a548, 0x6b02ff4a, 0x6b02ff4a, 0x4d001645, 0x4d001645},
{0x0000a54c, 0x7203feca, 0x7203feca, 0x51001865, 0x51001865},
{0x0000a550, 0x7703ff0b, 0x7703ff0b, 0x55001a86, 0x55001a86},
{0x0000a554, 0x7d06ffcb, 0x7d06ffcb, 0x57001ce9, 0x57001ce9},
{0x0000a558, 0x8407ff0b, 0x8407ff0b, 0x5a001ceb, 0x5a001ceb},
{0x0000a55c, 0x8907ffcb, 0x8907ffcb, 0x5e001eeb, 0x5e001eeb},
{0x0000a560, 0x900fff0b, 0x900fff0b, 0x5e001eeb, 0x5e001eeb},
{0x0000a564, 0x960fffcb, 0x960fffcb, 0x5e001eeb, 0x5e001eeb},
{0x0000a568, 0x9c1fff0b, 0x9c1fff0b, 0x5e001eeb, 0x5e001eeb},
{0x0000a56c, 0x9c1fff0b, 0x9c1fff0b, 0x5e001eeb, 0x5e001eeb},
{0x0000a570, 0x9c1fff0b, 0x9c1fff0b, 0x5e001eeb, 0x5e001eeb},
{0x0000a574, 0x9c1fff0b, 0x9c1fff0b, 0x5e001eeb, 0x5e001eeb},
{0x0000a578, 0x9c1fff0b, 0x9c1fff0b, 0x5e001eeb, 0x5e001eeb},
{0x0000a57c, 0x9c1fff0b, 0x9c1fff0b, 0x5e001eeb, 0x5e001eeb},
{0x0000b500, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b504, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b508, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b50c, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b510, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b514, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b518, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b51c, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b520, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b524, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b528, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b52c, 0x0000002a, 0x0000002a, 0x0000002a, 0x0000002a},
{0x0000b530, 0x0000003a, 0x0000003a, 0x0000003a, 0x0000003a},
{0x0000b534, 0x0000004a, 0x0000004a, 0x0000004a, 0x0000004a},
{0x0000b538, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b53c, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b540, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b544, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b548, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b54c, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b550, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b554, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b558, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b55c, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b560, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b564, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b568, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b56c, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b570, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b574, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b578, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b57c, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x00016044, 0x05d6b2db, 0x05d6b2db, 0x05d6b2db, 0x05d6b2db},
{0x00016048, 0x6c924260, 0x6c924260, 0x6c924260, 0x6c924260},
};
static const u32 ar9485Modes_high_ob_db_tx_gain_1_1[][5] = {
/* Addr 5G_HT20 5G_HT40 2G_HT40 2G_HT20 */
{0x000098bc, 0x00000002, 0x00000002, 0x00000002, 0x00000002},
......@@ -450,6 +523,79 @@ static const u32 ar9485Modes_low_ob_db_tx_gain_1_1[][5] = {
#define ar9485_modes_lowest_ob_db_tx_gain_1_1 ar9485Modes_low_ob_db_tx_gain_1_1
static const u32 ar9485Modes_green_spur_ob_db_tx_gain_1_1[][5] = {
/* Addr 5G_HT20 5G_HT40 2G_HT40 2G_HT20 */
{0x000098bc, 0x00000003, 0x00000003, 0x00000003, 0x00000003},
{0x0000a410, 0x000050d9, 0x000050d9, 0x000050d8, 0x000050d8},
{0x0000a458, 0x80000000, 0x80000000, 0x80000000, 0x80000000},
{0x0000a500, 0x00022200, 0x00022200, 0x00000006, 0x00000006},
{0x0000a504, 0x05062002, 0x05062002, 0x03000201, 0x03000201},
{0x0000a508, 0x0c002e00, 0x0c002e00, 0x07000203, 0x07000203},
{0x0000a50c, 0x11062202, 0x11062202, 0x0a000401, 0x0a000401},
{0x0000a510, 0x17022e00, 0x17022e00, 0x0e000403, 0x0e000403},
{0x0000a514, 0x1d000ec2, 0x1d000ec2, 0x12000405, 0x12000405},
{0x0000a518, 0x25020ec0, 0x25020ec0, 0x14000406, 0x14000406},
{0x0000a51c, 0x2b020ec3, 0x2b020ec3, 0x1800040a, 0x1800040a},
{0x0000a520, 0x2f001f04, 0x2f001f04, 0x1c000460, 0x1c000460},
{0x0000a524, 0x35001fc4, 0x35001fc4, 0x22000463, 0x22000463},
{0x0000a528, 0x3c022f04, 0x3c022f04, 0x26000465, 0x26000465},
{0x0000a52c, 0x41023e85, 0x41023e85, 0x2e0006e0, 0x2e0006e0},
{0x0000a530, 0x48023ec6, 0x48023ec6, 0x310006e0, 0x310006e0},
{0x0000a534, 0x4d023f01, 0x4d023f01, 0x330006e0, 0x330006e0},
{0x0000a538, 0x53023f4b, 0x53023f4b, 0x3e0008e3, 0x3e0008e3},
{0x0000a53c, 0x5a027f09, 0x5a027f09, 0x410008e5, 0x410008e5},
{0x0000a540, 0x5f027fc9, 0x5f027fc9, 0x430008e6, 0x430008e6},
{0x0000a544, 0x6502feca, 0x6502feca, 0x4a0008ec, 0x4a0008ec},
{0x0000a548, 0x6b02ff4a, 0x6b02ff4a, 0x4e0008f1, 0x4e0008f1},
{0x0000a54c, 0x7203feca, 0x7203feca, 0x520008f3, 0x520008f3},
{0x0000a550, 0x7703ff0b, 0x7703ff0b, 0x54000eed, 0x54000eed},
{0x0000a554, 0x7d06ffcb, 0x7d06ffcb, 0x58000ef1, 0x58000ef1},
{0x0000a558, 0x8407ff0b, 0x8407ff0b, 0x5c000ef3, 0x5c000ef3},
{0x0000a55c, 0x8907ffcb, 0x8907ffcb, 0x60000ef5, 0x60000ef5},
{0x0000a560, 0x900fff0b, 0x900fff0b, 0x62000ef6, 0x62000ef6},
{0x0000a564, 0x960fffcb, 0x960fffcb, 0x62000ef6, 0x62000ef6},
{0x0000a568, 0x9c1fff0b, 0x9c1fff0b, 0x62000ef6, 0x62000ef6},
{0x0000a56c, 0x9c1fff0b, 0x9c1fff0b, 0x62000ef6, 0x62000ef6},
{0x0000a570, 0x9c1fff0b, 0x9c1fff0b, 0x62000ef6, 0x62000ef6},
{0x0000a574, 0x9c1fff0b, 0x9c1fff0b, 0x62000ef6, 0x62000ef6},
{0x0000a578, 0x9c1fff0b, 0x9c1fff0b, 0x62000ef6, 0x62000ef6},
{0x0000a57c, 0x9c1fff0b, 0x9c1fff0b, 0x62000ef6, 0x62000ef6},
{0x0000b500, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b504, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b508, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b50c, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b510, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b514, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b518, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b51c, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b520, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b524, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b528, 0x0000001a, 0x0000001a, 0x0000001a, 0x0000001a},
{0x0000b52c, 0x0000002a, 0x0000002a, 0x0000002a, 0x0000002a},
{0x0000b530, 0x0000003a, 0x0000003a, 0x0000003a, 0x0000003a},
{0x0000b534, 0x0000004a, 0x0000004a, 0x0000004a, 0x0000004a},
{0x0000b538, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b53c, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b540, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b544, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b548, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b54c, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b550, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b554, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b558, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b55c, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b560, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b564, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b568, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b56c, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b570, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b574, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b578, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x0000b57c, 0x0000005b, 0x0000005b, 0x0000005b, 0x0000005b},
{0x00016044, 0x05d6b2db, 0x05d6b2db, 0x05d6b2db, 0x05d6b2db},
{0x00016048, 0x6c924260, 0x6c924260, 0x6c924260, 0x6c924260},
};
static const u32 ar9485_1_1[][2] = {
/* Addr allmodes */
{0x0000a580, 0x00000000},
......
......@@ -23,16 +23,16 @@
static const u32 ar955x_1p0_radio_postamble[][5] = {
/* Addr 5G_HT20 5G_HT40 2G_HT40 2G_HT20 */
{0x00016098, 0xd2dd5554, 0xd2dd5554, 0xd28b3330, 0xd28b3330},
{0x0001609c, 0x0a566f3a, 0x0a566f3a, 0x06345f2a, 0x06345f2a},
{0x000160ac, 0xa4647c00, 0xa4647c00, 0xa4646800, 0xa4646800},
{0x000160b0, 0x01885f52, 0x01885f52, 0x04accf3a, 0x04accf3a},
{0x00016104, 0xb7a00001, 0xb7a00001, 0xb7a00001, 0xb7a00001},
{0x0001609c, 0x0a566f3a, 0x0a566f3a, 0x0a566f3a, 0x0a566f3a},
{0x000160ac, 0xa4647c00, 0xa4647c00, 0x24647c00, 0x24647c00},
{0x000160b0, 0x01885f52, 0x01885f52, 0x01885f52, 0x01885f52},
{0x00016104, 0xb7a00000, 0xb7a00000, 0xb7a00001, 0xb7a00001},
{0x0001610c, 0xc0000000, 0xc0000000, 0xc0000000, 0xc0000000},
{0x00016140, 0x10804008, 0x10804008, 0x10804008, 0x10804008},
{0x00016504, 0xb7a00001, 0xb7a00001, 0xb7a00001, 0xb7a00001},
{0x00016504, 0xb7a00000, 0xb7a00000, 0xb7a00001, 0xb7a00001},
{0x0001650c, 0xc0000000, 0xc0000000, 0xc0000000, 0xc0000000},
{0x00016540, 0x10804008, 0x10804008, 0x10804008, 0x10804008},
{0x00016904, 0xb7a00001, 0xb7a00001, 0xb7a00001, 0xb7a00001},
{0x00016904, 0xb7a00000, 0xb7a00000, 0xb7a00001, 0xb7a00001},
{0x0001690c, 0xc0000000, 0xc0000000, 0xc0000000, 0xc0000000},
{0x00016940, 0x10804008, 0x10804008, 0x10804008, 0x10804008},
};
......@@ -69,15 +69,15 @@ static const u32 ar955x_1p0_baseband_postamble[][5] = {
{0x0000a204, 0x005c0ec0, 0x005c0ec4, 0x005c0ec4, 0x005c0ec0},
{0x0000a208, 0x00000104, 0x00000104, 0x00000004, 0x00000004},
{0x0000a22c, 0x07e26a2f, 0x07e26a2f, 0x01026a2f, 0x01026a2f},
{0x0000a230, 0x0000000a, 0x00000014, 0x00000016, 0x0000000b},
{0x0000a230, 0x0000400a, 0x00004014, 0x00004016, 0x0000400b},
{0x0000a234, 0x00000fff, 0x10000fff, 0x10000fff, 0x00000fff},
{0x0000a238, 0xffb01018, 0xffb01018, 0xffb01018, 0xffb01018},
{0x0000a250, 0x00000000, 0x00000000, 0x00000210, 0x00000108},
{0x0000a254, 0x000007d0, 0x00000fa0, 0x00001130, 0x00000898},
{0x0000a258, 0x02020002, 0x02020002, 0x02020002, 0x02020002},
{0x0000a25c, 0x01000e0e, 0x01000e0e, 0x01000e0e, 0x01000e0e},
{0x0000a25c, 0x01000e0e, 0x01000e0e, 0x01010e0e, 0x01010e0e},
{0x0000a260, 0x0a021501, 0x0a021501, 0x3a021501, 0x3a021501},
{0x0000a264, 0x00000e0e, 0x00000e0e, 0x00000e0e, 0x00000e0e},
{0x0000a264, 0x00000e0e, 0x00000e0e, 0x01000e0e, 0x01000e0e},
{0x0000a280, 0x00000007, 0x00000007, 0x0000000b, 0x0000000b},
{0x0000a284, 0x00000000, 0x00000000, 0x00000010, 0x00000010},
{0x0000a288, 0x00000110, 0x00000110, 0x00000110, 0x00000110},
......@@ -125,7 +125,7 @@ static const u32 ar955x_1p0_radio_core[][2] = {
{0x00016094, 0x00000000},
{0x000160a0, 0x0a108ffe},
{0x000160a4, 0x812fc370},
{0x000160a8, 0x423c8000},
{0x000160a8, 0x423c8100},
{0x000160b4, 0x92480080},
{0x000160c0, 0x006db6d0},
{0x000160c4, 0x6db6db60},
......@@ -134,7 +134,7 @@ static const u32 ar955x_1p0_radio_core[][2] = {
{0x00016100, 0x11999601},
{0x00016108, 0x00080010},
{0x00016144, 0x02084080},
{0x00016148, 0x000080c0},
{0x00016148, 0x00008040},
{0x00016280, 0x01800804},
{0x00016284, 0x00038dc5},
{0x00016288, 0x00000000},
......@@ -178,7 +178,7 @@ static const u32 ar955x_1p0_radio_core[][2] = {
{0x00016500, 0x11999601},
{0x00016508, 0x00080010},
{0x00016544, 0x02084080},
{0x00016548, 0x000080c0},
{0x00016548, 0x00008040},
{0x00016780, 0x00000000},
{0x00016784, 0x00000000},
{0x00016788, 0x00400705},
......@@ -218,7 +218,7 @@ static const u32 ar955x_1p0_radio_core[][2] = {
{0x00016900, 0x11999601},
{0x00016908, 0x00080010},
{0x00016944, 0x02084080},
{0x00016948, 0x000080c0},
{0x00016948, 0x00008040},
{0x00016b80, 0x00000000},
{0x00016b84, 0x00000000},
{0x00016b88, 0x00400705},
......@@ -245,9 +245,9 @@ static const u32 ar955x_1p0_radio_core[][2] = {
static const u32 ar955x_1p0_modes_xpa_tx_gain_table[][9] = {
/* Addr 5G_HT20_L 5G_HT40_L 5G_HT20_M 5G_HT40_M 5G_HT20_H 5G_HT40_H 2G_HT40 2G_HT20 */
{0x0000a2dc, 0xffffaaaa, 0xffffaaaa, 0xffffaaaa, 0xffffaaaa, 0xffffaaaa, 0xffffaaaa, 0xfffd5aaa, 0xfffd5aaa},
{0x0000a2e0, 0xffffcccc, 0xffffcccc, 0xffffcccc, 0xffffcccc, 0xffffcccc, 0xffffcccc, 0xfffe9ccc, 0xfffe9ccc},
{0x0000a2e4, 0xfffff0f0, 0xfffff0f0, 0xfffff0f0, 0xfffff0f0, 0xfffff0f0, 0xfffff0f0, 0xffffe0f0, 0xffffe0f0},
{0x0000a2dc, 0xffff6aaa, 0xffff6aaa, 0xffff6aaa, 0xffff6aaa, 0xffff6aaa, 0xffff6aaa, 0xfffd5aaa, 0xfffd5aaa},
{0x0000a2e0, 0xfffdcccc, 0xfffdcccc, 0xfffdcccc, 0xfffdcccc, 0xfffdcccc, 0xfffdcccc, 0xfffe9ccc, 0xfffe9ccc},
{0x0000a2e4, 0xffe3b0f0, 0xffe3b0f0, 0xffe3b0f0, 0xffe3b0f0, 0xffe3b0f0, 0xffe3b0f0, 0xffffe0f0, 0xffffe0f0},
{0x0000a2e8, 0xffffff00, 0xffffff00, 0xffffff00, 0xffffff00, 0xffffff00, 0xffffff00, 0xfffcff00, 0xfffcff00},
{0x0000a410, 0x000050de, 0x000050de, 0x000050de, 0x000050de, 0x000050de, 0x000050de, 0x000050da, 0x000050da},
{0x0000a500, 0x00000003, 0x00000003, 0x00000003, 0x00000003, 0x00000003, 0x00000003, 0x00000000, 0x00000000},
......@@ -256,63 +256,63 @@ static const u32 ar955x_1p0_modes_xpa_tx_gain_table[][9] = {
{0x0000a50c, 0x0c00000b, 0x0c00000b, 0x0c00000b, 0x0c00000b, 0x0c00000b, 0x0c00000b, 0x0c000006, 0x0c000006},
{0x0000a510, 0x1000000d, 0x1000000d, 0x1000000d, 0x1000000d, 0x1000000d, 0x1000000d, 0x0f00000a, 0x0f00000a},
{0x0000a514, 0x14000011, 0x14000011, 0x14000011, 0x14000011, 0x14000011, 0x14000011, 0x1300000c, 0x1300000c},
{0x0000a518, 0x19004008, 0x19004008, 0x19004008, 0x19004008, 0x18004008, 0x18004008, 0x1700000e, 0x1700000e},
{0x0000a51c, 0x1d00400a, 0x1d00400a, 0x1d00400a, 0x1d00400a, 0x1c00400a, 0x1c00400a, 0x1b000064, 0x1b000064},
{0x0000a520, 0x230020a2, 0x230020a2, 0x210020a2, 0x210020a2, 0x200020a2, 0x200020a2, 0x1f000242, 0x1f000242},
{0x0000a524, 0x2500006e, 0x2500006e, 0x2500006e, 0x2500006e, 0x2400006e, 0x2400006e, 0x23000229, 0x23000229},
{0x0000a528, 0x29022221, 0x29022221, 0x28022221, 0x28022221, 0x27022221, 0x27022221, 0x270002a2, 0x270002a2},
{0x0000a52c, 0x2d00062a, 0x2d00062a, 0x2c00062a, 0x2c00062a, 0x2a00062a, 0x2a00062a, 0x2c001203, 0x2c001203},
{0x0000a530, 0x340220a5, 0x340220a5, 0x320220a5, 0x320220a5, 0x2f0220a5, 0x2f0220a5, 0x30001803, 0x30001803},
{0x0000a534, 0x380022c5, 0x380022c5, 0x350022c5, 0x350022c5, 0x320022c5, 0x320022c5, 0x33000881, 0x33000881},
{0x0000a538, 0x3b002486, 0x3b002486, 0x39002486, 0x39002486, 0x36002486, 0x36002486, 0x38001809, 0x38001809},
{0x0000a53c, 0x3f00248a, 0x3f00248a, 0x3d00248a, 0x3d00248a, 0x3a00248a, 0x3a00248a, 0x3a000814, 0x3a000814},
{0x0000a540, 0x4202242c, 0x4202242c, 0x4102242c, 0x4102242c, 0x3f02242c, 0x3f02242c, 0x3f001a0c, 0x3f001a0c},
{0x0000a544, 0x490044c6, 0x490044c6, 0x460044c6, 0x460044c6, 0x420044c6, 0x420044c6, 0x43001a0e, 0x43001a0e},
{0x0000a548, 0x4d024485, 0x4d024485, 0x4a024485, 0x4a024485, 0x46024485, 0x46024485, 0x46001812, 0x46001812},
{0x0000a54c, 0x51044483, 0x51044483, 0x4e044483, 0x4e044483, 0x4a044483, 0x4a044483, 0x49001884, 0x49001884},
{0x0000a550, 0x5404a40c, 0x5404a40c, 0x5204a40c, 0x5204a40c, 0x4d04a40c, 0x4d04a40c, 0x4d001e84, 0x4d001e84},
{0x0000a554, 0x57024632, 0x57024632, 0x55024632, 0x55024632, 0x52024632, 0x52024632, 0x50001e69, 0x50001e69},
{0x0000a558, 0x5c00a634, 0x5c00a634, 0x5900a634, 0x5900a634, 0x5600a634, 0x5600a634, 0x550006f4, 0x550006f4},
{0x0000a55c, 0x5f026832, 0x5f026832, 0x5d026832, 0x5d026832, 0x5a026832, 0x5a026832, 0x59000ad3, 0x59000ad3},
{0x0000a560, 0x6602b012, 0x6602b012, 0x6202b012, 0x6202b012, 0x5d02b012, 0x5d02b012, 0x5e000ad5, 0x5e000ad5},
{0x0000a564, 0x6e02d0e1, 0x6e02d0e1, 0x6802d0e1, 0x6802d0e1, 0x6002d0e1, 0x6002d0e1, 0x61001ced, 0x61001ced},
{0x0000a568, 0x7202b4c4, 0x7202b4c4, 0x6c02b4c4, 0x6c02b4c4, 0x6502b4c4, 0x6502b4c4, 0x660018d4, 0x660018d4},
{0x0000a56c, 0x75007894, 0x75007894, 0x70007894, 0x70007894, 0x6b007894, 0x6b007894, 0x660018d4, 0x660018d4},
{0x0000a570, 0x7b025c74, 0x7b025c74, 0x75025c74, 0x75025c74, 0x70025c74, 0x70025c74, 0x660018d4, 0x660018d4},
{0x0000a574, 0x8300bcb5, 0x8300bcb5, 0x7a00bcb5, 0x7a00bcb5, 0x7600bcb5, 0x7600bcb5, 0x660018d4, 0x660018d4},
{0x0000a578, 0x8a04dc74, 0x8a04dc74, 0x7f04dc74, 0x7f04dc74, 0x7c04dc74, 0x7c04dc74, 0x660018d4, 0x660018d4},
{0x0000a57c, 0x8a04dc74, 0x8a04dc74, 0x7f04dc74, 0x7f04dc74, 0x7c04dc74, 0x7c04dc74, 0x660018d4, 0x660018d4},
{0x0000a518, 0x1700002b, 0x1700002b, 0x1700002b, 0x1700002b, 0x1600002b, 0x1600002b, 0x1700000e, 0x1700000e},
{0x0000a51c, 0x1b00002d, 0x1b00002d, 0x1b00002d, 0x1b00002d, 0x1a00002d, 0x1a00002d, 0x1b000064, 0x1b000064},
{0x0000a520, 0x20000031, 0x20000031, 0x1f000031, 0x1f000031, 0x1e000031, 0x1e000031, 0x1f000242, 0x1f000242},
{0x0000a524, 0x24000051, 0x24000051, 0x23000051, 0x23000051, 0x23000051, 0x23000051, 0x23000229, 0x23000229},
{0x0000a528, 0x27000071, 0x27000071, 0x27000071, 0x27000071, 0x26000071, 0x26000071, 0x270002a2, 0x270002a2},
{0x0000a52c, 0x2b000092, 0x2b000092, 0x2b000092, 0x2b000092, 0x2b000092, 0x2b000092, 0x2c001203, 0x2c001203},
{0x0000a530, 0x3000028c, 0x3000028c, 0x2f00028c, 0x2f00028c, 0x2e00028c, 0x2e00028c, 0x30001803, 0x30001803},
{0x0000a534, 0x34000290, 0x34000290, 0x33000290, 0x33000290, 0x32000290, 0x32000290, 0x33000881, 0x33000881},
{0x0000a538, 0x37000292, 0x37000292, 0x36000292, 0x36000292, 0x35000292, 0x35000292, 0x38001809, 0x38001809},
{0x0000a53c, 0x3b02028d, 0x3b02028d, 0x3a02028d, 0x3a02028d, 0x3902028d, 0x3902028d, 0x3a000814, 0x3a000814},
{0x0000a540, 0x3f020291, 0x3f020291, 0x3e020291, 0x3e020291, 0x3d020291, 0x3d020291, 0x3f001a0c, 0x3f001a0c},
{0x0000a544, 0x44020490, 0x44020490, 0x43020490, 0x43020490, 0x42020490, 0x42020490, 0x43001a0e, 0x43001a0e},
{0x0000a548, 0x48020492, 0x48020492, 0x47020492, 0x47020492, 0x46020492, 0x46020492, 0x46001812, 0x46001812},
{0x0000a54c, 0x4c020692, 0x4c020692, 0x4b020692, 0x4b020692, 0x4a020692, 0x4a020692, 0x49001884, 0x49001884},
{0x0000a550, 0x50020892, 0x50020892, 0x4f020892, 0x4f020892, 0x4e020892, 0x4e020892, 0x4d001e84, 0x4d001e84},
{0x0000a554, 0x53040891, 0x53040891, 0x53040891, 0x53040891, 0x52040891, 0x52040891, 0x50001e69, 0x50001e69},
{0x0000a558, 0x58040893, 0x58040893, 0x57040893, 0x57040893, 0x56040893, 0x56040893, 0x550006f4, 0x550006f4},
{0x0000a55c, 0x5c0408b4, 0x5c0408b4, 0x5a0408b4, 0x5a0408b4, 0x5a0408b4, 0x5a0408b4, 0x59000ad3, 0x59000ad3},
{0x0000a560, 0x610408b6, 0x610408b6, 0x5e0408b6, 0x5e0408b6, 0x5e0408b6, 0x5e0408b6, 0x5e000ad5, 0x5e000ad5},
{0x0000a564, 0x670408f6, 0x670408f6, 0x620408f6, 0x620408f6, 0x620408f6, 0x620408f6, 0x61001ced, 0x61001ced},
{0x0000a568, 0x6a040cf6, 0x6a040cf6, 0x66040cf6, 0x66040cf6, 0x66040cf6, 0x66040cf6, 0x660018d4, 0x660018d4},
{0x0000a56c, 0x6d040d76, 0x6d040d76, 0x6a040d76, 0x6a040d76, 0x6a040d76, 0x6a040d76, 0x660018d4, 0x660018d4},
{0x0000a570, 0x70060db6, 0x70060db6, 0x6e060db6, 0x6e060db6, 0x6e060db6, 0x6e060db6, 0x660018d4, 0x660018d4},
{0x0000a574, 0x730a0df6, 0x730a0df6, 0x720a0df6, 0x720a0df6, 0x720a0df6, 0x720a0df6, 0x660018d4, 0x660018d4},
{0x0000a578, 0x770a13f6, 0x770a13f6, 0x760a13f6, 0x760a13f6, 0x760a13f6, 0x760a13f6, 0x660018d4, 0x660018d4},
{0x0000a57c, 0x770a13f6, 0x770a13f6, 0x760a13f6, 0x760a13f6, 0x760a13f6, 0x760a13f6, 0x660018d4, 0x660018d4},
{0x0000a600, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a604, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a608, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a60c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x03804000, 0x03804000},
{0x0000a610, 0x04c08c01, 0x04c08c01, 0x04808b01, 0x04808b01, 0x04808a01, 0x04808a01, 0x0300ca02, 0x0300ca02},
{0x0000a614, 0x00c0c303, 0x00c0c303, 0x00c0c303, 0x00c0c303, 0x00c0c303, 0x00c0c303, 0x00000e04, 0x00000e04},
{0x0000a618, 0x04010c01, 0x04010c01, 0x03c10b01, 0x03c10b01, 0x03810a01, 0x03810a01, 0x03014000, 0x03014000},
{0x0000a61c, 0x03814e05, 0x03814e05, 0x03414d05, 0x03414d05, 0x03414d05, 0x03414d05, 0x00000000, 0x00000000},
{0x0000a620, 0x04010303, 0x04010303, 0x03c10303, 0x03c10303, 0x03810303, 0x03810303, 0x00000000, 0x00000000},
{0x0000a624, 0x03814e05, 0x03814e05, 0x03414d05, 0x03414d05, 0x03414d05, 0x03414d05, 0x03014000, 0x03014000},
{0x0000a628, 0x00c0c000, 0x00c0c000, 0x00c0c000, 0x00c0c000, 0x00c0c000, 0x00c0c000, 0x03804c05, 0x03804c05},
{0x0000a62c, 0x00c0c303, 0x00c0c303, 0x00c0c303, 0x00c0c303, 0x00c0c303, 0x00c0c303, 0x0701de06, 0x0701de06},
{0x0000a630, 0x03418000, 0x03418000, 0x03018000, 0x03018000, 0x02c18000, 0x02c18000, 0x07819c07, 0x07819c07},
{0x0000a634, 0x03815004, 0x03815004, 0x03414f04, 0x03414f04, 0x03414e04, 0x03414e04, 0x0701dc07, 0x0701dc07},
{0x0000a638, 0x03005302, 0x03005302, 0x02c05202, 0x02c05202, 0x02805202, 0x02805202, 0x0701dc07, 0x0701dc07},
{0x0000a63c, 0x04c09302, 0x04c09302, 0x04809202, 0x04809202, 0x04809202, 0x04809202, 0x0701dc07, 0x0701dc07},
{0x0000b2dc, 0xffffaaaa, 0xffffaaaa, 0xffffaaaa, 0xffffaaaa, 0xffffaaaa, 0xffffaaaa, 0xfffd5aaa, 0xfffd5aaa},
{0x0000b2e0, 0xffffcccc, 0xffffcccc, 0xffffcccc, 0xffffcccc, 0xffffcccc, 0xffffcccc, 0xfffe9ccc, 0xfffe9ccc},
{0x0000b2e4, 0xfffff0f0, 0xfffff0f0, 0xfffff0f0, 0xfffff0f0, 0xfffff0f0, 0xfffff0f0, 0xffffe0f0, 0xffffe0f0},
{0x0000a60c, 0x02c04b01, 0x02c04b01, 0x02c04b01, 0x02c04b01, 0x02c04b01, 0x02c04b01, 0x03804000, 0x03804000},
{0x0000a610, 0x04008b01, 0x04008b01, 0x04008b01, 0x04008b01, 0x03c08b01, 0x03c08b01, 0x0300ca02, 0x0300ca02},
{0x0000a614, 0x05811403, 0x05811403, 0x05411303, 0x05411303, 0x05411303, 0x05411303, 0x00000e04, 0x00000e04},
{0x0000a618, 0x05811604, 0x05811604, 0x05411504, 0x05411504, 0x05411504, 0x05411504, 0x03014000, 0x03014000},
{0x0000a61c, 0x05811604, 0x05811604, 0x05411504, 0x05411504, 0x05411504, 0x05411504, 0x00000000, 0x00000000},
{0x0000a620, 0x05811604, 0x05811604, 0x05411504, 0x05411504, 0x05411504, 0x05411504, 0x00000000, 0x00000000},
{0x0000a624, 0x05811604, 0x05811604, 0x05411504, 0x05411504, 0x05411504, 0x05411504, 0x03014000, 0x03014000},
{0x0000a628, 0x05811604, 0x05811604, 0x05411504, 0x05411504, 0x05411504, 0x05411504, 0x03804c05, 0x03804c05},
{0x0000a62c, 0x06815604, 0x06815604, 0x06415504, 0x06415504, 0x06015504, 0x06015504, 0x0701de06, 0x0701de06},
{0x0000a630, 0x07819a05, 0x07819a05, 0x07419905, 0x07419905, 0x07019805, 0x07019805, 0x07819c07, 0x07819c07},
{0x0000a634, 0x07819e06, 0x07819e06, 0x07419d06, 0x07419d06, 0x07019c06, 0x07019c06, 0x0701dc07, 0x0701dc07},
{0x0000a638, 0x07819e06, 0x07819e06, 0x07419d06, 0x07419d06, 0x07019c06, 0x07019c06, 0x0701dc07, 0x0701dc07},
{0x0000a63c, 0x07819e06, 0x07819e06, 0x07419d06, 0x07419d06, 0x07019c06, 0x07019c06, 0x0701dc07, 0x0701dc07},
{0x0000b2dc, 0xffff6aaa, 0xffff6aaa, 0xffff6aaa, 0xffff6aaa, 0xffff6aaa, 0xffff6aaa, 0xfffd5aaa, 0xfffd5aaa},
{0x0000b2e0, 0xfffdcccc, 0xfffdcccc, 0xfffdcccc, 0xfffdcccc, 0xfffdcccc, 0xfffdcccc, 0xfffe9ccc, 0xfffe9ccc},
{0x0000b2e4, 0xffe3b0f0, 0xffe3b0f0, 0xffe3b0f0, 0xffe3b0f0, 0xffe3b0f0, 0xffe3b0f0, 0xffffe0f0, 0xffffe0f0},
{0x0000b2e8, 0xffffff00, 0xffffff00, 0xffffff00, 0xffffff00, 0xffffff00, 0xffffff00, 0xfffcff00, 0xfffcff00},
{0x0000c2dc, 0xffffaaaa, 0xffffaaaa, 0xffffaaaa, 0xffffaaaa, 0xffffaaaa, 0xffffaaaa, 0xfffd5aaa, 0xfffd5aaa},
{0x0000c2e0, 0xffffcccc, 0xffffcccc, 0xffffcccc, 0xffffcccc, 0xffffcccc, 0xffffcccc, 0xfffe9ccc, 0xfffe9ccc},
{0x0000c2e4, 0xfffff0f0, 0xfffff0f0, 0xfffff0f0, 0xfffff0f0, 0xfffff0f0, 0xfffff0f0, 0xffffe0f0, 0xffffe0f0},
{0x0000c2dc, 0xffff6aaa, 0xffff6aaa, 0xffff6aaa, 0xffff6aaa, 0xffff6aaa, 0xffff6aaa, 0xfffd5aaa, 0xfffd5aaa},
{0x0000c2e0, 0xfffdcccc, 0xfffdcccc, 0xfffdcccc, 0xfffdcccc, 0xfffdcccc, 0xfffdcccc, 0xfffe9ccc, 0xfffe9ccc},
{0x0000c2e4, 0xffe3b0f0, 0xffe3b0f0, 0xffe3b0f0, 0xffe3b0f0, 0xffe3b0f0, 0xffe3b0f0, 0xffffe0f0, 0xffffe0f0},
{0x0000c2e8, 0xffffff00, 0xffffff00, 0xffffff00, 0xffffff00, 0xffffff00, 0xffffff00, 0xfffcff00, 0xfffcff00},
{0x00016044, 0x056db2d4, 0x056db2d4, 0x056db2d4, 0x056db2d4, 0x056db2d4, 0x056db2d4, 0x010002d4, 0x010002d4},
{0x00016048, 0x62482401, 0x62482401, 0x62482401, 0x62482401, 0x62482401, 0x62482401, 0x66482401, 0x66482401},
{0x00016048, 0x66482401, 0x66482401, 0x66482401, 0x66482401, 0x66482401, 0x66482401, 0x66482401, 0x66482401},
{0x00016280, 0x01801e84, 0x01801e84, 0x01801e84, 0x01801e84, 0x01801e84, 0x01801e84, 0x01808e84, 0x01808e84},
{0x00016444, 0x056db2d4, 0x056db2d4, 0x056db2d4, 0x056db2d4, 0x056db2d4, 0x056db2d4, 0x010002d4, 0x010002d4},
{0x00016448, 0x62482401, 0x62482401, 0x62482401, 0x62482401, 0x62482401, 0x62482401, 0x66482401, 0x66482401},
{0x00016448, 0x66482401, 0x66482401, 0x66482401, 0x66482401, 0x66482401, 0x66482401, 0x66482401, 0x66482401},
{0x00016844, 0x056db2d4, 0x056db2d4, 0x056db2d4, 0x056db2d4, 0x056db2d4, 0x056db2d4, 0x010002d4, 0x010002d4},
{0x00016848, 0x62482401, 0x62482401, 0x62482401, 0x62482401, 0x62482401, 0x62482401, 0x66482401, 0x66482401},
{0x00016848, 0x66482401, 0x66482401, 0x66482401, 0x66482401, 0x66482401, 0x66482401, 0x66482401, 0x66482401},
};
static const u32 ar955x_1p0_mac_core[][2] = {
......@@ -846,7 +846,7 @@ static const u32 ar955x_1p0_baseband_core[][2] = {
{0x0000a44c, 0x00000001},
{0x0000a450, 0x00010000},
{0x0000a458, 0x00000000},
{0x0000a644, 0x3fad9d74},
{0x0000a644, 0xbfad9d74},
{0x0000a648, 0x0048060a},
{0x0000a64c, 0x00003c37},
{0x0000a670, 0x03020100},
......@@ -1277,7 +1277,7 @@ static const u32 ar955x_1p0_modes_fast_clock[][3] = {
{0x0000801c, 0x148ec02b, 0x148ec057},
{0x00008318, 0x000044c0, 0x00008980},
{0x00009e00, 0x0372131c, 0x0372131c},
{0x0000a230, 0x0000000b, 0x00000016},
{0x0000a230, 0x0000400b, 0x00004016},
{0x0000a254, 0x00000898, 0x00001130},
};
......
......@@ -685,6 +685,82 @@ static const u32 ar9580_1p0_mixed_ob_db_tx_gain_table[][5] = {
#define ar9580_1p0_high_ob_db_tx_gain_table ar9300Modes_high_ob_db_tx_gain_table_2p2
#define ar9580_1p0_type5_tx_gain_table ar9300Modes_type5_tx_gain_table_2p2
static const u32 ar9580_1p0_type6_tx_gain_table[][5] = {
/* Addr 5G_HT20 5G_HT40 2G_HT40 2G_HT20 */
{0x0000a2dc, 0x000cfff0, 0x000cfff0, 0x03aaa352, 0x03aaa352},
{0x0000a2e0, 0x000f0000, 0x000f0000, 0x03ccc584, 0x03ccc584},
{0x0000a2e4, 0x03f00000, 0x03f00000, 0x03f0f800, 0x03f0f800},
{0x0000a2e8, 0x00000000, 0x00000000, 0x03ff0000, 0x03ff0000},
{0x0000a410, 0x000050d9, 0x000050d9, 0x000050d9, 0x000050d9},
{0x0000a500, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a504, 0x06000003, 0x06000003, 0x04000002, 0x04000002},
{0x0000a508, 0x0a000020, 0x0a000020, 0x08000004, 0x08000004},
{0x0000a50c, 0x10000023, 0x10000023, 0x0b000200, 0x0b000200},
{0x0000a510, 0x15000028, 0x15000028, 0x0f000202, 0x0f000202},
{0x0000a514, 0x1b00002b, 0x1b00002b, 0x12000400, 0x12000400},
{0x0000a518, 0x1f020028, 0x1f020028, 0x16000402, 0x16000402},
{0x0000a51c, 0x2502002b, 0x2502002b, 0x19000404, 0x19000404},
{0x0000a520, 0x2a04002a, 0x2a04002a, 0x1c000603, 0x1c000603},
{0x0000a524, 0x2e06002a, 0x2e06002a, 0x21000a02, 0x21000a02},
{0x0000a528, 0x3302202d, 0x3302202d, 0x25000a04, 0x25000a04},
{0x0000a52c, 0x3804202c, 0x3804202c, 0x28000a20, 0x28000a20},
{0x0000a530, 0x3c06202c, 0x3c06202c, 0x2c000e20, 0x2c000e20},
{0x0000a534, 0x4108202d, 0x4108202d, 0x30000e22, 0x30000e22},
{0x0000a538, 0x4506402d, 0x4506402d, 0x34000e24, 0x34000e24},
{0x0000a53c, 0x4906222d, 0x4906222d, 0x38001640, 0x38001640},
{0x0000a540, 0x4d062231, 0x4d062231, 0x3c001660, 0x3c001660},
{0x0000a544, 0x50082231, 0x50082231, 0x3f001861, 0x3f001861},
{0x0000a548, 0x5608422e, 0x5608422e, 0x43001a81, 0x43001a81},
{0x0000a54c, 0x5e08442e, 0x5e08442e, 0x47001a83, 0x47001a83},
{0x0000a550, 0x620a4431, 0x620a4431, 0x4a001c84, 0x4a001c84},
{0x0000a554, 0x640a4432, 0x640a4432, 0x4e001ce3, 0x4e001ce3},
{0x0000a558, 0x680a4434, 0x680a4434, 0x52001ce5, 0x52001ce5},
{0x0000a55c, 0x6c0a6434, 0x6c0a6434, 0x56001ce9, 0x56001ce9},
{0x0000a560, 0x6f0a6633, 0x6f0a6633, 0x5a001ceb, 0x5a001ceb},
{0x0000a564, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a568, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a56c, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a570, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a574, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a578, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a57c, 0x730c6634, 0x730c6634, 0x5d001eec, 0x5d001eec},
{0x0000a600, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a604, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
{0x0000a608, 0x01804601, 0x01804601, 0x00000000, 0x00000000},
{0x0000a60c, 0x01804601, 0x01804601, 0x00000000, 0x00000000},
{0x0000a610, 0x01804601, 0x01804601, 0x00000000, 0x00000000},
{0x0000a614, 0x01804601, 0x01804601, 0x01404000, 0x01404000},
{0x0000a618, 0x01804601, 0x01804601, 0x01404501, 0x01404501},
{0x0000a61c, 0x01804601, 0x01804601, 0x02008501, 0x02008501},
{0x0000a620, 0x03408d02, 0x03408d02, 0x0280ca03, 0x0280ca03},
{0x0000a624, 0x0300cc03, 0x0300cc03, 0x03010c04, 0x03010c04},
{0x0000a628, 0x03410d04, 0x03410d04, 0x04014c04, 0x04014c04},
{0x0000a62c, 0x03410d04, 0x03410d04, 0x04015005, 0x04015005},
{0x0000a630, 0x03410d04, 0x03410d04, 0x04015005, 0x04015005},
{0x0000a634, 0x03410d04, 0x03410d04, 0x04015005, 0x04015005},
{0x0000a638, 0x03410d04, 0x03410d04, 0x04015005, 0x04015005},
{0x0000a63c, 0x03410d04, 0x03410d04, 0x04015005, 0x04015005},
{0x0000b2dc, 0x000cfff0, 0x000cfff0, 0x03aaa352, 0x03aaa352},
{0x0000b2e0, 0x000f0000, 0x000f0000, 0x03ccc584, 0x03ccc584},
{0x0000b2e4, 0x03f00000, 0x03f00000, 0x03f0f800, 0x03f0f800},
{0x0000b2e8, 0x00000000, 0x00000000, 0x03ff0000, 0x03ff0000},
{0x0000c2dc, 0x000cfff0, 0x000cfff0, 0x03aaa352, 0x03aaa352},
{0x0000c2e0, 0x000f0000, 0x000f0000, 0x03ccc584, 0x03ccc584},
{0x0000c2e4, 0x03f00000, 0x03f00000, 0x03f0f800, 0x03f0f800},
{0x0000c2e8, 0x00000000, 0x00000000, 0x03ff0000, 0x03ff0000},
{0x00016044, 0x012492d4, 0x012492d4, 0x012492d4, 0x012492d4},
{0x00016048, 0x61200001, 0x61200001, 0x66480001, 0x66480001},
{0x00016068, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c},
{0x00016444, 0x012492d4, 0x012492d4, 0x012492d4, 0x012492d4},
{0x00016448, 0x61200001, 0x61200001, 0x66480001, 0x66480001},
{0x00016468, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c},
{0x00016844, 0x012492d4, 0x012492d4, 0x012492d4, 0x012492d4},
{0x00016848, 0x61200001, 0x61200001, 0x66480001, 0x66480001},
{0x00016868, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c, 0x6db6db6c},
};
static const u32 ar9580_1p0_soc_preamble[][2] = {
/* Addr allmodes */
{0x000040a4, 0x00a0c1c9},
......
......@@ -109,14 +109,11 @@ struct ath_descdma {
void *dd_desc;
dma_addr_t dd_desc_paddr;
u32 dd_desc_len;
struct ath_buf *dd_bufptr;
};
int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
struct list_head *head, const char *name,
int nbuf, int ndesc, bool is_tx);
void ath_descdma_cleanup(struct ath_softc *sc, struct ath_descdma *dd,
struct list_head *head);
/***********/
/* RX / TX */
......@@ -317,10 +314,8 @@ struct ath_rx {
u32 *rxlink;
u32 num_pkts;
unsigned int rxfilter;
spinlock_t rxbuflock;
struct list_head rxbuf;
struct ath_descdma rxdma;
struct ath_buf *rx_bufptr;
struct ath_rx_edma rx_edma[ATH9K_RX_QUEUE_MAX];
struct sk_buff *frag;
......@@ -328,7 +323,6 @@ struct ath_rx {
int ath_startrecv(struct ath_softc *sc);
bool ath_stoprecv(struct ath_softc *sc);
void ath_flushrecv(struct ath_softc *sc);
u32 ath_calcrxfilter(struct ath_softc *sc);
int ath_rx_init(struct ath_softc *sc, int nbufs);
void ath_rx_cleanup(struct ath_softc *sc);
......@@ -338,14 +332,12 @@ void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq);
void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq);
void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq);
void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq);
bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx);
void ath_draintxq(struct ath_softc *sc,
struct ath_txq *txq, bool retry_tx);
bool ath_drain_all_txq(struct ath_softc *sc);
void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq);
void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an);
void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an);
void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq);
int ath_tx_init(struct ath_softc *sc, int nbufs);
void ath_tx_cleanup(struct ath_softc *sc);
int ath_txq_update(struct ath_softc *sc, int qnum,
struct ath9k_tx_queue_info *q);
void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop);
......@@ -646,7 +638,6 @@ void ath_ant_comb_update(struct ath_softc *sc);
enum sc_op_flags {
SC_OP_INVALID,
SC_OP_BEACONS,
SC_OP_RXFLUSH,
SC_OP_ANI_RUN,
SC_OP_PRIM_STA_VIF,
SC_OP_HW_RESET,
......@@ -675,6 +666,23 @@ struct ath9k_vif_iter_data {
int nadhocs; /* number of adhoc vifs */
};
/* enum spectral_mode:
*
* @SPECTRAL_DISABLED: spectral mode is disabled
* @SPECTRAL_BACKGROUND: hardware sends samples when it is not busy with
* something else.
* @SPECTRAL_MANUAL: spectral scan is enabled, triggering for samples
* is performed manually.
* @SPECTRAL_CHANSCAN: Like manual, but also triggered when changing channels
* during a channel scan.
*/
enum spectral_mode {
SPECTRAL_DISABLED = 0,
SPECTRAL_BACKGROUND,
SPECTRAL_MANUAL,
SPECTRAL_CHANSCAN,
};
struct ath_softc {
struct ieee80211_hw *hw;
struct device *dev;
......@@ -743,6 +751,10 @@ struct ath_softc {
u8 ant_tx, ant_rx;
struct dfs_pattern_detector *dfs_detector;
u32 wow_enabled;
/* relay(fs) channel for spectral scan */
struct rchan *rfs_chan_spec_scan;
enum spectral_mode spectral_mode;
int scanning;
#ifdef CONFIG_PM_SLEEP
atomic_t wow_got_bmiss_intr;
......@@ -751,6 +763,133 @@ struct ath_softc {
#endif
};
#define SPECTRAL_SCAN_BITMASK 0x10
/* Radar info packet format, used for DFS and spectral formats. */
struct ath_radar_info {
u8 pulse_length_pri;
u8 pulse_length_ext;
u8 pulse_bw_info;
} __packed;
/* The HT20 spectral data has 4 bytes of additional information at it's end.
*
* [7:0]: all bins {max_magnitude[1:0], bitmap_weight[5:0]}
* [7:0]: all bins max_magnitude[9:2]
* [7:0]: all bins {max_index[5:0], max_magnitude[11:10]}
* [3:0]: max_exp (shift amount to size max bin to 8-bit unsigned)
*/
struct ath_ht20_mag_info {
u8 all_bins[3];
u8 max_exp;
} __packed;
#define SPECTRAL_HT20_NUM_BINS 56
/* WARNING: don't actually use this struct! MAC may vary the amount of
* data by -1/+2. This struct is for reference only.
*/
struct ath_ht20_fft_packet {
u8 data[SPECTRAL_HT20_NUM_BINS];
struct ath_ht20_mag_info mag_info;
struct ath_radar_info radar_info;
} __packed;
#define SPECTRAL_HT20_TOTAL_DATA_LEN (sizeof(struct ath_ht20_fft_packet))
/* Dynamic 20/40 mode:
*
* [7:0]: lower bins {max_magnitude[1:0], bitmap_weight[5:0]}
* [7:0]: lower bins max_magnitude[9:2]
* [7:0]: lower bins {max_index[5:0], max_magnitude[11:10]}
* [7:0]: upper bins {max_magnitude[1:0], bitmap_weight[5:0]}
* [7:0]: upper bins max_magnitude[9:2]
* [7:0]: upper bins {max_index[5:0], max_magnitude[11:10]}
* [3:0]: max_exp (shift amount to size max bin to 8-bit unsigned)
*/
struct ath_ht20_40_mag_info {
u8 lower_bins[3];
u8 upper_bins[3];
u8 max_exp;
} __packed;
#define SPECTRAL_HT20_40_NUM_BINS 128
/* WARNING: don't actually use this struct! MAC may vary the amount of
* data. This struct is for reference only.
*/
struct ath_ht20_40_fft_packet {
u8 data[SPECTRAL_HT20_40_NUM_BINS];
struct ath_ht20_40_mag_info mag_info;
struct ath_radar_info radar_info;
} __packed;
#define SPECTRAL_HT20_40_TOTAL_DATA_LEN (sizeof(struct ath_ht20_40_fft_packet))
/* grabs the max magnitude from the all/upper/lower bins */
static inline u16 spectral_max_magnitude(u8 *bins)
{
return (bins[0] & 0xc0) >> 6 |
(bins[1] & 0xff) << 2 |
(bins[2] & 0x03) << 10;
}
/* return the max magnitude from the all/upper/lower bins */
static inline u8 spectral_max_index(u8 *bins)
{
s8 m = (bins[2] & 0xfc) >> 2;
/* TODO: this still doesn't always report the right values ... */
if (m > 32)
m |= 0xe0;
else
m &= ~0xe0;
return m + 29;
}
/* return the bitmap weight from the all/upper/lower bins */
static inline u8 spectral_bitmap_weight(u8 *bins)
{
return bins[0] & 0x3f;
}
/* FFT sample format given to userspace via debugfs.
*
* Please keep the type/length at the front position and change
* other fields after adding another sample type
*
* TODO: this might need rework when switching to nl80211-based
* interface.
*/
enum ath_fft_sample_type {
ATH_FFT_SAMPLE_HT20 = 0,
};
struct fft_sample_tlv {
u8 type; /* see ath_fft_sample */
u16 length;
/* type dependent data follows */
} __packed;
struct fft_sample_ht20 {
struct fft_sample_tlv tlv;
u8 __alignment;
u16 freq;
s8 rssi;
s8 noise;
u16 max_magnitude;
u8 max_index;
u8 bitmap_weight;
u64 tsf;
u16 data[SPECTRAL_HT20_NUM_BINS];
} __packed;
void ath9k_tasklet(unsigned long data);
int ath_cabq_update(struct ath_softc *);
......@@ -773,6 +912,10 @@ void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw);
void ath9k_reload_chainmask_settings(struct ath_softc *sc);
bool ath9k_uses_beacons(int type);
void ath9k_spectral_scan_trigger(struct ieee80211_hw *hw);
int ath9k_spectral_scan_config(struct ieee80211_hw *hw,
enum spectral_mode spectral_mode);
#ifdef CONFIG_ATH9K_PCI
int ath_pci_init(void);
......
......@@ -147,6 +147,7 @@ static struct ath_buf *ath9k_beacon_generate(struct ieee80211_hw *hw,
skb->len, DMA_TO_DEVICE);
dev_kfree_skb_any(skb);
bf->bf_buf_addr = 0;
bf->bf_mpdu = NULL;
}
skb = ieee80211_beacon_get(hw, vif);
......@@ -198,7 +199,7 @@ static struct ath_buf *ath9k_beacon_generate(struct ieee80211_hw *hw,
if (sc->nvifs > 1) {
ath_dbg(common, BEACON,
"Flushing previous cabq traffic\n");
ath_draintxq(sc, cabq, false);
ath_draintxq(sc, cabq);
}
}
......@@ -359,7 +360,6 @@ void ath9k_beacon_tasklet(unsigned long data)
return;
bf = ath9k_beacon_generate(sc->hw, vif);
WARN_ON(!bf);
if (sc->beacon.bmisscnt != 0) {
ath_dbg(common, BSTUCK, "resume beacon xmit after %u misses\n",
......
......@@ -17,6 +17,7 @@
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/export.h>
#include <linux/relay.h>
#include <asm/unaligned.h>
#include "ath9k.h"
......@@ -861,7 +862,6 @@ static ssize_t read_file_recv(struct file *file, char __user *user_buf,
RXS_ERR("RX-LENGTH-ERR", rx_len_err);
RXS_ERR("RX-OOM-ERR", rx_oom_err);
RXS_ERR("RX-RATE-ERR", rx_rate_err);
RXS_ERR("RX-DROP-RXFLUSH", rx_drop_rxflush);
RXS_ERR("RX-TOO-MANY-FRAGS", rx_too_many_frags_err);
PHY_ERR("UNDERRUN ERR", ATH9K_PHYERR_UNDERRUN);
......@@ -966,6 +966,112 @@ static const struct file_operations fops_recv = {
.llseek = default_llseek,
};
static ssize_t read_file_spec_scan_ctl(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
struct ath_softc *sc = file->private_data;
char *mode = "";
unsigned int len;
switch (sc->spectral_mode) {
case SPECTRAL_DISABLED:
mode = "disable";
break;
case SPECTRAL_BACKGROUND:
mode = "background";
break;
case SPECTRAL_CHANSCAN:
mode = "chanscan";
break;
case SPECTRAL_MANUAL:
mode = "manual";
break;
}
len = strlen(mode);
return simple_read_from_buffer(user_buf, count, ppos, mode, len);
}
static ssize_t write_file_spec_scan_ctl(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct ath_softc *sc = file->private_data;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
char buf[32];
ssize_t len;
len = min(count, sizeof(buf) - 1);
if (copy_from_user(buf, user_buf, len))
return -EFAULT;
buf[len] = '\0';
if (strncmp("trigger", buf, 7) == 0) {
ath9k_spectral_scan_trigger(sc->hw);
} else if (strncmp("background", buf, 9) == 0) {
ath9k_spectral_scan_config(sc->hw, SPECTRAL_BACKGROUND);
ath_dbg(common, CONFIG, "spectral scan: background mode enabled\n");
} else if (strncmp("chanscan", buf, 8) == 0) {
ath9k_spectral_scan_config(sc->hw, SPECTRAL_CHANSCAN);
ath_dbg(common, CONFIG, "spectral scan: channel scan mode enabled\n");
} else if (strncmp("manual", buf, 6) == 0) {
ath9k_spectral_scan_config(sc->hw, SPECTRAL_MANUAL);
ath_dbg(common, CONFIG, "spectral scan: manual mode enabled\n");
} else if (strncmp("disable", buf, 7) == 0) {
ath9k_spectral_scan_config(sc->hw, SPECTRAL_DISABLED);
ath_dbg(common, CONFIG, "spectral scan: disabled\n");
} else {
return -EINVAL;
}
return count;
}
static const struct file_operations fops_spec_scan_ctl = {
.read = read_file_spec_scan_ctl,
.write = write_file_spec_scan_ctl,
.open = simple_open,
.owner = THIS_MODULE,
.llseek = default_llseek,
};
static struct dentry *create_buf_file_handler(const char *filename,
struct dentry *parent,
umode_t mode,
struct rchan_buf *buf,
int *is_global)
{
struct dentry *buf_file;
buf_file = debugfs_create_file(filename, mode, parent, buf,
&relay_file_operations);
*is_global = 1;
return buf_file;
}
static int remove_buf_file_handler(struct dentry *dentry)
{
debugfs_remove(dentry);
return 0;
}
void ath_debug_send_fft_sample(struct ath_softc *sc,
struct fft_sample_tlv *fft_sample_tlv)
{
if (!sc->rfs_chan_spec_scan)
return;
relay_write(sc->rfs_chan_spec_scan, fft_sample_tlv,
fft_sample_tlv->length + sizeof(*fft_sample_tlv));
}
static struct rchan_callbacks rfs_spec_scan_cb = {
.create_buf_file = create_buf_file_handler,
.remove_buf_file = remove_buf_file_handler,
};
static ssize_t read_file_regidx(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
......@@ -1780,6 +1886,14 @@ int ath9k_init_debug(struct ath_hw *ah)
&fops_base_eeprom);
debugfs_create_file("modal_eeprom", S_IRUSR, sc->debug.debugfs_phy, sc,
&fops_modal_eeprom);
sc->rfs_chan_spec_scan = relay_open("spectral_scan",
sc->debug.debugfs_phy,
262144, 4, &rfs_spec_scan_cb,
NULL);
debugfs_create_file("spectral_scan_ctl", S_IRUSR | S_IWUSR,
sc->debug.debugfs_phy, sc,
&fops_spec_scan_ctl);
#ifdef CONFIG_ATH9K_MAC_DEBUG
debugfs_create_file("samples", S_IRUSR, sc->debug.debugfs_phy, sc,
&fops_samps);
......
......@@ -23,6 +23,7 @@
struct ath_txq;
struct ath_buf;
struct fft_sample_tlv;
#ifdef CONFIG_ATH9K_DEBUGFS
#define TX_STAT_INC(q, c) sc->debug.stats.txstats[q].c++
......@@ -216,7 +217,6 @@ struct ath_tx_stats {
* @rx_oom_err: No. of frames dropped due to OOM issues.
* @rx_rate_err: No. of frames dropped due to rate errors.
* @rx_too_many_frags_err: Frames dropped due to too-many-frags received.
* @rx_drop_rxflush: No. of frames dropped due to RX-FLUSH.
* @rx_beacons: No. of beacons received.
* @rx_frags: No. of rx-fragements received.
*/
......@@ -235,7 +235,6 @@ struct ath_rx_stats {
u32 rx_oom_err;
u32 rx_rate_err;
u32 rx_too_many_frags_err;
u32 rx_drop_rxflush;
u32 rx_beacons;
u32 rx_frags;
};
......@@ -323,6 +322,10 @@ void ath9k_sta_remove_debugfs(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct dentry *dir);
void ath_debug_send_fft_sample(struct ath_softc *sc,
struct fft_sample_tlv *fft_sample);
#else
#define RX_STAT_INC(c) /* NOP */
......
......@@ -280,14 +280,14 @@ static int ath9k_init_htc_services(struct ath9k_htc_priv *priv, u16 devid,
return ret;
}
static int ath9k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
static void ath9k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath9k_htc_priv *priv = hw->priv;
return ath_reg_notifier_apply(wiphy, request,
ath9k_hw_regulatory(priv->ah));
ath_reg_notifier_apply(wiphy, request,
ath9k_hw_regulatory(priv->ah));
}
static unsigned int ath9k_regread(void *hw_priv, u32 reg_offset)
......
......@@ -1628,7 +1628,9 @@ static int ath9k_htc_ampdu_action(struct ieee80211_hw *hw,
if (!ret)
ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_STOP:
case IEEE80211_AMPDU_TX_STOP_CONT:
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
ath9k_htc_tx_aggr_oper(priv, vif, sta, action, tid);
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
......
......@@ -344,6 +344,8 @@ void ath9k_htc_txcompletion_cb(struct htc_target *htc_handle,
endpoint->ep_callbacks.tx(endpoint->ep_callbacks.priv,
skb, htc_hdr->endpoint_id,
txok);
} else {
kfree_skb(skb);
}
}
......
......@@ -101,22 +101,6 @@ static inline void ath9k_hw_spur_mitigate_freq(struct ath_hw *ah,
ath9k_hw_private_ops(ah)->spur_mitigate_freq(ah, chan);
}
static inline int ath9k_hw_rf_alloc_ext_banks(struct ath_hw *ah)
{
if (!ath9k_hw_private_ops(ah)->rf_alloc_ext_banks)
return 0;
return ath9k_hw_private_ops(ah)->rf_alloc_ext_banks(ah);
}
static inline void ath9k_hw_rf_free_ext_banks(struct ath_hw *ah)
{
if (!ath9k_hw_private_ops(ah)->rf_free_ext_banks)
return;
ath9k_hw_private_ops(ah)->rf_free_ext_banks(ah);
}
static inline bool ath9k_hw_set_rf_regs(struct ath_hw *ah,
struct ath9k_channel *chan,
u16 modesIndex)
......
......@@ -54,11 +54,6 @@ static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
ath9k_hw_private_ops(ah)->init_cal_settings(ah);
}
static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
{
ath9k_hw_private_ops(ah)->init_mode_regs(ah);
}
static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
struct ath9k_channel *chan)
{
......@@ -208,7 +203,7 @@ void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
udelay(hw_delay + BASE_ACTIVATE_DELAY);
}
void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
int column, unsigned int *writecnt)
{
int r;
......@@ -554,28 +549,19 @@ static int ath9k_hw_post_init(struct ath_hw *ah)
ah->eep_ops->get_eeprom_ver(ah),
ah->eep_ops->get_eeprom_rev(ah));
ecode = ath9k_hw_rf_alloc_ext_banks(ah);
if (ecode) {
ath_err(ath9k_hw_common(ah),
"Failed allocating banks for external radio\n");
ath9k_hw_rf_free_ext_banks(ah);
return ecode;
}
if (ah->config.enable_ani) {
ath9k_hw_ani_setup(ah);
if (ah->config.enable_ani)
ath9k_hw_ani_init(ah);
}
return 0;
}
static void ath9k_hw_attach_ops(struct ath_hw *ah)
static int ath9k_hw_attach_ops(struct ath_hw *ah)
{
if (AR_SREV_9300_20_OR_LATER(ah))
ar9003_hw_attach_ops(ah);
else
ar9002_hw_attach_ops(ah);
if (!AR_SREV_9300_20_OR_LATER(ah))
return ar9002_hw_attach_ops(ah);
ar9003_hw_attach_ops(ah);
return 0;
}
/* Called for all hardware families */
......@@ -611,7 +597,9 @@ static int __ath9k_hw_init(struct ath_hw *ah)
ath9k_hw_init_defaults(ah);
ath9k_hw_init_config(ah);
ath9k_hw_attach_ops(ah);
r = ath9k_hw_attach_ops(ah);
if (r)
return r;
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
ath_err(common, "Couldn't wakeup chip\n");
......@@ -675,8 +663,6 @@ static int __ath9k_hw_init(struct ath_hw *ah)
if (!AR_SREV_9300_20_OR_LATER(ah))
ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
ath9k_hw_init_mode_regs(ah);
if (!ah->is_pciexpress)
ath9k_hw_disablepcie(ah);
......@@ -1153,12 +1139,9 @@ void ath9k_hw_deinit(struct ath_hw *ah)
struct ath_common *common = ath9k_hw_common(ah);
if (common->state < ATH_HW_INITIALIZED)
goto free_hw;
return;
ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
free_hw:
ath9k_hw_rf_free_ext_banks(ah);
}
EXPORT_SYMBOL(ath9k_hw_deinit);
......@@ -2576,12 +2559,6 @@ int ath9k_hw_fill_cap_info(struct ath_hw *ah)
rx_chainmask >>= 1;
}
if (AR_SREV_9300_20_OR_LATER(ah)) {
ah->enabled_cals |= TX_IQ_CAL;
if (AR_SREV_9485_OR_LATER(ah))
ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
}
if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
pCap->hw_caps |= ATH9K_HW_CAP_MCI;
......@@ -2590,7 +2567,6 @@ int ath9k_hw_fill_cap_info(struct ath_hw *ah)
pCap->hw_caps |= ATH9K_HW_CAP_RTT;
}
if (AR_SREV_9280_20_OR_LATER(ah)) {
pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE |
ATH9K_HW_WOW_PATTERN_MATCH_EXACT;
......
......@@ -397,6 +397,7 @@ enum ath9k_int {
#define MAX_RTT_TABLE_ENTRY 6
#define MAX_IQCAL_MEASUREMENT 8
#define MAX_CL_TAB_ENTRY 16
#define CL_TAB_ENTRY(reg_base) (reg_base + (4 * j))
struct ath9k_hw_cal_data {
u16 channel;
......@@ -599,13 +600,10 @@ struct ath_hw_radar_conf {
* @init_cal_settings: setup types of calibrations supported
* @init_cal: starts actual calibration
*
* @init_mode_regs: Initializes mode registers
* @init_mode_gain_regs: Initialize TX/RX gain registers
*
* @rf_set_freq: change frequency
* @spur_mitigate_freq: spur mitigation
* @rf_alloc_ext_banks:
* @rf_free_ext_banks:
* @set_rf_regs:
* @compute_pll_control: compute the PLL control value to use for
* AR_RTC_PLL_CONTROL for a given channel
......@@ -620,7 +618,6 @@ struct ath_hw_private_ops {
void (*init_cal_settings)(struct ath_hw *ah);
bool (*init_cal)(struct ath_hw *ah, struct ath9k_channel *chan);
void (*init_mode_regs)(struct ath_hw *ah);
void (*init_mode_gain_regs)(struct ath_hw *ah);
void (*setup_calibration)(struct ath_hw *ah,
struct ath9k_cal_list *currCal);
......@@ -630,8 +627,6 @@ struct ath_hw_private_ops {
struct ath9k_channel *chan);
void (*spur_mitigate_freq)(struct ath_hw *ah,
struct ath9k_channel *chan);
int (*rf_alloc_ext_banks)(struct ath_hw *ah);
void (*rf_free_ext_banks)(struct ath_hw *ah);
bool (*set_rf_regs)(struct ath_hw *ah,
struct ath9k_channel *chan,
u16 modesIndex);
......@@ -660,6 +655,37 @@ struct ath_hw_private_ops {
void (*ani_cache_ini_regs)(struct ath_hw *ah);
};
/**
* struct ath_spec_scan - parameters for Atheros spectral scan
*
* @enabled: enable/disable spectral scan
* @short_repeat: controls whether the chip is in spectral scan mode
* for 4 usec (enabled) or 204 usec (disabled)
* @count: number of scan results requested. There are special meanings
* in some chip revisions:
* AR92xx: highest bit set (>=128) for endless mode
* (spectral scan won't stopped until explicitly disabled)
* AR9300 and newer: 0 for endless mode
* @endless: true if endless mode is intended. Otherwise, count value is
* corrected to the next possible value.
* @period: time duration between successive spectral scan entry points
* (period*256*Tclk). Tclk = ath_common->clockrate
* @fft_period: PHY passes FFT frames to MAC every (fft_period+1)*4uS
*
* Note: Tclk = 40MHz or 44MHz depending upon operating mode.
* Typically it's 44MHz in 2/5GHz on later chips, but there's
* a "fast clock" check for this in 5GHz.
*
*/
struct ath_spec_scan {
bool enabled;
bool short_repeat;
bool endless;
u8 count;
u8 period;
u8 fft_period;
};
/**
* struct ath_hw_ops - callbacks used by hardware code and driver code
*
......@@ -668,6 +694,10 @@ struct ath_hw_private_ops {
*
* @config_pci_powersave:
* @calibrate: periodic calibration for NF, ANI, IQ, ADC gain, ADC-DC
*
* @spectral_scan_config: set parameters for spectral scan and enable/disable it
* @spectral_scan_trigger: trigger a spectral scan run
* @spectral_scan_wait: wait for a spectral scan run to finish
*/
struct ath_hw_ops {
void (*config_pci_powersave)(struct ath_hw *ah,
......@@ -688,6 +718,10 @@ struct ath_hw_ops {
void (*antdiv_comb_conf_set)(struct ath_hw *ah,
struct ath_hw_antcomb_conf *antconf);
void (*antctrl_shared_chain_lnadiv)(struct ath_hw *hw, bool enable);
void (*spectral_scan_config)(struct ath_hw *ah,
struct ath_spec_scan *param);
void (*spectral_scan_trigger)(struct ath_hw *ah);
void (*spectral_scan_wait)(struct ath_hw *ah);
};
struct ath_nf_limits {
......@@ -710,6 +744,7 @@ enum ath_cal_list {
struct ath_hw {
struct ath_ops reg_ops;
struct device *dev;
struct ieee80211_hw *hw;
struct ath_common common;
struct ath9k_hw_version hw_version;
......@@ -771,7 +806,6 @@ struct ath_hw {
struct ath9k_cal_list iq_caldata;
struct ath9k_cal_list adcgain_caldata;
struct ath9k_cal_list adcdc_caldata;
struct ath9k_cal_list tempCompCalData;
struct ath9k_cal_list *cal_list;
struct ath9k_cal_list *cal_list_last;
struct ath9k_cal_list *cal_list_curr;
......@@ -830,10 +864,6 @@ struct ath_hw {
/* ANI */
u32 proc_phyerr;
u32 aniperiod;
int totalSizeDesired[5];
int coarse_high[5];
int coarse_low[5];
int firpwr[5];
enum ath9k_ani_cmd ani_function;
u32 ani_skip_count;
......@@ -979,7 +1009,7 @@ void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna);
void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
int hw_delay);
bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout);
void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
int column, unsigned int *writecnt);
u32 ath9k_hw_reverse_bits(u32 val, u32 n);
u16 ath9k_hw_computetxtime(struct ath_hw *ah,
......@@ -1066,16 +1096,17 @@ void ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain);
int ar9003_paprd_init_table(struct ath_hw *ah);
bool ar9003_paprd_is_done(struct ath_hw *ah);
bool ar9003_is_paprd_enabled(struct ath_hw *ah);
void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx);
/* Hardware family op attach helpers */
void ar5008_hw_attach_phy_ops(struct ath_hw *ah);
int ar5008_hw_attach_phy_ops(struct ath_hw *ah);
void ar9002_hw_attach_phy_ops(struct ath_hw *ah);
void ar9003_hw_attach_phy_ops(struct ath_hw *ah);
void ar9002_hw_attach_calib_ops(struct ath_hw *ah);
void ar9003_hw_attach_calib_ops(struct ath_hw *ah);
void ar9002_hw_attach_ops(struct ath_hw *ah);
int ar9002_hw_attach_ops(struct ath_hw *ah);
void ar9003_hw_attach_ops(struct ath_hw *ah);
void ar9002_hw_load_ani_reg(struct ath_hw *ah, struct ath9k_channel *chan);
......
......@@ -20,6 +20,7 @@
#include <linux/slab.h>
#include <linux/ath9k_platform.h>
#include <linux/module.h>
#include <linux/relay.h>
#include "ath9k.h"
......@@ -302,16 +303,15 @@ static void setup_ht_cap(struct ath_softc *sc,
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
}
static int ath9k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
static void ath9k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath_softc *sc = hw->priv;
struct ath_hw *ah = sc->sc_ah;
struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
int ret;
ret = ath_reg_notifier_apply(wiphy, request, reg);
ath_reg_notifier_apply(wiphy, request, reg);
/* Set tx power */
if (ah->curchan) {
......@@ -321,8 +321,6 @@ static int ath9k_reg_notifier(struct wiphy *wiphy,
sc->curtxpow = ath9k_hw_regulatory(ah)->power_limit;
ath9k_ps_restore(sc);
}
return ret;
}
/*
......@@ -337,7 +335,7 @@ int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
u8 *ds;
struct ath_buf *bf;
int i, bsize, error, desc_len;
int i, bsize, desc_len;
ath_dbg(common, CONFIG, "%s DMA: %u buffers %u desc/buf\n",
name, nbuf, ndesc);
......@@ -353,8 +351,7 @@ int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
if ((desc_len % 4) != 0) {
ath_err(common, "ath_desc not DWORD aligned\n");
BUG_ON((desc_len % 4) != 0);
error = -ENOMEM;
goto fail;
return -ENOMEM;
}
dd->dd_desc_len = desc_len * nbuf * ndesc;
......@@ -378,12 +375,11 @@ int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
}
/* allocate descriptors */
dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
&dd->dd_desc_paddr, GFP_KERNEL);
if (dd->dd_desc == NULL) {
error = -ENOMEM;
goto fail;
}
dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
&dd->dd_desc_paddr, GFP_KERNEL);
if (!dd->dd_desc)
return -ENOMEM;
ds = (u8 *) dd->dd_desc;
ath_dbg(common, CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
name, ds, (u32) dd->dd_desc_len,
......@@ -391,12 +387,9 @@ int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
/* allocate buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = kzalloc(bsize, GFP_KERNEL);
if (bf == NULL) {
error = -ENOMEM;
goto fail2;
}
dd->dd_bufptr = bf;
bf = devm_kzalloc(sc->dev, bsize, GFP_KERNEL);
if (!bf)
return -ENOMEM;
for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
bf->bf_desc = ds;
......@@ -422,12 +415,6 @@ int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
list_add_tail(&bf->list, head);
}
return 0;
fail2:
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
dd->dd_desc_paddr);
fail:
memset(dd, 0, sizeof(*dd));
return error;
}
static int ath9k_init_queues(struct ath_softc *sc)
......@@ -457,11 +444,13 @@ static int ath9k_init_channels_rates(struct ath_softc *sc)
ATH9K_NUM_CHANNELS);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ) {
channels = kmemdup(ath9k_2ghz_chantable,
channels = devm_kzalloc(sc->dev,
sizeof(ath9k_2ghz_chantable), GFP_KERNEL);
if (!channels)
return -ENOMEM;
memcpy(channels, ath9k_2ghz_chantable,
sizeof(ath9k_2ghz_chantable));
sc->sbands[IEEE80211_BAND_2GHZ].channels = channels;
sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
......@@ -472,14 +461,13 @@ static int ath9k_init_channels_rates(struct ath_softc *sc)
}
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ) {
channels = kmemdup(ath9k_5ghz_chantable,
channels = devm_kzalloc(sc->dev,
sizeof(ath9k_5ghz_chantable), GFP_KERNEL);
if (!channels) {
if (sc->sbands[IEEE80211_BAND_2GHZ].channels)
kfree(sc->sbands[IEEE80211_BAND_2GHZ].channels);
if (!channels)
return -ENOMEM;
}
memcpy(channels, ath9k_5ghz_chantable,
sizeof(ath9k_5ghz_chantable));
sc->sbands[IEEE80211_BAND_5GHZ].channels = channels;
sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
......@@ -565,10 +553,11 @@ static int ath9k_init_softc(u16 devid, struct ath_softc *sc,
int ret = 0, i;
int csz = 0;
ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
ah = devm_kzalloc(sc->dev, sizeof(struct ath_hw), GFP_KERNEL);
if (!ah)
return -ENOMEM;
ah->dev = sc->dev;
ah->hw = sc->hw;
ah->hw_version.devid = devid;
ah->reg_ops.read = ath9k_ioread32;
......@@ -636,7 +625,7 @@ static int ath9k_init_softc(u16 devid, struct ath_softc *sc,
if (pdata && pdata->eeprom_name) {
ret = ath9k_eeprom_request(sc, pdata->eeprom_name);
if (ret)
goto err_eeprom;
return ret;
}
/* Initializes the hardware for all supported chipsets */
......@@ -676,10 +665,6 @@ static int ath9k_init_softc(u16 devid, struct ath_softc *sc,
ath9k_hw_deinit(ah);
err_hw:
ath9k_eeprom_release(sc);
err_eeprom:
kfree(ah);
sc->sc_ah = NULL;
return ret;
}
......@@ -844,8 +829,8 @@ int ath9k_init_device(u16 devid, struct ath_softc *sc,
/* Bring up device */
error = ath9k_init_softc(devid, sc, bus_ops);
if (error != 0)
goto error_init;
if (error)
return error;
ah = sc->sc_ah;
common = ath9k_hw_common(ah);
......@@ -855,19 +840,19 @@ int ath9k_init_device(u16 devid, struct ath_softc *sc,
error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
ath9k_reg_notifier);
if (error)
goto error_regd;
goto deinit;
reg = &common->regulatory;
/* Setup TX DMA */
error = ath_tx_init(sc, ATH_TXBUF);
if (error != 0)
goto error_tx;
goto deinit;
/* Setup RX DMA */
error = ath_rx_init(sc, ATH_RXBUF);
if (error != 0)
goto error_rx;
goto deinit;
ath9k_init_txpower_limits(sc);
......@@ -881,19 +866,19 @@ int ath9k_init_device(u16 devid, struct ath_softc *sc,
/* Register with mac80211 */
error = ieee80211_register_hw(hw);
if (error)
goto error_register;
goto rx_cleanup;
error = ath9k_init_debug(ah);
if (error) {
ath_err(common, "Unable to create debugfs files\n");
goto error_world;
goto unregister;
}
/* Handle world regulatory */
if (!ath_is_world_regd(reg)) {
error = regulatory_hint(hw->wiphy, reg->alpha2);
if (error)
goto error_world;
goto unregister;
}
ath_init_leds(sc);
......@@ -901,17 +886,12 @@ int ath9k_init_device(u16 devid, struct ath_softc *sc,
return 0;
error_world:
unregister:
ieee80211_unregister_hw(hw);
error_register:
rx_cleanup:
ath_rx_cleanup(sc);
error_rx:
ath_tx_cleanup(sc);
error_tx:
/* Nothing */
error_regd:
deinit:
ath9k_deinit_softc(sc);
error_init:
return error;
}
......@@ -923,12 +903,6 @@ static void ath9k_deinit_softc(struct ath_softc *sc)
{
int i = 0;
if (sc->sbands[IEEE80211_BAND_2GHZ].channels)
kfree(sc->sbands[IEEE80211_BAND_2GHZ].channels);
if (sc->sbands[IEEE80211_BAND_5GHZ].channels)
kfree(sc->sbands[IEEE80211_BAND_5GHZ].channels);
ath9k_deinit_btcoex(sc);
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
......@@ -940,8 +914,11 @@ static void ath9k_deinit_softc(struct ath_softc *sc)
sc->dfs_detector->exit(sc->dfs_detector);
ath9k_eeprom_release(sc);
kfree(sc->sc_ah);
sc->sc_ah = NULL;
if (sc->rfs_chan_spec_scan) {
relay_close(sc->rfs_chan_spec_scan);
sc->rfs_chan_spec_scan = NULL;
}
}
void ath9k_deinit_device(struct ath_softc *sc)
......@@ -957,22 +934,9 @@ void ath9k_deinit_device(struct ath_softc *sc)
ieee80211_unregister_hw(hw);
ath_rx_cleanup(sc);
ath_tx_cleanup(sc);
ath9k_deinit_softc(sc);
}
void ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *dd,
struct list_head *head)
{
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
dd->dd_desc_paddr);
INIT_LIST_HEAD(head);
kfree(dd->dd_bufptr);
memset(dd, 0, sizeof(*dd));
}
/************************/
/* Module Hooks */
/************************/
......
......@@ -226,7 +226,8 @@ enum ath9k_phyerr {
ATH9K_PHYERR_HT_LENGTH_ILLEGAL = 35,
ATH9K_PHYERR_HT_RATE_ILLEGAL = 36,
ATH9K_PHYERR_MAX = 37,
ATH9K_PHYERR_SPECTRAL = 38,
ATH9K_PHYERR_MAX = 39,
};
struct ath_desc {
......
......@@ -182,7 +182,7 @@ static void ath_restart_work(struct ath_softc *sc)
ath_start_ani(sc);
}
static bool ath_prepare_reset(struct ath_softc *sc, bool retry_tx, bool flush)
static bool ath_prepare_reset(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
bool ret = true;
......@@ -196,20 +196,12 @@ static bool ath_prepare_reset(struct ath_softc *sc, bool retry_tx, bool flush)
ath9k_debug_samp_bb_mac(sc);
ath9k_hw_disable_interrupts(ah);
if (!ath_stoprecv(sc))
if (!ath_drain_all_txq(sc))
ret = false;
if (!ath_drain_all_txq(sc, retry_tx))
if (!ath_stoprecv(sc))
ret = false;
if (!flush) {
if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
ath_rx_tasklet(sc, 1, true);
ath_rx_tasklet(sc, 1, false);
} else {
ath_flushrecv(sc);
}
return ret;
}
......@@ -255,18 +247,17 @@ static bool ath_complete_reset(struct ath_softc *sc, bool start)
return true;
}
static int ath_reset_internal(struct ath_softc *sc, struct ath9k_channel *hchan,
bool retry_tx)
static int ath_reset_internal(struct ath_softc *sc, struct ath9k_channel *hchan)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_cal_data *caldata = NULL;
bool fastcc = true;
bool flush = false;
int r;
__ath_cancel_work(sc);
tasklet_disable(&sc->intr_tq);
spin_lock_bh(&sc->sc_pcu_lock);
if (!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)) {
......@@ -276,11 +267,10 @@ static int ath_reset_internal(struct ath_softc *sc, struct ath9k_channel *hchan,
if (!hchan) {
fastcc = false;
flush = true;
hchan = ah->curchan;
}
if (!ath_prepare_reset(sc, retry_tx, flush))
if (!ath_prepare_reset(sc))
fastcc = false;
ath_dbg(common, CONFIG, "Reset to %u MHz, HT40: %d fastcc: %d\n",
......@@ -302,6 +292,8 @@ static int ath_reset_internal(struct ath_softc *sc, struct ath9k_channel *hchan,
out:
spin_unlock_bh(&sc->sc_pcu_lock);
tasklet_enable(&sc->intr_tq);
return r;
}
......@@ -319,7 +311,7 @@ static int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
if (test_bit(SC_OP_INVALID, &sc->sc_flags))
return -EIO;
r = ath_reset_internal(sc, hchan, false);
r = ath_reset_internal(sc, hchan);
return r;
}
......@@ -549,23 +541,21 @@ irqreturn_t ath_isr(int irq, void *dev)
#undef SCHED_INTR
}
static int ath_reset(struct ath_softc *sc, bool retry_tx)
static int ath_reset(struct ath_softc *sc)
{
int r;
int i, r;
ath9k_ps_wakeup(sc);
r = ath_reset_internal(sc, NULL, retry_tx);
r = ath_reset_internal(sc, NULL);
if (retry_tx) {
int i;
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
spin_lock_bh(&sc->tx.txq[i].axq_lock);
ath_txq_schedule(sc, &sc->tx.txq[i]);
spin_unlock_bh(&sc->tx.txq[i].axq_lock);
}
}
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (!ATH_TXQ_SETUP(sc, i))
continue;
spin_lock_bh(&sc->tx.txq[i].axq_lock);
ath_txq_schedule(sc, &sc->tx.txq[i]);
spin_unlock_bh(&sc->tx.txq[i].axq_lock);
}
ath9k_ps_restore(sc);
......@@ -586,7 +576,7 @@ void ath_reset_work(struct work_struct *work)
{
struct ath_softc *sc = container_of(work, struct ath_softc, hw_reset_work);
ath_reset(sc, true);
ath_reset(sc);
}
/**********************/
......@@ -804,7 +794,7 @@ static void ath9k_stop(struct ieee80211_hw *hw)
ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
}
ath_prepare_reset(sc, false, true);
ath_prepare_reset(sc);
if (sc->rx.frag) {
dev_kfree_skb_any(sc->rx.frag);
......@@ -1075,6 +1065,86 @@ static void ath9k_disable_ps(struct ath_softc *sc)
ath_dbg(common, PS, "PowerSave disabled\n");
}
void ath9k_spectral_scan_trigger(struct ieee80211_hw *hw)
{
struct ath_softc *sc = hw->priv;
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
u32 rxfilter;
if (!ath9k_hw_ops(ah)->spectral_scan_trigger) {
ath_err(common, "spectrum analyzer not implemented on this hardware\n");
return;
}
ath9k_ps_wakeup(sc);
rxfilter = ath9k_hw_getrxfilter(ah);
ath9k_hw_setrxfilter(ah, rxfilter |
ATH9K_RX_FILTER_PHYRADAR |
ATH9K_RX_FILTER_PHYERR);
/* TODO: usually this should not be neccesary, but for some reason
* (or in some mode?) the trigger must be called after the
* configuration, otherwise the register will have its values reset
* (on my ar9220 to value 0x01002310)
*/
ath9k_spectral_scan_config(hw, sc->spectral_mode);
ath9k_hw_ops(ah)->spectral_scan_trigger(ah);
ath9k_ps_restore(sc);
}
int ath9k_spectral_scan_config(struct ieee80211_hw *hw,
enum spectral_mode spectral_mode)
{
struct ath_softc *sc = hw->priv;
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_spec_scan param;
if (!ath9k_hw_ops(ah)->spectral_scan_trigger) {
ath_err(common, "spectrum analyzer not implemented on this hardware\n");
return -1;
}
/* NOTE: this will generate a few samples ...
*
* TODO: review default parameters, and/or define an interface to set
* them.
*/
param.enabled = 1;
param.short_repeat = true;
param.count = 8;
param.endless = false;
param.period = 0xFF;
param.fft_period = 0xF;
switch (spectral_mode) {
case SPECTRAL_DISABLED:
param.enabled = 0;
break;
case SPECTRAL_BACKGROUND:
/* send endless samples.
* TODO: is this really useful for "background"?
*/
param.endless = 1;
break;
case SPECTRAL_CHANSCAN:
break;
case SPECTRAL_MANUAL:
break;
default:
return -1;
}
ath9k_ps_wakeup(sc);
ath9k_hw_ops(ah)->spectral_scan_config(ah, &param);
ath9k_ps_restore(sc);
sc->spectral_mode = spectral_mode;
return 0;
}
static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
{
struct ath_softc *sc = hw->priv;
......@@ -1188,6 +1258,11 @@ static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
*/
if (old_pos >= 0)
ath_update_survey_nf(sc, old_pos);
/* perform spectral scan if requested. */
if (sc->scanning && sc->spectral_mode == SPECTRAL_CHANSCAN)
ath9k_spectral_scan_trigger(hw);
}
if (changed & IEEE80211_CONF_CHANGE_POWER) {
......@@ -1610,7 +1685,9 @@ static int ath9k_ampdu_action(struct ieee80211_hw *hw,
ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
ath9k_ps_restore(sc);
break;
case IEEE80211_AMPDU_TX_STOP:
case IEEE80211_AMPDU_TX_STOP_CONT:
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
ath9k_ps_wakeup(sc);
ath_tx_aggr_stop(sc, sta, tid);
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
......@@ -1729,11 +1806,11 @@ static void ath9k_flush(struct ieee80211_hw *hw, bool drop)
if (drop) {
ath9k_ps_wakeup(sc);
spin_lock_bh(&sc->sc_pcu_lock);
drain_txq = ath_drain_all_txq(sc, false);
drain_txq = ath_drain_all_txq(sc);
spin_unlock_bh(&sc->sc_pcu_lock);
if (!drain_txq)
ath_reset(sc, false);
ath_reset(sc);
ath9k_ps_restore(sc);
ieee80211_wake_queues(hw);
......@@ -1833,6 +1910,9 @@ static u32 fill_chainmask(u32 cap, u32 new)
static bool validate_antenna_mask(struct ath_hw *ah, u32 val)
{
if (AR_SREV_9300_20_OR_LATER(ah))
return true;
switch (val & 0x7) {
case 0x1:
case 0x3:
......@@ -2238,6 +2318,19 @@ static void ath9k_set_wakeup(struct ieee80211_hw *hw, bool enabled)
}
#endif
static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
{
struct ath_softc *sc = hw->priv;
sc->scanning = 1;
}
static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
{
struct ath_softc *sc = hw->priv;
sc->scanning = 0;
}
struct ieee80211_ops ath9k_ops = {
.tx = ath9k_tx,
......@@ -2284,4 +2377,6 @@ struct ieee80211_ops ath9k_ops = {
.sta_add_debugfs = ath9k_sta_add_debugfs,
.sta_remove_debugfs = ath9k_sta_remove_debugfs,
#endif
.sw_scan_start = ath9k_sw_scan_start,
.sw_scan_complete = ath9k_sw_scan_complete,
};
......@@ -438,7 +438,7 @@ int ath_mci_setup(struct ath_softc *sc)
struct ath_mci_buf *buf = &mci->sched_buf;
int ret;
buf->bf_addr = dma_alloc_coherent(sc->dev,
buf->bf_addr = dmam_alloc_coherent(sc->dev,
ATH_MCI_SCHED_BUF_SIZE + ATH_MCI_GPM_BUF_SIZE,
&buf->bf_paddr, GFP_KERNEL);
......@@ -477,11 +477,6 @@ void ath_mci_cleanup(struct ath_softc *sc)
struct ath_mci_coex *mci = &sc->mci_coex;
struct ath_mci_buf *buf = &mci->sched_buf;
if (buf->bf_addr)
dma_free_coherent(sc->dev,
ATH_MCI_SCHED_BUF_SIZE + ATH_MCI_GPM_BUF_SIZE,
buf->bf_addr, buf->bf_paddr);
ar9003_mci_cleanup(ah);
ath_dbg(common, MCI, "MCI De-Initialized\n");
......
......@@ -147,7 +147,6 @@ static const struct ath_bus_ops ath_pci_bus_ops = {
static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
void __iomem *mem;
struct ath_softc *sc;
struct ieee80211_hw *hw;
u8 csz;
......@@ -155,19 +154,19 @@ static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
int ret = 0;
char hw_name[64];
if (pci_enable_device(pdev))
if (pcim_enable_device(pdev))
return -EIO;
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret) {
pr_err("32-bit DMA not available\n");
goto err_dma;
return ret;
}
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret) {
pr_err("32-bit DMA consistent DMA enable failed\n");
goto err_dma;
return ret;
}
/*
......@@ -203,25 +202,16 @@ static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
if ((val & 0x0000ff00) != 0)
pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
ret = pci_request_region(pdev, 0, "ath9k");
ret = pcim_iomap_regions(pdev, BIT(0), "ath9k");
if (ret) {
dev_err(&pdev->dev, "PCI memory region reserve error\n");
ret = -ENODEV;
goto err_region;
}
mem = pci_iomap(pdev, 0, 0);
if (!mem) {
pr_err("PCI memory map error\n") ;
ret = -EIO;
goto err_iomap;
return -ENODEV;
}
hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
if (!hw) {
dev_err(&pdev->dev, "No memory for ieee80211_hw\n");
ret = -ENOMEM;
goto err_alloc_hw;
return -ENOMEM;
}
SET_IEEE80211_DEV(hw, &pdev->dev);
......@@ -230,7 +220,7 @@ static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
sc = hw->priv;
sc->hw = hw;
sc->dev = &pdev->dev;
sc->mem = mem;
sc->mem = pcim_iomap_table(pdev)[0];
/* Will be cleared in ath9k_start() */
set_bit(SC_OP_INVALID, &sc->sc_flags);
......@@ -251,7 +241,7 @@ static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
ath9k_hw_name(sc->sc_ah, hw_name, sizeof(hw_name));
wiphy_info(hw->wiphy, "%s mem=0x%lx, irq=%d\n",
hw_name, (unsigned long)mem, pdev->irq);
hw_name, (unsigned long)sc->mem, pdev->irq);
return 0;
......@@ -259,14 +249,6 @@ static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
free_irq(sc->irq, sc);
err_irq:
ieee80211_free_hw(hw);
err_alloc_hw:
pci_iounmap(pdev, mem);
err_iomap:
pci_release_region(pdev, 0);
err_region:
/* Nothing */
err_dma:
pci_disable_device(pdev);
return ret;
}
......@@ -274,17 +256,12 @@ static void ath_pci_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct ath_softc *sc = hw->priv;
void __iomem *mem = sc->mem;
if (!is_ath9k_unloaded)
sc->sc_ah->ah_flags |= AH_UNPLUGGED;
ath9k_deinit_device(sc);
free_irq(sc->irq, sc);
ieee80211_free_hw(sc->hw);
pci_iounmap(pdev, mem);
pci_disable_device(pdev);
pci_release_region(pdev, 0);
}
#ifdef CONFIG_PM_SLEEP
......
......@@ -15,6 +15,7 @@
*/
#include <linux/dma-mapping.h>
#include <linux/relay.h>
#include "ath9k.h"
#include "ar9003_mac.h"
......@@ -180,11 +181,6 @@ static void ath_rx_edma_cleanup(struct ath_softc *sc)
bf->bf_mpdu = NULL;
}
}
INIT_LIST_HEAD(&sc->rx.rxbuf);
kfree(sc->rx.rx_bufptr);
sc->rx.rx_bufptr = NULL;
}
static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
......@@ -211,12 +207,11 @@ static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
ah->caps.rx_hp_qdepth);
size = sizeof(struct ath_buf) * nbufs;
bf = kzalloc(size, GFP_KERNEL);
bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
if (!bf)
return -ENOMEM;
INIT_LIST_HEAD(&sc->rx.rxbuf);
sc->rx.rx_bufptr = bf;
for (i = 0; i < nbufs; i++, bf++) {
skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
......@@ -254,8 +249,6 @@ static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
static void ath_edma_start_recv(struct ath_softc *sc)
{
spin_lock_bh(&sc->rx.rxbuflock);
ath9k_hw_rxena(sc->sc_ah);
ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
......@@ -267,8 +260,6 @@ static void ath_edma_start_recv(struct ath_softc *sc)
ath_opmode_init(sc);
ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
spin_unlock_bh(&sc->rx.rxbuflock);
}
static void ath_edma_stop_recv(struct ath_softc *sc)
......@@ -285,8 +276,6 @@ int ath_rx_init(struct ath_softc *sc, int nbufs)
int error = 0;
spin_lock_init(&sc->sc_pcu_lock);
spin_lock_init(&sc->rx.rxbuflock);
clear_bit(SC_OP_RXFLUSH, &sc->sc_flags);
common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
sc->sc_ah->caps.rx_status_len;
......@@ -363,9 +352,6 @@ void ath_rx_cleanup(struct ath_softc *sc)
bf->bf_mpdu = NULL;
}
}
if (sc->rx.rxdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
}
}
......@@ -447,7 +433,6 @@ int ath_startrecv(struct ath_softc *sc)
return 0;
}
spin_lock_bh(&sc->rx.rxbuflock);
if (list_empty(&sc->rx.rxbuf))
goto start_recv;
......@@ -468,26 +453,31 @@ int ath_startrecv(struct ath_softc *sc)
ath_opmode_init(sc);
ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
spin_unlock_bh(&sc->rx.rxbuflock);
return 0;
}
static void ath_flushrecv(struct ath_softc *sc)
{
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
ath_rx_tasklet(sc, 1, true);
ath_rx_tasklet(sc, 1, false);
}
bool ath_stoprecv(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
bool stopped, reset = false;
spin_lock_bh(&sc->rx.rxbuflock);
ath9k_hw_abortpcurecv(ah);
ath9k_hw_setrxfilter(ah, 0);
stopped = ath9k_hw_stopdmarecv(ah, &reset);
ath_flushrecv(sc);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
ath_edma_stop_recv(sc);
else
sc->rx.rxlink = NULL;
spin_unlock_bh(&sc->rx.rxbuflock);
if (!(ah->ah_flags & AH_UNPLUGGED) &&
unlikely(!stopped)) {
......@@ -499,15 +489,6 @@ bool ath_stoprecv(struct ath_softc *sc)
return stopped && !reset;
}
void ath_flushrecv(struct ath_softc *sc)
{
set_bit(SC_OP_RXFLUSH, &sc->sc_flags);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
ath_rx_tasklet(sc, 1, true);
ath_rx_tasklet(sc, 1, false);
clear_bit(SC_OP_RXFLUSH, &sc->sc_flags);
}
static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
{
/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
......@@ -744,6 +725,7 @@ static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
return NULL;
}
list_del(&bf->list);
if (!bf->bf_mpdu)
return bf;
......@@ -1034,6 +1016,108 @@ static void ath9k_rx_skb_postprocess(struct ath_common *common,
rxs->flag &= ~RX_FLAG_DECRYPTED;
}
static s8 fix_rssi_inv_only(u8 rssi_val)
{
if (rssi_val == 128)
rssi_val = 0;
return (s8) rssi_val;
}
static void ath_process_fft(struct ath_softc *sc, struct ieee80211_hdr *hdr,
struct ath_rx_status *rs, u64 tsf)
{
#ifdef CONFIG_ATH_DEBUG
struct ath_hw *ah = sc->sc_ah;
u8 bins[SPECTRAL_HT20_NUM_BINS];
u8 *vdata = (u8 *)hdr;
struct fft_sample_ht20 fft_sample;
struct ath_radar_info *radar_info;
struct ath_ht20_mag_info *mag_info;
int len = rs->rs_datalen;
int i, dc_pos;
/* AR9280 and before report via ATH9K_PHYERR_RADAR, AR93xx and newer
* via ATH9K_PHYERR_SPECTRAL. Haven't seen ATH9K_PHYERR_FALSE_RADAR_EXT
* yet, but this is supposed to be possible as well.
*/
if (rs->rs_phyerr != ATH9K_PHYERR_RADAR &&
rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT &&
rs->rs_phyerr != ATH9K_PHYERR_SPECTRAL)
return;
/* Variation in the data length is possible and will be fixed later.
* Note that we only support HT20 for now.
*
* TODO: add HT20_40 support as well.
*/
if ((len > SPECTRAL_HT20_TOTAL_DATA_LEN + 2) ||
(len < SPECTRAL_HT20_TOTAL_DATA_LEN - 1))
return;
/* check if spectral scan bit is set. This does not have to be checked
* if received through a SPECTRAL phy error, but shouldn't hurt.
*/
radar_info = ((struct ath_radar_info *)&vdata[len]) - 1;
if (!(radar_info->pulse_bw_info & SPECTRAL_SCAN_BITMASK))
return;
fft_sample.tlv.type = ATH_FFT_SAMPLE_HT20;
fft_sample.tlv.length = sizeof(fft_sample) - sizeof(fft_sample.tlv);
fft_sample.freq = ah->curchan->chan->center_freq;
fft_sample.rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0);
fft_sample.noise = ah->noise;
switch (len - SPECTRAL_HT20_TOTAL_DATA_LEN) {
case 0:
/* length correct, nothing to do. */
memcpy(bins, vdata, SPECTRAL_HT20_NUM_BINS);
break;
case -1:
/* first byte missing, duplicate it. */
memcpy(&bins[1], vdata, SPECTRAL_HT20_NUM_BINS - 1);
bins[0] = vdata[0];
break;
case 2:
/* MAC added 2 extra bytes at bin 30 and 32, remove them. */
memcpy(bins, vdata, 30);
bins[30] = vdata[31];
memcpy(&bins[31], &vdata[33], SPECTRAL_HT20_NUM_BINS - 31);
break;
case 1:
/* MAC added 2 extra bytes AND first byte is missing. */
bins[0] = vdata[0];
memcpy(&bins[0], vdata, 30);
bins[31] = vdata[31];
memcpy(&bins[32], &vdata[33], SPECTRAL_HT20_NUM_BINS - 32);
break;
default:
return;
}
/* DC value (value in the middle) is the blind spot of the spectral
* sample and invalid, interpolate it.
*/
dc_pos = SPECTRAL_HT20_NUM_BINS / 2;
bins[dc_pos] = (bins[dc_pos + 1] + bins[dc_pos - 1]) / 2;
/* mag data is at the end of the frame, in front of radar_info */
mag_info = ((struct ath_ht20_mag_info *)radar_info) - 1;
/* Apply exponent and grab further auxiliary information. */
for (i = 0; i < SPECTRAL_HT20_NUM_BINS; i++)
fft_sample.data[i] = bins[i] << mag_info->max_exp;
fft_sample.max_magnitude = spectral_max_magnitude(mag_info->all_bins);
fft_sample.max_index = spectral_max_index(mag_info->all_bins);
fft_sample.bitmap_weight = spectral_bitmap_weight(mag_info->all_bins);
fft_sample.tsf = tsf;
ath_debug_send_fft_sample(sc, &fft_sample.tlv);
#endif
}
int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
{
struct ath_buf *bf;
......@@ -1059,16 +1143,12 @@ int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
dma_type = DMA_FROM_DEVICE;
qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
spin_lock_bh(&sc->rx.rxbuflock);
tsf = ath9k_hw_gettsf64(ah);
tsf_lower = tsf & 0xffffffff;
do {
bool decrypt_error = false;
/* If handling rx interrupt and flush is in progress => exit */
if (test_bit(SC_OP_RXFLUSH, &sc->sc_flags) && (flush == 0))
break;
memset(&rs, 0, sizeof(rs));
if (edma)
......@@ -1111,15 +1191,6 @@ int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
ath_debug_stat_rx(sc, &rs);
/*
* If we're asked to flush receive queue, directly
* chain it back at the queue without processing it.
*/
if (test_bit(SC_OP_RXFLUSH, &sc->sc_flags)) {
RX_STAT_INC(rx_drop_rxflush);
goto requeue_drop_frag;
}
memset(rxs, 0, sizeof(struct ieee80211_rx_status));
rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp;
......@@ -1131,6 +1202,9 @@ int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
unlikely(tsf_lower - rs.rs_tstamp > 0x10000000))
rxs->mactime += 0x100000000ULL;
if ((rs.rs_status & ATH9K_RXERR_PHY))
ath_process_fft(sc, hdr, &rs, rxs->mactime);
retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs,
rxs, &decrypt_error);
if (retval)
......@@ -1254,19 +1328,18 @@ int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
sc->rx.frag = NULL;
}
requeue:
list_add_tail(&bf->list, &sc->rx.rxbuf);
if (flush)
continue;
if (edma) {
list_add_tail(&bf->list, &sc->rx.rxbuf);
ath_rx_edma_buf_link(sc, qtype);
} else {
list_move_tail(&bf->list, &sc->rx.rxbuf);
ath_rx_buf_link(sc, bf);
if (!flush)
ath9k_hw_rxena(ah);
ath9k_hw_rxena(ah);
}
} while (1);
spin_unlock_bh(&sc->rx.rxbuflock);
if (!(ah->imask & ATH9K_INT_RXEOL)) {
ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
ath9k_hw_set_interrupts(ah);
......
......@@ -789,6 +789,7 @@
#define AR_SREV_REVISION_9271_11 1
#define AR_SREV_VERSION_9300 0x1c0
#define AR_SREV_REVISION_9300_20 2 /* 2.0 and 2.1 */
#define AR_SREV_REVISION_9300_22 3
#define AR_SREV_VERSION_9330 0x200
#define AR_SREV_REVISION_9330_10 0
#define AR_SREV_REVISION_9330_11 1
......@@ -869,6 +870,9 @@
(((_ah)->hw_version.macVersion == AR_SREV_VERSION_9300))
#define AR_SREV_9300_20_OR_LATER(_ah) \
((_ah)->hw_version.macVersion >= AR_SREV_VERSION_9300)
#define AR_SREV_9300_22(_ah) \
(AR_SREV_9300(ah) && \
((_ah)->hw_version.macRev == AR_SREV_REVISION_9300_22))
#define AR_SREV_9330(_ah) \
(((_ah)->hw_version.macVersion == AR_SREV_VERSION_9330))
......@@ -884,9 +888,6 @@
#define AR_SREV_9485(_ah) \
(((_ah)->hw_version.macVersion == AR_SREV_VERSION_9485))
#define AR_SREV_9485_10(_ah) \
(AR_SREV_9485(_ah) && \
((_ah)->hw_version.macRev == AR_SREV_REVISION_9485_10))
#define AR_SREV_9485_11(_ah) \
(AR_SREV_9485(_ah) && \
((_ah)->hw_version.macRev == AR_SREV_REVISION_9485_11))
......
......@@ -378,7 +378,7 @@ static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
struct ath_buf *bf, struct list_head *bf_q,
struct ath_tx_status *ts, int txok, bool retry)
struct ath_tx_status *ts, int txok)
{
struct ath_node *an = NULL;
struct sk_buff *skb;
......@@ -490,7 +490,7 @@ static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
} else if (!isaggr && txok) {
/* transmit completion */
acked_cnt++;
} else if ((tid->state & AGGR_CLEANUP) || !retry) {
} else if (tid->state & AGGR_CLEANUP) {
/*
* cleanup in progress, just fail
* the un-acked sub-frames
......@@ -604,6 +604,37 @@ static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
}
static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
}
static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
struct ath_tx_status *ts, struct ath_buf *bf,
struct list_head *bf_head)
{
bool txok, flush;
txok = !(ts->ts_status & ATH9K_TXERR_MASK);
flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
txq->axq_tx_inprogress = false;
txq->axq_depth--;
if (bf_is_ampdu_not_probing(bf))
txq->axq_ampdu_depth--;
if (!bf_isampdu(bf)) {
if (!flush)
ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
} else
ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush)
ath_txq_schedule(sc, txq);
}
static bool ath_lookup_legacy(struct ath_buf *bf)
{
struct sk_buff *skb;
......@@ -1331,23 +1362,6 @@ void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid
/* Queue Management */
/********************/
static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
struct ath_txq *txq)
{
struct ath_atx_ac *ac, *ac_tmp;
struct ath_atx_tid *tid, *tid_tmp;
list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
list_del(&ac->list);
ac->sched = false;
list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
list_del(&tid->list);
tid->sched = false;
ath_tid_drain(sc, txq, tid);
}
}
}
struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
{
struct ath_hw *ah = sc->sc_ah;
......@@ -1470,14 +1484,8 @@ int ath_cabq_update(struct ath_softc *sc)
return 0;
}
static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
}
static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
struct list_head *list, bool retry_tx)
struct list_head *list)
{
struct ath_buf *bf, *lastbf;
struct list_head bf_head;
......@@ -1499,16 +1507,7 @@ static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
lastbf = bf->bf_lastbf;
list_cut_position(&bf_head, list, &lastbf->list);
txq->axq_depth--;
if (bf_is_ampdu_not_probing(bf))
txq->axq_ampdu_depth--;
if (bf_isampdu(bf))
ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
retry_tx);
else
ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
}
}
......@@ -1518,7 +1517,7 @@ static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
* This assumes output has been stopped and
* we do not need to block ath_tx_tasklet.
*/
void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
{
ath_txq_lock(sc, txq);
......@@ -1526,8 +1525,7 @@ void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
int idx = txq->txq_tailidx;
while (!list_empty(&txq->txq_fifo[idx])) {
ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
retry_tx);
ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
INCR(idx, ATH_TXFIFO_DEPTH);
}
......@@ -1536,16 +1534,12 @@ void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
txq->axq_link = NULL;
txq->axq_tx_inprogress = false;
ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
/* flush any pending frames if aggregation is enabled */
if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx)
ath_txq_drain_pending_buffers(sc, txq);
ath_drain_txq_list(sc, txq, &txq->axq_q);
ath_txq_unlock_complete(sc, txq);
}
bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
bool ath_drain_all_txq(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
......@@ -1581,7 +1575,7 @@ bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
*/
txq = &sc->tx.txq[i];
txq->stopped = false;
ath_draintxq(sc, txq, retry_tx);
ath_draintxq(sc, txq);
}
return !npend;
......@@ -2175,28 +2169,6 @@ static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
}
static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
struct ath_tx_status *ts, struct ath_buf *bf,
struct list_head *bf_head)
{
int txok;
txq->axq_depth--;
txok = !(ts->ts_status & ATH9K_TXERR_MASK);
txq->axq_tx_inprogress = false;
if (bf_is_ampdu_not_probing(bf))
txq->axq_ampdu_depth--;
if (!bf_isampdu(bf)) {
ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
} else
ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
ath_txq_schedule(sc, txq);
}
static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hw *ah = sc->sc_ah;
......@@ -2361,8 +2333,8 @@ static int ath_txstatus_setup(struct ath_softc *sc, int size)
u8 txs_len = sc->sc_ah->caps.txs_len;
dd->dd_desc_len = size * txs_len;
dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
&dd->dd_desc_paddr, GFP_KERNEL);
dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
&dd->dd_desc_paddr, GFP_KERNEL);
if (!dd->dd_desc)
return -ENOMEM;
......@@ -2382,14 +2354,6 @@ static int ath_tx_edma_init(struct ath_softc *sc)
return err;
}
static void ath_tx_edma_cleanup(struct ath_softc *sc)
{
struct ath_descdma *dd = &sc->txsdma;
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
dd->dd_desc_paddr);
}
int ath_tx_init(struct ath_softc *sc, int nbufs)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
......@@ -2402,7 +2366,7 @@ int ath_tx_init(struct ath_softc *sc, int nbufs)
if (error != 0) {
ath_err(common,
"Failed to allocate tx descriptors: %d\n", error);
goto err;
return error;
}
error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
......@@ -2410,36 +2374,17 @@ int ath_tx_init(struct ath_softc *sc, int nbufs)
if (error != 0) {
ath_err(common,
"Failed to allocate beacon descriptors: %d\n", error);
goto err;
return error;
}
INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
error = ath_tx_edma_init(sc);
if (error)
goto err;
}
err:
if (error != 0)
ath_tx_cleanup(sc);
return error;
}
void ath_tx_cleanup(struct ath_softc *sc)
{
if (sc->beacon.bdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
if (sc->tx.txdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
ath_tx_edma_cleanup(sc);
}
void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
{
struct ath_atx_tid *tid;
......
......@@ -85,20 +85,14 @@ enum carl9170_device_state {
CARL9170_STARTED,
};
#define CARL9170_NUM_TID 16
#define WME_BA_BMP_SIZE 64
#define CARL9170_TX_USER_RATE_TRIES 3
#define WME_AC_BE 2
#define WME_AC_BK 3
#define WME_AC_VI 1
#define WME_AC_VO 0
#define TID_TO_WME_AC(_tid) \
((((_tid) == 0) || ((_tid) == 3)) ? WME_AC_BE : \
(((_tid) == 1) || ((_tid) == 2)) ? WME_AC_BK : \
(((_tid) == 4) || ((_tid) == 5)) ? WME_AC_VI : \
WME_AC_VO)
((((_tid) == 0) || ((_tid) == 3)) ? IEEE80211_AC_BE : \
(((_tid) == 1) || ((_tid) == 2)) ? IEEE80211_AC_BK : \
(((_tid) == 4) || ((_tid) == 5)) ? IEEE80211_AC_VI : \
IEEE80211_AC_VO)
#define SEQ_DIFF(_start, _seq) \
(((_start) - (_seq)) & 0x0fff)
......@@ -290,6 +284,7 @@ struct ar9170 {
unsigned int rx_size;
unsigned int tx_seq_table;
bool ba_filter;
bool disable_offload_fw;
} fw;
/* interface configuration combinations */
......@@ -493,8 +488,8 @@ struct carl9170_sta_info {
bool sleeping;
atomic_t pending_frames;
unsigned int ampdu_max_len;
struct carl9170_sta_tid __rcu *agg[CARL9170_NUM_TID];
struct carl9170_ba_stats stats[CARL9170_NUM_TID];
struct carl9170_sta_tid __rcu *agg[IEEE80211_NUM_TIDS];
struct carl9170_ba_stats stats[IEEE80211_NUM_TIDS];
};
struct carl9170_tx_info {
......
......@@ -215,6 +215,24 @@ static int carl9170_fw_tx_sequence(struct ar9170 *ar)
return 0;
}
static void carl9170_fw_set_if_combinations(struct ar9170 *ar,
u16 if_comb_types)
{
if (ar->fw.vif_num < 2)
return;
ar->if_comb_limits[0].max = ar->fw.vif_num;
ar->if_comb_limits[0].types = if_comb_types;
ar->if_combs[0].num_different_channels = 1;
ar->if_combs[0].max_interfaces = ar->fw.vif_num;
ar->if_combs[0].limits = ar->if_comb_limits;
ar->if_combs[0].n_limits = ARRAY_SIZE(ar->if_comb_limits);
ar->hw->wiphy->iface_combinations = ar->if_combs;
ar->hw->wiphy->n_iface_combinations = ARRAY_SIZE(ar->if_combs);
}
static int carl9170_fw(struct ar9170 *ar, const __u8 *data, size_t len)
{
const struct carl9170fw_otus_desc *otus_desc;
......@@ -264,7 +282,7 @@ static int carl9170_fw(struct ar9170 *ar, const __u8 *data, size_t len)
if (!SUPP(CARL9170FW_COMMAND_CAM)) {
dev_info(&ar->udev->dev, "crypto offloading is disabled "
"by firmware.\n");
ar->disable_offload = true;
ar->fw.disable_offload_fw = true;
}
if (SUPP(CARL9170FW_PSM) && SUPP(CARL9170FW_FIXED_5GHZ_PSM))
......@@ -345,20 +363,15 @@ static int carl9170_fw(struct ar9170 *ar, const __u8 *data, size_t len)
}
}
ar->if_comb_limits[0].max = ar->fw.vif_num;
ar->if_comb_limits[0].types = if_comb_types;
ar->if_combs[0].num_different_channels = 1;
ar->if_combs[0].max_interfaces = ar->fw.vif_num;
ar->if_combs[0].limits = ar->if_comb_limits;
ar->if_combs[0].n_limits = ARRAY_SIZE(ar->if_comb_limits);
ar->hw->wiphy->iface_combinations = ar->if_combs;
ar->hw->wiphy->n_iface_combinations = ARRAY_SIZE(ar->if_combs);
carl9170_fw_set_if_combinations(ar, if_comb_types);
ar->hw->wiphy->interface_modes |= if_comb_types;
ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
ar->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
/* As IBSS Encryption is software-based, IBSS RSN is supported. */
ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL |
WIPHY_FLAG_IBSS_RSN | WIPHY_FLAG_SUPPORTS_TDLS;
#undef SUPPORTED
return carl9170_fw_tx_sequence(ar);
......
......@@ -156,6 +156,14 @@ struct carl9170_psm {
} __packed;
#define CARL9170_PSM_SIZE 4
/*
* Note: If a bit in rx_filter is set, then it
* means that the particular frames which matches
* the condition are FILTERED/REMOVED/DISCARDED!
* (This is can be a bit confusing, especially
* because someone people think it's the exact
* opposite way, so watch out!)
*/
struct carl9170_rx_filter_cmd {
__le32 rx_filter;
} __packed;
......
......@@ -384,7 +384,7 @@
#define AR9170_MAC_REG_BCN_ADDR (AR9170_MAC_REG_BASE + 0xd84)
#define AR9170_MAC_REG_BCN_LENGTH (AR9170_MAC_REG_BASE + 0xd88)
#define AR9170_MAC_BCN_LENGTH_MAX 256
#define AR9170_MAC_BCN_LENGTH_MAX (512 - 32)
#define AR9170_MAC_REG_BCN_STATUS (AR9170_MAC_REG_BASE + 0xd8c)
......
......@@ -358,8 +358,13 @@ static int carl9170_op_start(struct ieee80211_hw *hw)
ar->ps.last_action = jiffies;
ar->ps.last_slept = jiffies;
ar->erp_mode = CARL9170_ERP_AUTO;
ar->rx_software_decryption = false;
ar->disable_offload = false;
/* Set "disable hw crypto offload" whenever the module parameter
* nohwcrypt is true or if the firmware does not support it.
*/
ar->disable_offload = modparam_nohwcrypt |
ar->fw.disable_offload_fw;
ar->rx_software_decryption = ar->disable_offload;
for (i = 0; i < ar->hw->queues; i++) {
ar->queue_stop_timeout[i] = jiffies;
......@@ -565,12 +570,28 @@ static int carl9170_init_interface(struct ar9170 *ar,
memcpy(common->macaddr, vif->addr, ETH_ALEN);
if (modparam_nohwcrypt ||
((vif->type != NL80211_IFTYPE_STATION) &&
(vif->type != NL80211_IFTYPE_AP))) {
ar->rx_software_decryption = true;
ar->disable_offload = true;
}
/* We have to fall back to software crypto, whenever
* the user choose to participates in an IBSS. HW
* offload for IBSS RSN is not supported by this driver.
*
* NOTE: If the previous main interface has already
* disabled hw crypto offload, we have to keep this
* previous disable_offload setting as it was.
* Altough ideally, we should notify mac80211 and tell
* it to forget about any HW crypto offload for now.
*/
ar->disable_offload |= ((vif->type != NL80211_IFTYPE_STATION) &&
(vif->type != NL80211_IFTYPE_AP));
/* While the driver supports HW offload in a single
* P2P client configuration, it doesn't support HW
* offload in the favourit, concurrent P2P GO+CLIENT
* configuration. Hence, HW offload will always be
* disabled for P2P.
*/
ar->disable_offload |= vif->p2p;
ar->rx_software_decryption = ar->disable_offload;
err = carl9170_set_operating_mode(ar);
return err;
......@@ -580,7 +601,7 @@ static int carl9170_op_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv;
struct ieee80211_vif *main_vif;
struct ieee80211_vif *main_vif, *old_main = NULL;
struct ar9170 *ar = hw->priv;
int vif_id = -1, err = 0;
......@@ -602,6 +623,15 @@ static int carl9170_op_add_interface(struct ieee80211_hw *hw,
goto init;
}
/* Because the AR9170 HW's MAC doesn't provide full support for
* multiple, independent interfaces [of different operation modes].
* We have to select ONE main interface [main mode of HW], but we
* can have multiple slaves [AKA: entry in the ACK-table].
*
* The first (from HEAD/TOP) interface in the ar->vif_list is
* always the main intf. All following intfs in this list
* are considered to be slave intfs.
*/
main_vif = carl9170_get_main_vif(ar);
if (main_vif) {
......@@ -610,6 +640,18 @@ static int carl9170_op_add_interface(struct ieee80211_hw *hw,
if (vif->type == NL80211_IFTYPE_STATION)
break;
/* P2P GO [master] use-case
* Because the P2P GO station is selected dynamically
* by all participating peers of a WIFI Direct network,
* the driver has be able to change the main interface
* operating mode on the fly.
*/
if (main_vif->p2p && vif->p2p &&
vif->type == NL80211_IFTYPE_AP) {
old_main = main_vif;
break;
}
err = -EBUSY;
rcu_read_unlock();
......@@ -648,14 +690,41 @@ static int carl9170_op_add_interface(struct ieee80211_hw *hw,
vif_priv->id = vif_id;
vif_priv->enable_beacon = false;
ar->vifs++;
list_add_tail_rcu(&vif_priv->list, &ar->vif_list);
if (old_main) {
/* We end up in here, if the main interface is being replaced.
* Put the new main interface at the HEAD of the list and the
* previous inteface will automatically become second in line.
*/
list_add_rcu(&vif_priv->list, &ar->vif_list);
} else {
/* Add new inteface. If the list is empty, it will become the
* main inteface, otherwise it will be slave.
*/
list_add_tail_rcu(&vif_priv->list, &ar->vif_list);
}
rcu_assign_pointer(ar->vif_priv[vif_id].vif, vif);
init:
if (carl9170_get_main_vif(ar) == vif) {
main_vif = carl9170_get_main_vif(ar);
if (main_vif == vif) {
rcu_assign_pointer(ar->beacon_iter, vif_priv);
rcu_read_unlock();
if (old_main) {
struct carl9170_vif_info *old_main_priv =
(void *) old_main->drv_priv;
/* downgrade old main intf to slave intf.
* NOTE: We are no longer under rcu_read_lock.
* But we are still holding ar->mutex, so the
* vif data [id, addr] is safe.
*/
err = carl9170_mod_virtual_mac(ar, old_main_priv->id,
old_main->addr);
if (err)
goto unlock;
}
err = carl9170_init_interface(ar, vif);
if (err)
goto unlock;
......@@ -1112,9 +1181,7 @@ static int carl9170_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
if (ar->disable_offload || !vif)
return -EOPNOTSUPP;
/*
* We have to fall back to software encryption, whenever
* the user choose to participates in an IBSS or is connected
/* Fall back to software encryption whenever the driver is connected
* to more than one network.
*
* This is very unfortunate, because some machines cannot handle
......@@ -1263,7 +1330,7 @@ static int carl9170_op_sta_add(struct ieee80211_hw *hw,
return 0;
}
for (i = 0; i < CARL9170_NUM_TID; i++)
for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++)
RCU_INIT_POINTER(sta_info->agg[i], NULL);
sta_info->ampdu_max_len = 1 << (3 + sta->ht_cap.ampdu_factor);
......@@ -1287,7 +1354,7 @@ static int carl9170_op_sta_remove(struct ieee80211_hw *hw,
sta_info->ht_sta = false;
rcu_read_lock();
for (i = 0; i < CARL9170_NUM_TID; i++) {
for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++) {
struct carl9170_sta_tid *tid_info;
tid_info = rcu_dereference(sta_info->agg[i]);
......@@ -1394,7 +1461,9 @@ static int carl9170_op_ampdu_action(struct ieee80211_hw *hw,
ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_STOP:
case IEEE80211_AMPDU_TX_STOP_CONT:
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
rcu_read_lock();
tid_info = rcu_dereference(sta_info->agg[tid]);
if (tid_info) {
......@@ -1805,10 +1874,6 @@ void *carl9170_alloc(size_t priv_size)
for (i = 0; i < ARRAY_SIZE(ar->noise); i++)
ar->noise[i] = -95; /* ATH_DEFAULT_NOISE_FLOOR */
hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
/* As IBSS Encryption is software-based, IBSS RSN is supported. */
hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
return ar;
err_nomem:
......@@ -1916,13 +1981,13 @@ static int carl9170_parse_eeprom(struct ar9170 *ar)
return 0;
}
static int carl9170_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
static void carl9170_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ar9170 *ar = hw->priv;
return ath_reg_notifier_apply(wiphy, request, &ar->common.regulatory);
ath_reg_notifier_apply(wiphy, request, &ar->common.regulatory);
}
int carl9170_register(struct ar9170 *ar)
......
#ifndef __CARL9170_SHARED_VERSION_H
#define __CARL9170_SHARED_VERSION_H
#define CARL9170FW_VERSION_YEAR 12
#define CARL9170FW_VERSION_MONTH 7
#define CARL9170FW_VERSION_DAY 7
#define CARL9170FW_VERSION_GIT "1.9.6"
#define CARL9170FW_VERSION_MONTH 12
#define CARL9170FW_VERSION_DAY 15
#define CARL9170FW_VERSION_GIT "1.9.7"
#endif /* __CARL9170_SHARED_VERSION_H */
此差异已折叠。
......@@ -252,12 +252,12 @@ enum CountryCode {
bool ath_is_world_regd(struct ath_regulatory *reg);
bool ath_is_49ghz_allowed(u16 redomain);
int ath_regd_init(struct ath_regulatory *reg, struct wiphy *wiphy,
int (*reg_notifier)(struct wiphy *wiphy,
struct regulatory_request *request));
void (*reg_notifier)(struct wiphy *wiphy,
struct regulatory_request *request));
u32 ath_regd_get_band_ctl(struct ath_regulatory *reg,
enum ieee80211_band band);
int ath_reg_notifier_apply(struct wiphy *wiphy,
struct regulatory_request *request,
struct ath_regulatory *reg);
void ath_reg_notifier_apply(struct wiphy *wiphy,
struct regulatory_request *request,
struct ath_regulatory *reg);
#endif
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
反馈
建议
客服 返回
顶部