提交 415812f2 编写于 作者: I Ingo Molnar

Merge branch 'linus' into x86/urgent, to pick up dependent commits

We are going to fix a bug introduced by a more recent commit, so
refresh the tree.
Signed-off-by: NIngo Molnar <mingo@kernel.org>

要显示的变更太多。

To preserve performance only 1000 of 1000+ files are displayed.
......@@ -1034,6 +1034,10 @@ S: 2037 Walnut #6
S: Boulder, Colorado 80302
S: USA
N: Hans-Christian Noren Egtvedt
E: egtvedt@samfundet.no
D: AVR32 architecture maintainer.
N: Heiko Eißfeldt
E: heiko@colossus.escape.de heiko@unifix.de
D: verify_area stuff, generic SCSI fixes
......@@ -3398,6 +3402,10 @@ S: Suite 101
S: Markham, Ontario L3R 2Z6
S: Canada
N: Haavard Skinnemoen
M: Haavard Skinnemoen <hskinnemoen@gmail.com>
D: AVR32 architecture port to Linux and maintainer.
N: Rick Sladkey
E: jrs@world.std.com
D: utility hacker: Emacs, NFS server, mount, kmem-ps, UPS debugger, strace, GDB
......
What: /sys/firmware/acpi/hotplug/force_remove
Date: Mar 2017
Contact: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Description:
Since the force_remove is inherently broken and dangerous to
use for some hotplugable resources like memory (because ignoring
the offline failure might lead to memory corruption and crashes)
enabling this knob is not safe and thus unsupported.
......@@ -213,14 +213,8 @@ What: /sys/block/<disk>/queue/discard_zeroes_data
Date: May 2011
Contact: Martin K. Petersen <martin.petersen@oracle.com>
Description:
Devices that support discard functionality may return
stale or random data when a previously discarded block
is read back. This can cause problems if the filesystem
expects discarded blocks to be explicitly cleared. If a
device reports that it deterministically returns zeroes
when a discarded area is read the discard_zeroes_data
parameter will be set to one. Otherwise it will be 0 and
the result of reading a discarded area is undefined.
Will always return 0. Don't rely on any specific behavior
for discards, and don't read this file.
What: /sys/block/<disk>/queue/write_same_max_bytes
Date: January 2012
......
......@@ -44,16 +44,6 @@ Description:
or 0 (unset). Attempts to write any other values to it will
cause -EINVAL to be returned.
What: /sys/firmware/acpi/hotplug/force_remove
Date: May 2013
Contact: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Description:
The number in this file (0 or 1) determines whether (1) or not
(0) the ACPI subsystem will allow devices to be hot-removed even
if they cannot be put offline gracefully (from the kernel's
viewpoint). That number can be changed by writing a boolean
value to this file.
What: /sys/firmware/acpi/interrupts/
Date: February 2008
Contact: Len Brown <lenb@kernel.org>
......
Graphs
_DSD
----
_DSD (Device Specific Data) [7] is a predefined ACPI device
configuration object that can be used to convey information on
hardware features which are not specifically covered by the ACPI
specification [1][6]. There are two _DSD extensions that are relevant
for graphs: property [4] and hierarchical data extensions [5]. The
property extension provides generic key-value pairs whereas the
hierarchical data extension supports nodes with references to other
nodes, forming a tree. The nodes in the tree may contain properties as
defined by the property extension. The two extensions together provide
a tree-like structure with zero or more properties (key-value pairs)
in each node of the tree.
The data structure may be accessed at runtime by using the device_*
and fwnode_* functions defined in include/linux/fwnode.h .
Fwnode represents a generic firmware node object. It is independent on
the firmware type. In ACPI, fwnodes are _DSD hierarchical data
extensions objects. A device's _DSD object is represented by an
fwnode.
The data structure may be referenced to elsewhere in the ACPI tables
by using a hard reference to the device itself and an index to the
hierarchical data extension array on each depth.
Ports and endpoints
-------------------
The port and endpoint concepts are very similar to those in Devicetree
[3]. A port represents an interface in a device, and an endpoint
represents a connection to that interface.
All port nodes are located under the device's "_DSD" node in the
hierarchical data extension tree. The property extension related to
each port node must contain the key "port" and an integer value which
is the number of the port. The object it refers to should be called "PRTX",
where "X" is the number of the port.
Further on, endpoints are located under the individual port nodes. The
first hierarchical data extension package list entry of the endpoint
nodes must begin with "endpoint" and must be followed by the number
of the endpoint. The object it refers to should be called "EPXY", where
"X" is the number of the port and "Y" is the number of the endpoint.
Each port node contains a property extension key "port", the value of
which is the number of the port node. The each endpoint is similarly numbered
with a property extension key "endpoint". Port numbers must be unique within a
device and endpoint numbers must be unique within a port.
The endpoint reference uses property extension with "remote-endpoint" property
name followed by a reference in the same package. Such references consist of the
the remote device reference, number of the port in the device and finally the
number of the endpoint in that port. Individual references thus appear as:
Package() { device, port_number, endpoint_number }
The references to endpoints must be always done both ways, to the
remote endpoint and back from the referred remote endpoint node.
A simple example of this is show below:
Scope (\_SB.PCI0.I2C2)
{
Device (CAM0)
{
Name (_DSD, Package () {
ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
Package () {
Package () { "compatible", Package () { "nokia,smia" } },
},
ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
Package () {
Package () { "port0", "PRT0" },
}
})
Name (PRT0, Package() {
ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
Package () {
Package () { "port", 0 },
},
ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
Package () {
Package () { "endpoint0", "EP00" },
}
})
Name (EP00, Package() {
ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
Package () {
Package () { "endpoint", 0 },
Package () { "remote-endpoint", Package() { \_SB.PCI0.ISP, 4, 0 } },
}
})
}
}
Scope (\_SB.PCI0)
{
Device (ISP)
{
Name (_DSD, Package () {
ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
Package () {
Package () { "port4", "PRT4" },
}
})
Name (PRT4, Package() {
ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
Package () {
Package () { "port", 4 }, /* CSI-2 port number */
},
ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
Package () {
Package () { "endpoint0", "EP40" },
}
})
Name (EP40, Package() {
ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
Package () {
Package () { "endpoint", 0 },
Package () { "remote-endpoint", Package () { \_SB.PCI0.I2C2.CAM0, 0, 0 } },
}
})
}
}
Here, the port 0 of the "CAM0" device is connected to the port 4 of
the "ISP" device and vice versa.
References
----------
[1] _DSD (Device Specific Data) Implementation Guide.
<URL:http://www.uefi.org/sites/default/files/resources/_DSD-implementation-guide-toplevel-1_1.htm>,
referenced 2016-10-03.
[2] Devicetree. <URL:http://www.devicetree.org>, referenced 2016-10-03.
[3] Documentation/devicetree/bindings/graph.txt
[4] Device Properties UUID For _DSD.
<URL:http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf>,
referenced 2016-10-04.
[5] Hierarchical Data Extension UUID For _DSD.
<URL:http://www.uefi.org/sites/default/files/resources/_DSD-hierarchical-data-extension-UUID-v1.pdf>,
referenced 2016-10-04.
[6] Advanced Configuration and Power Interface Specification.
<URL:http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf>,
referenced 2016-10-04.
[7] _DSD Device Properties Usage Rules.
Documentation/acpi/DSD-properties-rules.txt
......@@ -24,7 +24,7 @@ upstream.
The homepage of ACPICA project is: www.acpica.org, it is maintained and
supported by Intel Corporation.
The following figure depicts the Linux ACPI subystem where the ACPICA
The following figure depicts the Linux ACPI subsystem where the ACPICA
adaptation is included:
+---------------------------------------------------------+
......@@ -110,7 +110,7 @@ upstream.
Linux patches. The patches generated by this process are referred to as
"linuxized ACPICA patches". The release process is carried out on a local
copy the ACPICA git repository. Each commit in the monthly release is
converted into a linuxized ACPICA patch. Together, they form the montly
converted into a linuxized ACPICA patch. Together, they form the monthly
ACPICA release patchset for the Linux ACPI community. This process is
illustrated in the following figure:
......@@ -165,7 +165,7 @@ upstream.
<http://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git>.
Before the linuxized ACPICA patches are sent to the Linux ACPI community
for review, there is a quality ensurance build test process to reduce
for review, there is a quality assurance build test process to reduce
porting issues. Currently this build process only takes care of the
following kernel configuration options:
CONFIG_ACPI/CONFIG_ACPI_DEBUG/CONFIG_ACPI_DEBUGGER
......@@ -195,12 +195,12 @@ upstream.
release utilities (please refer to Section 4 below for the details).
3. Linux specific features - Sometimes it's impossible to use the
current ACPICA APIs to implement features required by the Linux kernel,
so Linux developers occasionaly have to change ACPICA code directly.
so Linux developers occasionally have to change ACPICA code directly.
Those changes may not be acceptable by ACPICA upstream and in such cases
they are left as committed ACPICA divergences unless the ACPICA side can
implement new mechanisms as replacements for them.
4. ACPICA release fixups - ACPICA only tests commits using a set of the
user space simulation utilies, thus the linuxized ACPICA patches may
user space simulation utilities, thus the linuxized ACPICA patches may
break the Linux kernel, leaving us build/boot failures. In order to
avoid breaking Linux bisection, fixes are applied directly to the
linuxized ACPICA patches during the release process. When the release
......
......@@ -27,7 +27,7 @@ On what hardware does it run?
today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
Xtensa, Tilera TILE, AVR32, ARC and Renesas M32R architectures.
Xtensa, Tilera TILE, ARC and Renesas M32R architectures.
Linux is easily portable to most general-purpose 32- or 64-bit architectures
as long as they have a paged memory management unit (PMMU) and a port of the
......
......@@ -86,7 +86,6 @@ parameter is applicable::
APIC APIC support is enabled.
APM Advanced Power Management support is enabled.
ARM ARM architecture is enabled.
AVR32 AVR32 architecture is enabled.
AX25 Appropriate AX.25 support is enabled.
BLACKFIN Blackfin architecture is enabled.
CLK Common clock infrastructure is enabled.
......
......@@ -531,7 +531,6 @@
[ACPI] acpi_pm
[ARM] imx_timer1,OSTS,netx_timer,mpu_timer2,
pxa_timer,timer3,32k_counter,timer0_1
[AVR32] avr32
[X86-32] pit,hpet,tsc;
scx200_hrt on Geode; cyclone on IBM x440
[MIPS] MIPS
......@@ -989,6 +988,7 @@
earlyprintk=ttySn[,baudrate]
earlyprintk=dbgp[debugController#]
earlyprintk=pciserial,bus:device.function[,baudrate]
earlyprintk=xdbc[xhciController#]
earlyprintk is useful when the kernel crashes before
the normal console is initialized. It is not enabled by
......@@ -2425,7 +2425,7 @@
osd-targets. Please see:
Documentation/filesystems/pnfs.txt for more explanations
nmi_debug= [KNL,AVR32,SH] Specify one or more actions to take
nmi_debug= [KNL,SH] Specify one or more actions to take
when a NMI is triggered.
Format: [state][,regs][,debounce][,die]
......@@ -3178,6 +3178,12 @@
ramdisk_size= [RAM] Sizes of RAM disks in kilobytes
See Documentation/blockdev/ramdisk.txt.
ras=option[,option,...] [KNL] RAS-specific options
cec_disable [X86]
Disable the Correctable Errors Collector,
see CONFIG_RAS_CEC help text.
rcu_nocbs= [KNL]
The argument is a cpu list, as described above.
......
......@@ -54,6 +54,7 @@ stable kernels.
| ARM | Cortex-A57 | #852523 | N/A |
| ARM | Cortex-A57 | #834220 | ARM64_ERRATUM_834220 |
| ARM | Cortex-A72 | #853709 | N/A |
| ARM | Cortex-A73 | #858921 | ARM64_ERRATUM_858921 |
| ARM | MMU-500 | #841119,#826419 | N/A |
| | | | |
| Cavium | ThunderX ITS | #22375, #24313 | CAVIUM_ERRATUM_22375 |
......
00-INDEX
- This file
bfq-iosched.txt
- BFQ IO scheduler and its tunables
biodoc.txt
- Notes on the Generic Block Layer Rewrite in Linux 2.5
biovecs.txt
......
此差异已折叠。
Kyber I/O scheduler tunables
===========================
The only two tunables for the Kyber scheduler are the target latencies for
reads and synchronous writes. Kyber will throttle requests in order to meet
these target latencies.
read_lat_nsec
-------------
Target latency for reads (in nanoseconds).
write_lat_nsec
--------------
Target latency for synchronous writes (in nanoseconds).
......@@ -43,11 +43,6 @@ large discards are issued, setting this value lower will make Linux issue
smaller discards and potentially help reduce latencies induced by large
discard operations.
discard_zeroes_data (RO)
------------------------
When read, this file will show if the discarded block are zeroed by the
device or not. If its value is '1' the blocks are zeroed otherwise not.
hw_sector_size (RO)
-------------------
This is the hardware sector size of the device, in bytes.
......@@ -192,5 +187,11 @@ scaling back writes. Writing a value of '0' to this file disables the
feature. Writing a value of '-1' to this file resets the value to the
default setting.
throttle_sample_time (RW)
-------------------------
This is the time window that blk-throttle samples data, in millisecond.
blk-throttle makes decision based on the samplings. Lower time means cgroups
have more smooth throughput, but higher CPU overhead. This exists only when
CONFIG_BLK_DEV_THROTTLING_LOW is enabled.
Jens Axboe <jens.axboe@oracle.com>, February 2009
This document describes m[g]flash support in linux.
Contents
1. Overview
2. Reserved area configuration
3. Example of mflash platform driver registration
1. Overview
Mflash and gflash are embedded flash drive. The only difference is mflash is
MCP(Multi Chip Package) device. These two device operate exactly same way.
So the rest mflash repersents mflash and gflash altogether.
Internally, mflash has nand flash and other hardware logics and supports
2 different operation (ATA, IO) modes. ATA mode doesn't need any new
driver and currently works well under standard IDE subsystem. Actually it's
one chip SSD. IO mode is ATA-like custom mode for the host that doesn't have
IDE interface.
Following are brief descriptions about IO mode.
A. IO mode based on ATA protocol and uses some custom command. (read confirm,
write confirm)
B. IO mode uses SRAM bus interface.
C. IO mode supports 4kB boot area, so host can boot from mflash.
2. Reserved area configuration
If host boot from mflash, usually needs raw area for boot loader image. All of
the mflash's block device operation will be taken this value as start offset.
Note that boot loader's size of reserved area and kernel configuration value
must be same.
3. Example of mflash platform driver registration
Working mflash is very straight forward. Adding platform device stuff to board
configuration file is all. Here is some pseudo example.
static struct mg_drv_data mflash_drv_data = {
/* If you want to polling driver set to 1 */
.use_polling = 0,
/* device attribution */
.dev_attr = MG_BOOT_DEV
};
static struct resource mg_mflash_rsc[] = {
/* Base address of mflash */
[0] = {
.start = 0x08000000,
.end = 0x08000000 + SZ_64K - 1,
.flags = IORESOURCE_MEM
},
/* mflash interrupt pin */
[1] = {
.start = IRQ_GPIO(84),
.end = IRQ_GPIO(84),
.flags = IORESOURCE_IRQ
},
/* mflash reset pin */
[2] = {
.start = 43,
.end = 43,
.name = MG_RST_PIN,
.flags = IORESOURCE_IO
},
/* mflash reset-out pin
* If you use mflash as storage device (i.e. other than MG_BOOT_DEV),
* should assign this */
[3] = {
.start = 51,
.end = 51,
.name = MG_RSTOUT_PIN,
.flags = IORESOURCE_IO
}
};
static struct platform_device mflash_dev = {
.name = MG_DEV_NAME,
.id = -1,
.dev = {
.platform_data = &mflash_drv_data,
},
.num_resources = ARRAY_SIZE(mg_mflash_rsc),
.resource = mg_mflash_rsc
};
platform_device_register(&mflash_dev);
Device tree binding for the TI DM816 AHCI SATA Controller
---------------------------------------------------------
Required properties:
- compatible: must be "ti,dm816-ahci"
- reg: physical base address and size of the register region used by
the controller (as defined by the AHCI 1.1 standard)
- interrupts: interrupt specifier (refer to the interrupt binding)
- clocks: list of phandle and clock specifier pairs (or only
phandles for clock providers with '0' defined for
#clock-cells); two clocks must be specified: the functional
clock and an external reference clock
Example:
sata: sata@4a140000 {
compatible = "ti,dm816-ahci";
reg = <0x4a140000 0x10000>;
interrupts = <16>;
clocks = <&sysclk5_ck>, <&sata_refclk>;
};
ads7828 properties
Required properties:
- compatible: Should be one of
ti,ads7828
ti,ads7830
- reg: I2C address
Optional properties:
- ti,differential-input
Set to use the device in differential mode.
- vref-supply
The external reference on the device is set to this regulators output. If it
does not exists the internal reference will be used and output by the ads78xx
on the "external vref" pin.
Example ADS7828 node:
ads7828: ads@48 {
comatible = "ti,ads7828";
reg = <0x48>;
vref-supply = <&vref>;
ti,differential-input;
};
ASPEED AST2400/AST2500 PWM and Fan Tacho controller device driver
The ASPEED PWM controller can support upto 8 PWM outputs. The ASPEED Fan Tacho
controller can support upto 16 Fan tachometer inputs.
There can be upto 8 fans supported. Each fan can have one PWM output and
one/two Fan tach inputs.
Required properties for pwm-tacho node:
- #address-cells : should be 1.
- #size-cells : should be 1.
- reg : address and length of the register set for the device.
- pinctrl-names : a pinctrl state named "default" must be defined.
- pinctrl-0 : phandle referencing pin configuration of the PWM ports.
- compatible : should be "aspeed,ast2400-pwm-tacho" for AST2400 and
"aspeed,ast2500-pwm-tacho" for AST2500.
- clocks : a fixed clock providing input clock frequency(PWM
and Fan Tach clock)
fan subnode format:
===================
Under fan subnode there can upto 8 child nodes, with each child node
representing a fan. If there are 8 fans each fan can have one PWM port and
one/two Fan tach inputs.
Required properties for each child node:
- reg : should specify PWM source port.
integer value in the range 0 to 7 with 0 indicating PWM port A and
7 indicating PWM port H.
- aspeed,fan-tach-ch : should specify the Fan tach input channel.
integer value in the range 0 through 15, with 0 indicating
Fan tach channel 0 and 15 indicating Fan tach channel 15.
Atleast one Fan tach input channel is required.
Examples:
pwm_tacho_fixed_clk: fixedclk {
compatible = "fixed-clock";
#clock-cells = <0>;
clock-frequency = <24000000>;
};
pwm_tacho: pwmtachocontroller@1e786000 {
#address-cells = <1>;
#size-cells = <1>;
reg = <0x1E786000 0x1000>;
compatible = "aspeed,ast2500-pwm-tacho";
clocks = <&pwm_tacho_fixed_clk>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_pwm0_default &pinctrl_pwm1_default>;
fan@0 {
reg = <0x00>;
aspeed,fan-tach-ch = /bits/ 8 <0x00>;
};
fan@1 {
reg = <0x01>;
aspeed,fan-tach-ch = /bits/ 8 <0x01 0x02>;
};
};
*LM87 hwmon sensor.
Required properties:
- compatible: Should be
"ti,lm87"
- reg: I2C address
optional properties:
- has-temp3: This configures pins 18 and 19 to be used as a second
remote temperature sensing channel. By default the pins
are configured as voltage input pins in0 and in5.
- has-in6: When set, pin 5 is configured to be used as voltage input
in6. Otherwise the pin is set as FAN1 input.
- has-in7: When set, pin 6 is configured to be used as voltage input
in7. Otherwise the pin is set as FAN2 input.
- vcc-supply: a Phandle for the regulator supplying power, can be
cofigured to measure 5.0V power supply. Default is 3.3V.
Example:
lm87@2e {
compatible = "ti,lm87";
reg = <0x2e>;
has-temp3;
vcc-supply = <&reg_5v0>;
};
* Cortina Systems Gemini interrupt controller
* Faraday Technologt FTINTC010 interrupt controller
This interrupt controller is found on the Gemini SoCs.
This interrupt controller is a stock IP block from Faraday Technology found
in the Gemini SoCs and other designs.
Required properties:
- compatible: must be "cortina,gemini-interrupt-controller"
- compatible: must be one of
"faraday,ftintc010"
"cortina,gemini-interrupt-controller" (deprecated)
- reg: The register bank for the interrupt controller.
- interrupt-controller: Identifies the node as an interrupt controller
- #interrupt-cells: The number of cells to define the interrupts.
......@@ -15,7 +18,7 @@ Required properties:
Example:
interrupt-controller@48000000 {
compatible = "cortina,gemini-interrupt-controller";
compatible = "faraday,ftintc010"
reg = <0x48000000 0x1000>;
interrupt-controller;
#interrupt-cells = <2>;
......
* Mediatek 27xx cirq
In Mediatek SOCs, the CIRQ is a low power interrupt controller designed to
work outside MCUSYS which comprises with Cortex-Ax cores,CCI and GIC.
The external interrupts (outside MCUSYS) will feed through CIRQ and connect
to GIC in MCUSYS. When CIRQ is enabled, it will record the edge-sensitive
interrupts and generate a pulse signal to parent interrupt controller when
flush command is executed. With CIRQ, MCUSYS can be completely turned off
to improve the system power consumption without losing interrupts.
Required properties:
- compatible: should be one of
- "mediatek,mt2701-cirq" for mt2701 CIRQ
- "mediatek,mt8135-cirq" for mt8135 CIRQ
- "mediatek,mt8173-cirq" for mt8173 CIRQ
and "mediatek,cirq" as a fallback.
- interrupt-controller : Identifies the node as an interrupt controller.
- #interrupt-cells : Use the same format as specified by GIC in arm,gic.txt.
- interrupt-parent: phandle of irq parent for cirq. The parent must
use the same interrupt-cells format as GIC.
- reg: Physical base address of the cirq registers and length of memory
mapped region.
- mediatek,ext-irq-range: Identifies external irq number range in different
SOCs.
Example:
cirq: interrupt-controller@10204000 {
compatible = "mediatek,mt2701-cirq",
"mediatek,mtk-cirq";
interrupt-controller;
#interrupt-cells = <3>;
interrupt-parent = <&sysirq>;
reg = <0 0x10204000 0 0x400>;
mediatek,ext-irq-start = <32 200>;
};
......@@ -21,13 +21,16 @@ Required properties:
- interrupt-parent: phandle of irq parent for sysirq. The parent must
use the same interrupt-cells format as GIC.
- reg: Physical base address of the intpol registers and length of memory
mapped region.
mapped region. Could be multiple bases here. Ex: mt6797 needs 2 reg, others
need 1.
Example:
sysirq: interrupt-controller@10200100 {
compatible = "mediatek,mt6589-sysirq", "mediatek,mt6577-sysirq";
sysirq: intpol-controller@10200620 {
compatible = "mediatek,mt6797-sysirq",
"mediatek,mt6577-sysirq";
interrupt-controller;
#interrupt-cells = <3>;
interrupt-parent = <&gic>;
reg = <0 0x10200100 0 0x1c>;
reg = <0 0x10220620 0 0x20>,
<0 0x10220690 0 0x10>;
};
......@@ -6,7 +6,9 @@ perform in-band IPMI communication with their host.
Required properties:
- compatible : should be "aspeed,ast2400-ibt-bmc"
- compatible : should be one of
"aspeed,ast2400-ibt-bmc"
"aspeed,ast2500-ibt-bmc"
- reg: physical address and size of the registers
Optional properties:
......
Motorola CPCAP PMIC LEDs
------------------------
This module is part of the CPCAP. For more details about the whole
chip see Documentation/devicetree/bindings/mfd/motorola-cpcap.txt.
Requires node properties:
- compatible: should be one of
* "motorola,cpcap-led-mdl" (Main Display Lighting)
* "motorola,cpcap-led-kl" (Keyboard Lighting)
* "motorola,cpcap-led-adl" (Aux Display Lighting)
* "motorola,cpcap-led-red" (Red Triode)
* "motorola,cpcap-led-green" (Green Triode)
* "motorola,cpcap-led-blue" (Blue Triode)
* "motorola,cpcap-led-cf" (Camera Flash)
* "motorola,cpcap-led-bt" (Bluetooth)
* "motorola,cpcap-led-cp" (Camera Privacy LED)
- label: see Documentation/devicetree/bindings/leds/common.txt
- vdd-supply: A phandle to the regulator powering the LED
Example:
&cpcap {
cpcap_led_red: red-led {
compatible = "motorola,cpcap-led-red";
label = "cpcap:red";
vdd-supply = <&sw5>;
};
};
Device Tree Bindings for LED support on MT6323 PMIC
MT6323 LED controller is subfunction provided by MT6323 PMIC, so the LED
controllers are defined as the subnode of the function node provided by MT6323
PMIC controller that is being defined as one kind of Muti-Function Device (MFD)
using shared bus called PMIC wrapper for each subfunction to access remote
MT6323 PMIC hardware.
For MT6323 MFD bindings see:
Documentation/devicetree/bindings/mfd/mt6397.txt
For MediaTek PMIC wrapper bindings see:
Documentation/devicetree/bindings/soc/mediatek/pwrap.txt
Required properties:
- compatible : Must be "mediatek,mt6323-led"
- address-cells : Must be 1
- size-cells : Must be 0
Each led is represented as a child node of the mediatek,mt6323-led that
describes the initial behavior for each LED physically and currently only four
LED child nodes can be supported.
Required properties for the LED child node:
- reg : LED channel number (0..3)
Optional properties for the LED child node:
- label : See Documentation/devicetree/bindings/leds/common.txt
- linux,default-trigger : See Documentation/devicetree/bindings/leds/common.txt
- default-state: See Documentation/devicetree/bindings/leds/common.txt
Example:
mt6323: pmic {
compatible = "mediatek,mt6323";
...
mt6323led: leds {
compatible = "mediatek,mt6323-led";
#address-cells = <1>;
#size-cells = <0>;
led@0 {
reg = <0>;
label = "LED0";
linux,default-trigger = "timer";
default-state = "on";
};
led@1 {
reg = <1>;
label = "LED1";
default-state = "off";
};
led@2 {
reg = <2>;
label = "LED2";
default-state = "on";
};
};
};
......@@ -17,6 +17,8 @@ Optional sub-node properties:
- label: see Documentation/devicetree/bindings/leds/common.txt
- type: Output configuration, see dt-bindings/leds/leds-pca9532.h (default NONE)
- linux,default-trigger: see Documentation/devicetree/bindings/leds/common.txt
- default-state: see Documentation/devicetree/bindings/leds/common.txt
This property is only valid for sub-nodes of type <PCA9532_TYPE_LED>.
Example:
#include <dt-bindings/leds/leds-pca9532.h>
......@@ -33,6 +35,14 @@ Example:
label = "pca:green:power";
type = <PCA9532_TYPE_LED>;
};
kernel-booting {
type = <PCA9532_TYPE_LED>;
default-state = "on";
};
sys-stat {
type = <PCA9532_TYPE_LED>;
default-state = "keep"; // don't touch, was set by U-Boot
};
};
For more product information please see the link below:
......
Broadcom FlexRM Ring Manager
============================
The Broadcom FlexRM ring manager provides a set of rings which can be
used to submit work to offload engines. An SoC may have multiple FlexRM
hardware blocks. There is one device tree entry per FlexRM block. The
FlexRM driver will create a mailbox-controller instance for given FlexRM
hardware block where each mailbox channel is a separate FlexRM ring.
Required properties:
--------------------
- compatible: Should be "brcm,iproc-flexrm-mbox"
- reg: Specifies base physical address and size of the FlexRM
ring registers
- msi-parent: Phandles (and potential Device IDs) to MSI controllers
The FlexRM engine will send MSIs (instead of wired
interrupts) to CPU. There is one MSI for each FlexRM ring.
Refer devicetree/bindings/interrupt-controller/msi.txt
- #mbox-cells: Specifies the number of cells needed to encode a mailbox
channel. This should be 3.
The 1st cell is the mailbox channel number.
The 2nd cell contains MSI completion threshold. This is the
number of completion messages for which FlexRM will inject
one MSI interrupt to CPU.
The 3nd cell contains MSI timer value representing time for
which FlexRM will wait to accumulate N completion messages
where N is the value specified by 2nd cell above. If FlexRM
does not get required number of completion messages in time
specified by this cell then it will inject one MSI interrupt
to CPU provided atleast one completion message is available.
Optional properties:
--------------------
- dma-coherent: Present if DMA operations made by the FlexRM engine (such
as DMA descriptor access, access to buffers pointed by DMA
descriptors and read/write pointer updates to DDR) are
cache coherent with the CPU.
Example:
--------
crypto_mbox: mbox@67000000 {
compatible = "brcm,iproc-flexrm-mbox";
reg = <0x67000000 0x200000>;
msi-parent = <&gic_its 0x7f00>;
#mbox-cells = <3>;
};
crypto@672c0000 {
compatible = "brcm,spu2-v2-crypto";
reg = <0x672c0000 0x1000>;
mboxes = <&crypto_mbox 0 0x1 0xffff>,
<&crypto_mbox 1 0x1 0xffff>,
<&crypto_mbox 16 0x1 0xffff>,
<&crypto_mbox 17 0x1 0xffff>,
<&crypto_mbox 30 0x1 0xffff>,
<&crypto_mbox 31 0x1 0xffff>;
};
The PDC driver manages data transfer to and from various offload engines
on some Broadcom SoCs. An SoC may have multiple PDC hardware blocks. There is
one device tree entry per block.
one device tree entry per block. On some chips, the PDC functionality is
handled by the FA2 (Northstar Plus).
Required properties:
- compatible : Should be "brcm,iproc-pdc-mbox".
- compatible : Should be "brcm,iproc-pdc-mbox" or "brcm,iproc-fa2-mbox" for
FA2/Northstar Plus.
- reg: Should contain PDC registers location and length.
- interrupts: Should contain the IRQ line for the PDC.
- #mbox-cells: 1
......
......@@ -31,7 +31,9 @@ Optional properties:
- domain-idle-states : A phandle of an idle-state that shall be soaked into a
generic domain power state. The idle state definitions are
compatible with domain-idle-state specified in [1].
compatible with domain-idle-state specified in [1]. phandles
that are not compatible with domain-idle-state will be
ignored.
The domain-idle-state property reflects the idle state of this PM domain and
not the idle states of the devices or sub-domains in the PM domain. Devices
and sub-domains have their own idle-states independent of the parent
......
* Device-Tree bindings for Cortina Systems Gemini Poweroff
This is a special IP block in the Cortina Gemini SoC that only
deals with different ways to power the system down.
Required properties:
- compatible: should be "cortina,gemini-power-controller"
- reg: should contain the physical memory base and size
- interrupts: should contain the power management interrupt
Example:
power-controller@4b000000 {
compatible = "cortina,gemini-power-controller";
reg = <0x4b000000 0x100>;
interrupts = <26 IRQ_TYPE_EDGE_FALLING>;
};
......@@ -3,13 +3,20 @@ Generic SYSCON mapped register poweroff driver
This is a generic poweroff driver using syscon to map the poweroff register.
The poweroff is generally performed with a write to the poweroff register
defined by the register map pointed by syscon reference plus the offset
with the mask defined in the poweroff node.
with the value and mask defined in the poweroff node.
Required properties:
- compatible: should contain "syscon-poweroff"
- regmap: this is phandle to the register map node
- offset: offset in the register map for the poweroff register (in bytes)
- mask: the poweroff value written to the poweroff register (32 bit access)
- value: the poweroff value written to the poweroff register (32 bit access)
Optional properties:
- mask: update only the register bits defined by the mask (32 bit)
Legacy usage:
If a node doesn't contain a value property but contains a mask property, the
mask property is used as the value.
Default will be little endian mode, 32 bit access only.
......
......@@ -33,6 +33,7 @@ Required properties:
- compatible: should be one of:
- "rockchip,rk3188-io-voltage-domain" for rk3188
- "rockchip,rk3288-io-voltage-domain" for rk3288
- "rockchip,rk3328-io-voltage-domain" for rk3328
- "rockchip,rk3368-io-voltage-domain" for rk3368
- "rockchip,rk3368-pmu-io-voltage-domain" for rk3368 pmu-domains
- "rockchip,rk3399-io-voltage-domain" for rk3399
......
Motorola CPCAP PMIC battery charger binding
Required properties:
- compatible: Shall be "motorola,mapphone-cpcap-charger"
- interrupts: Interrupt specifier for each name in interrupt-names
- interrupt-names: Should contain the following entries:
"chrg_det", "rvrs_chrg", "chrg_se1b", "se0conn",
"rvrs_mode", "chrgcurr1", "vbusvld", "battdetb"
- io-channels: IIO ADC channel specifier for each name in io-channel-names
- io-channel-names: Should contain the following entries:
"battdetb", "battp", "vbus", "chg_isense", "batti"
Optional properties:
- mode-gpios: Optionally CPCAP charger can have a companion wireless
charge controller that is controlled with two GPIOs
that are active low.
Example:
cpcap_charger: charger {
compatible = "motorola,mapphone-cpcap-charger";
interrupts-extended = <
&cpcap 13 0 &cpcap 12 0 &cpcap 29 0 &cpcap 28 0
&cpcap 22 0 &cpcap 20 0 &cpcap 19 0 &cpcap 54 0
>;
interrupt-names =
"chrg_det", "rvrs_chrg", "chrg_se1b", "se0conn",
"rvrs_mode", "chrgcurr1", "vbusvld", "battdetb";
mode-gpios = <&gpio3 29 GPIO_ACTIVE_LOW
&gpio3 23 GPIO_ACTIVE_LOW>;
io-channels = <&cpcap_adc 0 &cpcap_adc 1
&cpcap_adc 2 &cpcap_adc 5
&cpcap_adc 6>;
io-channel-names = "battdetb", "battp",
"vbus", "chg_isense",
"batti";
};
LEGO MINDSTORMS EV3 Battery
~~~~~~~~~~~~~~~~~~~~~~~~~~~
LEGO MINDSTORMS EV3 has some built-in capability for monitoring the battery.
It uses 6 AA batteries or a special Li-ion rechargeable battery pack that is
detected by a key switch in the battery compartment.
Required properties:
- compatible: Must be "lego,ev3-battery"
- io-channels: phandles to analog inputs for reading voltage and current
- io-channel-names: Must be "voltage", "current"
- rechargeable-gpios: phandle to the rechargeable battery indication gpio
Example:
battery {
compatible = "lego,ev3-battery";
io-channels = <&adc 4>, <&adc 3>;
io-channel-names = "voltage", "current";
rechargeable-gpios = <&gpio 136 GPIO_ACTIVE_LOW>;
};
......@@ -6,8 +6,8 @@ temperature monitoring, and uses a slightly different conversion
formula for the charge counter.
Required properties:
- compatible: Should contain "ltc2941" or "ltc2943" which also indicates the
type of I2C chip attached.
- compatible: Should contain "lltc,ltc2941" or "lltc,ltc2943" which also
indicates the type of I2C chip attached.
- reg: The 7-bit I2C address.
- lltc,resistor-sense: The sense resistor value in milli-ohms. Can be a 32-bit
negative value when the battery has been connected to the wrong end of the
......@@ -20,7 +20,7 @@ Required properties:
Example from the Topic Miami Florida board:
fuelgauge: ltc2943@64 {
compatible = "ltc2943";
compatible = "lltc,ltc2943";
reg = <0x64>;
lltc,resistor-sense = <15>;
lltc,prescaler-exponent = <5>; /* 2^(2*5) = 1024 */
......
Cortina Systems Gemini timer
This timer is embedded in the Cortina Systems Gemini SoCs.
Required properties:
- compatible : Must be "cortina,gemini-timer"
- reg : Should contain registers location and length
- interrupts : Should contain the three timer interrupts with
flags for rising edge
- syscon : a phandle to the global Gemini system controller
Example:
timer@43000000 {
compatible = "cortina,gemini-timer";
reg = <0x43000000 0x1000>;
interrupts = <14 IRQ_TYPE_EDGE_RISING>, /* Timer 1 */
<15 IRQ_TYPE_EDGE_RISING>, /* Timer 2 */
<16 IRQ_TYPE_EDGE_RISING>; /* Timer 3 */
syscon = <&syscon>;
};
Faraday Technology timer
This timer is a generic IP block from Faraday Technology, embedded in the
Cortina Systems Gemini SoCs and other designs.
Required properties:
- compatible : Must be one of
"faraday,fttmr010"
"cortina,gemini-timer"
- reg : Should contain registers location and length
- interrupts : Should contain the three timer interrupts usually with
flags for falling edge
Optionally required properties:
- clocks : a clock to provide the tick rate for "faraday,fttmr010"
- clock-names : should be "EXTCLK" and "PCLK" for the external tick timer
and peripheral clock respectively, for "faraday,fttmr010"
- syscon : a phandle to the global Gemini system controller if the compatible
type is "cortina,gemini-timer"
Example:
timer@43000000 {
compatible = "faraday,fttmr010";
reg = <0x43000000 0x1000>;
interrupts = <14 IRQ_TYPE_EDGE_FALLING>, /* Timer 1 */
<15 IRQ_TYPE_EDGE_FALLING>, /* Timer 2 */
<16 IRQ_TYPE_EDGE_FALLING>; /* Timer 3 */
clocks = <&extclk>, <&pclk>;
clock-names = "EXTCLK", "PCLK";
};
Rockchip rk timer
Required properties:
- compatible: shall be one of:
"rockchip,rk3288-timer" - for rk3066, rk3036, rk3188, rk322x, rk3288, rk3368
"rockchip,rk3399-timer" - for rk3399
- compatible: should be:
"rockchip,rk3036-timer", "rockchip,rk3288-timer": for Rockchip RK3036
"rockchip,rk3066-timer", "rockchip,rk3288-timer": for Rockchip RK3066
"rockchip,rk3188-timer", "rockchip,rk3288-timer": for Rockchip RK3188
"rockchip,rk3228-timer", "rockchip,rk3288-timer": for Rockchip RK3228
"rockchip,rk3229-timer", "rockchip,rk3288-timer": for Rockchip RK3229
"rockchip,rk3288-timer": for Rockchip RK3288
"rockchip,rk3368-timer", "rockchip,rk3288-timer": for Rockchip RK3368
"rockchip,rk3399-timer": for Rockchip RK3399
- reg: base address of the timer register starting with TIMERS CONTROL register
- interrupts: should contain the interrupts for Timer0
- clocks : must contain an entry for each entry in clock-names
......
......@@ -265,6 +265,7 @@ sbs Smart Battery System
schindler Schindler
seagate Seagate Technology PLC
semtech Semtech Corporation
sensirion Sensirion AG
sgx SGX Sensortech
sharp Sharp Corporation
si-en Si-En Technology Ltd.
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | ok |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | ok |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | ok |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | ok |
| c6x: | ok |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | TODO |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | ok |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | ok |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | TODO |
| arm64: | TODO |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | ok |
| arm: | ok |
| arm64: | TODO |
| avr32: | ok |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | ok |
| arm: | ok |
| arm64: | TODO |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | TODO |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | TODO |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | TODO |
| arm64: | TODO |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | ok |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | ok |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | TODO |
| arm64: | TODO |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | TODO |
| arm64: | TODO |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | ok |
| arm: | ok |
| arm64: | ok |
| avr32: | ok |
| blackfin: | ok |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | TODO |
| arm64: | TODO |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | TODO |
| arm64: | TODO |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | TODO |
| arm64: | TODO |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | TODO |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | .. |
| arm: | .. |
| arm64: | .. |
| avr32: | .. |
| blackfin: | .. |
| c6x: | .. |
| cris: | .. |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | ok |
| arm: | ok |
| arm64: | ok |
| avr32: | ok |
| blackfin: | ok |
| c6x: | ok |
| cris: | ok |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | ok |
| arm: | TODO |
| arm64: | ok |
| avr32: | ok |
| blackfin: | TODO |
| c6x: | ok |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | TODO |
| arm64: | TODO |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | ok |
| arm: | ok |
| arm64: | ok |
| avr32: | .. |
| blackfin: | .. |
| c6x: | .. |
| cris: | .. |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | TODO |
| arm64: | TODO |
| avr32: | .. |
| blackfin: | TODO |
| c6x: | .. |
| cris: | .. |
......
......@@ -10,7 +10,6 @@
| arc: | TODO |
| arm: | TODO |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | ok |
| arm: | TODO |
| arm64: | TODO |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
......@@ -10,7 +10,6 @@
| arc: | .. |
| arm: | .. |
| arm64: | .. |
| avr32: | .. |
| blackfin: | .. |
| c6x: | .. |
| cris: | .. |
......
......@@ -10,7 +10,6 @@
| arc: | ok |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
......
Kernel driver aspeed-pwm-tacho
==============================
Supported chips:
ASPEED AST2400/2500
Authors:
<jaghu@google.com>
Description:
------------
This driver implements support for ASPEED AST2400/2500 PWM and Fan Tacho
controller. The PWM controller supports upto 8 PWM outputs. The Fan tacho
controller supports up to 16 tachometer inputs.
The driver provides the following sensor accesses in sysfs:
fanX_input ro provide current fan rotation value in RPM as reported
by the fan to the device.
pwmX rw get or set PWM fan control value. This is an integer
value between 0(off) and 255(full speed).
......@@ -2,7 +2,7 @@ Kernel driver tc654
===================
Supported chips:
* Microship TC654 and TC655
* Microchip TC654 and TC655
Prefix: 'tc654'
Datasheet: http://ww1.microchip.com/downloads/en/DeviceDoc/20001734C.pdf
......
pblk: Physical Block Device Target
==================================
pblk implements a fully associative, host-based FTL that exposes a traditional
block I/O interface. Its primary responsibilities are:
- Map logical addresses onto physical addresses (4KB granularity) in a
logical-to-physical (L2P) table.
- Maintain the integrity and consistency of the L2P table as well as its
recovery from normal tear down and power outage.
- Deal with controller- and media-specific constrains.
- Handle I/O errors.
- Implement garbage collection.
- Maintain consistency across the I/O stack during synchronization points.
For more information please refer to:
http://lightnvm.io
which maintains updated FAQs, manual pages, technical documentation, tools,
contacts, etc.
......@@ -12,7 +12,7 @@ The following terms are used in this document:
control and configuration, and a parallel or a serial bus for data.
- camera host - an interface, to which a camera is connected. Typically a
specialised interface, present on many SoCs, e.g. PXA27x and PXA3xx, SuperH,
AVR32, i.MX27, i.MX31.
i.MX27, i.MX31.
- camera host bus - a connection between a camera host and a camera. Can be
parallel or serial, consists of data and control lines, e.g. clock, vertical
and horizontal synchronization signals.
......
......@@ -478,15 +478,23 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
- set the power.last_busy field to the current time
void pm_runtime_use_autosuspend(struct device *dev);
- set the power.use_autosuspend flag, enabling autosuspend delays
- set the power.use_autosuspend flag, enabling autosuspend delays; call
pm_runtime_get_sync if the flag was previously cleared and
power.autosuspend_delay is negative
void pm_runtime_dont_use_autosuspend(struct device *dev);
- clear the power.use_autosuspend flag, disabling autosuspend delays
- clear the power.use_autosuspend flag, disabling autosuspend delays;
decrement the device's usage counter if the flag was previously set and
power.autosuspend_delay is negative; call pm_runtime_idle
void pm_runtime_set_autosuspend_delay(struct device *dev, int delay);
- set the power.autosuspend_delay value to 'delay' (expressed in
milliseconds); if 'delay' is negative then runtime suspends are
prevented
prevented; if power.use_autosuspend is set, pm_runtime_get_sync may be
called or the device's usage counter may be decremented and
pm_runtime_idle called depending on if power.autosuspend_delay is
changed to or from a negative value; if power.use_autosuspend is clear,
pm_runtime_idle is called
unsigned long pm_runtime_autosuspend_expiration(struct device *dev);
- calculate the time when the current autosuspend delay period will expire,
......@@ -836,9 +844,8 @@ of the non-autosuspend counterparts:
Instead of: pm_runtime_put_sync use: pm_runtime_put_sync_autosuspend.
Drivers may also continue to use the non-autosuspend helper functions; they
will behave normally, not taking the autosuspend delay into account.
Similarly, if the power.use_autosuspend field isn't set then the autosuspend
helper functions will behave just like the non-autosuspend counterparts.
will behave normally, which means sometimes taking the autosuspend delay into
account (see pm_runtime_idle).
Under some circumstances a driver or subsystem may want to prevent a device
from autosuspending immediately, even though the usage counter is zero and the
......
/*
* The following program is used to generate the constants for
* computing sched averages.
*
* ==============================================================
* C program (compile with -lm)
* ==============================================================
*/
#include <math.h>
#include <stdio.h>
#define HALFLIFE 32
#define SHIFT 32
double y;
void calc_runnable_avg_yN_inv(void)
{
int i;
unsigned int x;
printf("static const u32 runnable_avg_yN_inv[] = {");
for (i = 0; i < HALFLIFE; i++) {
x = ((1UL<<32)-1)*pow(y, i);
if (i % 6 == 0) printf("\n\t");
printf("0x%8x, ", x);
}
printf("\n};\n\n");
}
int sum = 1024;
void calc_runnable_avg_yN_sum(void)
{
int i;
printf("static const u32 runnable_avg_yN_sum[] = {\n\t 0,");
for (i = 1; i <= HALFLIFE; i++) {
if (i == 1)
sum *= y;
else
sum = sum*y + 1024*y;
if (i % 11 == 0)
printf("\n\t");
printf("%5d,", sum);
}
printf("\n};\n\n");
}
int n = -1;
/* first period */
long max = 1024;
void calc_converged_max(void)
{
long last = 0, y_inv = ((1UL<<32)-1)*y;
for (; ; n++) {
if (n > -1)
max = ((max*y_inv)>>SHIFT) + 1024;
/*
* This is the same as:
* max = max*y + 1024;
*/
if (last == max)
break;
last = max;
}
n--;
printf("#define LOAD_AVG_PERIOD %d\n", HALFLIFE);
printf("#define LOAD_AVG_MAX %ld\n", max);
// printf("#define LOAD_AVG_MAX_N %d\n\n", n);
}
void calc_accumulated_sum_32(void)
{
int i, x = sum;
printf("static const u32 __accumulated_sum_N32[] = {\n\t 0,");
for (i = 1; i <= n/HALFLIFE+1; i++) {
if (i > 1)
x = x/2 + sum;
if (i % 6 == 0)
printf("\n\t");
printf("%6d,", x);
}
printf("\n};\n\n");
}
void main(void)
{
printf("/* Generated by Documentation/scheduler/sched-pelt; do not modify. */\n\n");
y = pow(0.5, 1/(double)HALFLIFE);
calc_runnable_avg_yN_inv();
// calc_runnable_avg_yN_sum();
calc_converged_max();
// calc_accumulated_sum_32();
}
......@@ -8,8 +8,9 @@ Overview
--------
These events are similar to tracepoint based events. Instead of Tracepoint,
this is based on kprobes (kprobe and kretprobe). So it can probe wherever
kprobes can probe (this means, all functions body except for __kprobes
functions). Unlike the Tracepoint based event, this can be added and removed
kprobes can probe (this means, all functions except those with
__kprobes/nokprobe_inline annotation and those marked NOKPROBE_SYMBOL).
Unlike the Tracepoint based event, this can be added and removed
dynamically, on the fly.
To enable this feature, build your kernel with CONFIG_KPROBE_EVENTS=y.
......
===============
USB3 debug port
===============
:Author: Lu Baolu <baolu.lu@linux.intel.com>
:Date: March 2017
GENERAL
=======
This is a HOWTO for using the USB3 debug port on x86 systems.
Before using any kernel debugging functionality based on USB3
debug port, you need to::
1) check whether any USB3 debug port is available in
your system;
2) check which port is used for debugging purposes;
3) have a USB 3.0 super-speed A-to-A debugging cable.
INTRODUCTION
============
The xHCI debug capability (DbC) is an optional but standalone
functionality provided by the xHCI host controller. The xHCI
specification describes DbC in the section 7.6.
When DbC is initialized and enabled, it will present a debug
device through the debug port (normally the first USB3
super-speed port). The debug device is fully compliant with
the USB framework and provides the equivalent of a very high
performance full-duplex serial link between the debug target
(the system under debugging) and a debug host.
EARLY PRINTK
============
DbC has been designed to log early printk messages. One use for
this feature is kernel debugging. For example, when your machine
crashes very early before the regular console code is initialized.
Other uses include simpler, lockless logging instead of a full-
blown printk console driver and klogd.
On the debug target system, you need to customize a debugging
kernel with CONFIG_EARLY_PRINTK_USB_XDBC enabled. And, add below
kernel boot parameter::
"earlyprintk=xdbc"
If there are multiple xHCI controllers in your system, you can
append a host contoller index to this kernel parameter. This
index starts from 0.
Current design doesn't support DbC runtime suspend/resume. As
the result, you'd better disable runtime power management for
USB subsystem by adding below kernel boot parameter::
"usbcore.autosuspend=-1"
Before starting the debug target, you should connect the debug
port to a USB port (root port or port of any external hub) on
the debug host. The cable used to connect these two ports
should be a USB 3.0 super-speed A-to-A debugging cable.
During early boot of the debug target, DbC will be detected and
initialized. After initialization, the debug host should be able
to enumerate the debug device in debug target. The debug host
will then bind the debug device with the usb_debug driver module
and create the /dev/ttyUSB device.
If the debug device enumeration goes smoothly, you should be able
to see below kernel messages on the debug host::
# tail -f /var/log/kern.log
[ 1815.983374] usb 4-3: new SuperSpeed USB device number 4 using xhci_hcd
[ 1815.999595] usb 4-3: LPM exit latency is zeroed, disabling LPM.
[ 1815.999899] usb 4-3: New USB device found, idVendor=1d6b, idProduct=0004
[ 1815.999902] usb 4-3: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[ 1815.999903] usb 4-3: Product: Remote GDB
[ 1815.999904] usb 4-3: Manufacturer: Linux
[ 1815.999905] usb 4-3: SerialNumber: 0001
[ 1816.000240] usb_debug 4-3:1.0: xhci_dbc converter detected
[ 1816.000360] usb 4-3: xhci_dbc converter now attached to ttyUSB0
You can use any communication program, for example minicom, to
read and view the messages. Below simple bash scripts can help
you to check the sanity of the setup.
.. code-block:: sh
===== start of bash scripts =============
#!/bin/bash
while true ; do
while [ ! -d /sys/class/tty/ttyUSB0 ] ; do
:
done
cat /dev/ttyUSB0
done
===== end of bash scripts ===============
......@@ -4,6 +4,7 @@ Copyright (C) 2016 Intel Corporation
Fenghua Yu <fenghua.yu@intel.com>
Tony Luck <tony.luck@intel.com>
Vikas Shivappa <vikas.shivappa@intel.com>
This feature is enabled by the CONFIG_INTEL_RDT_A Kconfig and the
X86 /proc/cpuinfo flag bits "rdt", "cat_l3" and "cdp_l3".
......@@ -22,19 +23,34 @@ Info directory
The 'info' directory contains information about the enabled
resources. Each resource has its own subdirectory. The subdirectory
names reflect the resource names. Each subdirectory contains the
following files:
names reflect the resource names.
Cache resource(L3/L2) subdirectory contains the following files:
"num_closids": The number of CLOSIDs which are valid for this
resource. The kernel uses the smallest number of
CLOSIDs of all enabled resources as limit.
"num_closids": The number of CLOSIDs which are valid for this
resource. The kernel uses the smallest number of
CLOSIDs of all enabled resources as limit.
"cbm_mask": The bitmask which is valid for this resource. This
mask is equivalent to 100%.
"cbm_mask": The bitmask which is valid for this resource.
This mask is equivalent to 100%.
"min_cbm_bits": The minimum number of consecutive bits which must be
set when writing a mask.
"min_cbm_bits": The minimum number of consecutive bits which
must be set when writing a mask.
Memory bandwitdh(MB) subdirectory contains the following files:
"min_bandwidth": The minimum memory bandwidth percentage which
user can request.
"bandwidth_gran": The granularity in which the memory bandwidth
percentage is allocated. The allocated
b/w percentage is rounded off to the next
control step available on the hardware. The
available bandwidth control steps are:
min_bandwidth + N * bandwidth_gran.
"delay_linear": Indicates if the delay scale is linear or
non-linear. This field is purely informational
only.
Resource groups
---------------
......@@ -59,6 +75,9 @@ There are three files associated with each group:
given to the default (root) group. You cannot remove CPUs
from the default group.
"cpus_list": One or more CPU ranges of logical CPUs assigned to this
group. Same rules apply like for the "cpus" file.
"schemata": A list of all the resources available to this group.
Each resource has its own line and format - see below for
details.
......@@ -107,6 +126,22 @@ and 0xA are not. On a system with a 20-bit mask each bit represents 5%
of the capacity of the cache. You could partition the cache into four
equal parts with masks: 0x1f, 0x3e0, 0x7c00, 0xf8000.
Memory bandwidth(b/w) percentage
--------------------------------
For Memory b/w resource, user controls the resource by indicating the
percentage of total memory b/w.
The minimum bandwidth percentage value for each cpu model is predefined
and can be looked up through "info/MB/min_bandwidth". The bandwidth
granularity that is allocated is also dependent on the cpu model and can
be looked up at "info/MB/bandwidth_gran". The available bandwidth
control steps are: min_bw + N * bw_gran. Intermediate values are rounded
to the next control step available on the hardware.
The bandwidth throttling is a core specific mechanism on some of Intel
SKUs. Using a high bandwidth and a low bandwidth setting on two threads
sharing a core will result in both threads being throttled to use the
low bandwidth.
L3 details (code and data prioritization disabled)
--------------------------------------------------
......@@ -129,16 +164,38 @@ schemata format is always:
L2:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
Memory b/w Allocation details
-----------------------------
Memory b/w domain is L3 cache.
MB:<cache_id0>=bandwidth0;<cache_id1>=bandwidth1;...
Reading/writing the schemata file
---------------------------------
Reading the schemata file will show the state of all resources
on all domains. When writing you only need to specify those values
which you wish to change. E.g.
# cat schemata
L3DATA:0=fffff;1=fffff;2=fffff;3=fffff
L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
# echo "L3DATA:2=3c0;" > schemata
# cat schemata
L3DATA:0=fffff;1=fffff;2=3c0;3=fffff
L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
Example 1
---------
On a two socket machine (one L3 cache per socket) with just four bits
for cache bit masks
for cache bit masks, minimum b/w of 10% with a memory bandwidth
granularity of 10%
# mount -t resctrl resctrl /sys/fs/resctrl
# cd /sys/fs/resctrl
# mkdir p0 p1
# echo "L3:0=3;1=c" > /sys/fs/resctrl/p0/schemata
# echo "L3:0=3;1=3" > /sys/fs/resctrl/p1/schemata
# echo "L3:0=3;1=c\nMB:0=50;1=50" > /sys/fs/resctrl/p0/schemata
# echo "L3:0=3;1=3\nMB:0=50;1=50" > /sys/fs/resctrl/p1/schemata
The default resource group is unmodified, so we have access to all parts
of all caches (its schemata file reads "L3:0=f;1=f").
......@@ -147,6 +204,14 @@ Tasks that are under the control of group "p0" may only allocate from the
"lower" 50% on cache ID 0, and the "upper" 50% of cache ID 1.
Tasks in group "p1" use the "lower" 50% of cache on both sockets.
Similarly, tasks that are under the control of group "p0" may use a
maximum memory b/w of 50% on socket0 and 50% on socket 1.
Tasks in group "p1" may also use 50% memory b/w on both sockets.
Note that unlike cache masks, memory b/w cannot specify whether these
allocations can overlap or not. The allocations specifies the maximum
b/w that the group may be able to use and the system admin can configure
the b/w accordingly.
Example 2
---------
Again two sockets, but this time with a more realistic 20-bit mask.
......@@ -160,9 +225,10 @@ of L3 cache on socket 0.
# cd /sys/fs/resctrl
First we reset the schemata for the default group so that the "upper"
50% of the L3 cache on socket 0 cannot be used by ordinary tasks:
50% of the L3 cache on socket 0 and 50% of memory b/w cannot be used by
ordinary tasks:
# echo "L3:0=3ff;1=fffff" > schemata
# echo "L3:0=3ff;1=fffff\nMB:0=50;1=100" > schemata
Next we make a resource group for our first real time task and give
it access to the "top" 25% of the cache on socket 0.
......@@ -185,6 +251,20 @@ Ditto for the second real time task (with the remaining 25% of cache):
# echo 5678 > p1/tasks
# taskset -cp 2 5678
For the same 2 socket system with memory b/w resource and CAT L3 the
schemata would look like(Assume min_bandwidth 10 and bandwidth_gran is
10):
For our first real time task this would request 20% memory b/w on socket
0.
# echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata
For our second real time task this would request an other 20% memory b/w
on socket 0.
# echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata
Example 3
---------
......@@ -198,18 +278,22 @@ the tasks.
# cd /sys/fs/resctrl
First we reset the schemata for the default group so that the "upper"
50% of the L3 cache on socket 0 cannot be used by ordinary tasks:
50% of the L3 cache on socket 0, and 50% of memory bandwidth on socket 0
cannot be used by ordinary tasks:
# echo "L3:0=3ff" > schemata
# echo "L3:0=3ff\nMB:0=50" > schemata
Next we make a resource group for our real time cores and give
it access to the "top" 50% of the cache on socket 0.
Next we make a resource group for our real time cores and give it access
to the "top" 50% of the cache on socket 0 and 50% of memory bandwidth on
socket 0.
# mkdir p0
# echo "L3:0=ffc00;" > p0/schemata
# echo "L3:0=ffc00\nMB:0=50" > p0/schemata
Finally we move core 4-7 over to the new group and make sure that the
kernel and the tasks running there get 50% of the cache.
kernel and the tasks running there get 50% of the cache. They should
also get 50% of memory bandwidth assuming that the cores 4-7 are SMT
siblings and only the real time threads are scheduled on the cores 4-7.
# echo C0 > p0/cpus
......
......@@ -4,7 +4,7 @@
Virtual memory map with 4 level page tables:
0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm
hole caused by [48:63] sign extension
hole caused by [47:63] sign extension
ffff800000000000 - ffff87ffffffffff (=43 bits) guard hole, reserved for hypervisor
ffff880000000000 - ffffc7ffffffffff (=64 TB) direct mapping of all phys. memory
ffffc80000000000 - ffffc8ffffffffff (=40 bits) hole
......@@ -19,16 +19,43 @@ ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks
ffffffef00000000 - fffffffeffffffff (=64 GB) EFI region mapping space
... unused hole ...
ffffffff80000000 - ffffffff9fffffff (=512 MB) kernel text mapping, from phys 0
ffffffffa0000000 - ffffffffff5fffff (=1526 MB) module mapping space (variable)
ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls
ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole
Virtual memory map with 5 level page tables:
0000000000000000 - 00ffffffffffffff (=56 bits) user space, different per mm
hole caused by [56:63] sign extension
ff00000000000000 - ff0fffffffffffff (=52 bits) guard hole, reserved for hypervisor
ff10000000000000 - ff8fffffffffffff (=55 bits) direct mapping of all phys. memory
ff90000000000000 - ff91ffffffffffff (=49 bits) hole
ff92000000000000 - ffd1ffffffffffff (=54 bits) vmalloc/ioremap space
ffd2000000000000 - ffd3ffffffffffff (=49 bits) hole
ffd4000000000000 - ffd5ffffffffffff (=49 bits) virtual memory map (512TB)
... unused hole ...
ffd8000000000000 - fff7ffffffffffff (=53 bits) kasan shadow memory (8PB)
... unused hole ...
ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks
... unused hole ...
ffffffef00000000 - fffffffeffffffff (=64 GB) EFI region mapping space
... unused hole ...
ffffffff80000000 - ffffffff9fffffff (=512 MB) kernel text mapping, from phys 0
ffffffffa0000000 - ffffffffff5fffff (=1526 MB) module mapping space
ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls
ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole
Architecture defines a 64-bit virtual address. Implementations can support
less. Currently supported are 48- and 57-bit virtual addresses. Bits 63
through to the most-significant implemented bit are set to either all ones
or all zero. This causes hole between user space and kernel addresses.
The direct mapping covers all memory in the system up to the highest
memory address (this means in some cases it can also include PCI memory
holes).
vmalloc space is lazily synchronized into the different PML4 pages of
the processes using the page fault handler, with init_level4_pgt as
vmalloc space is lazily synchronized into the different PML4/PML5 pages of
the processes using the page fault handler, with init_top_pgt as
reference.
Current X86-64 implementations support up to 46 bits of address space (64 TB),
......@@ -39,6 +66,9 @@ memory window (this size is arbitrary, it can be raised later if needed).
The mappings are not part of any other kernel PGD and are only available
during EFI runtime calls.
The module mapping space size changes based on the CONFIG requirements for the
following fixmap section.
Note that if CONFIG_RANDOMIZE_MEMORY is enabled, the direct mapping of all
physical memory, vmalloc/ioremap space and virtual memory map are randomized.
Their order is preserved but their base will be offset early at boot time.
......
......@@ -27,7 +27,7 @@ Offset Proto Name Meaning
1C0/020 ALL efi_info EFI 32 information (struct efi_info)
1E0/004 ALL alk_mem_k Alternative mem check, in KB
1E4/004 ALL scratch Scratch field for the kernel setup code
1E8/001 ALL e820_entries Number of entries in e820_map (below)
1E8/001 ALL e820_entries Number of entries in e820_table (below)
1E9/001 ALL eddbuf_entries Number of entries in eddbuf (below)
1EA/001 ALL edd_mbr_sig_buf_entries Number of entries in edd_mbr_sig_buffer
(below)
......@@ -35,6 +35,6 @@ Offset Proto Name Meaning
1EC/001 ALL secure_boot Secure boot is enabled in the firmware
1EF/001 ALL sentinel Used to detect broken bootloaders
290/040 ALL edd_mbr_sig_buffer EDD MBR signatures
2D0/A00 ALL e820_map E820 memory map table
(array of struct e820entry)
2D0/A00 ALL e820_table E820 memory map table
(array of struct e820_entry)
D00/1EC ALL eddbuf EDD data (array of struct edd_info)
......@@ -2327,21 +2327,6 @@ S: Maintained
F: drivers/auxdisplay/
F: include/linux/cfag12864b.h
AVR32 ARCHITECTURE
M: Haavard Skinnemoen <hskinnemoen@gmail.com>
M: Hans-Christian Egtvedt <egtvedt@samfundet.no>
W: http://www.atmel.com/products/AVR32/
W: http://mirror.egtvedt.no/avr32linux.org/
W: http://avrfreaks.net/
S: Maintained
F: arch/avr32/
AVR32/AT32AP MACHINE SUPPORT
M: Haavard Skinnemoen <hskinnemoen@gmail.com>
M: Hans-Christian Egtvedt <egtvedt@samfundet.no>
S: Maintained
F: arch/avr32/mach-at32ap/
AX.25 NETWORK LAYER
M: Ralf Baechle <ralf@linux-mips.org>
L: linux-hams@vger.kernel.org
......@@ -2544,6 +2529,14 @@ F: block/
F: kernel/trace/blktrace.c
F: lib/sbitmap.c
BFQ I/O SCHEDULER
M: Paolo Valente <paolo.valente@linaro.org>
M: Jens Axboe <axboe@kernel.dk>
L: linux-block@vger.kernel.org
S: Maintained
F: block/bfq-*
F: Documentation/block/bfq-iosched.txt
BLOCK2MTD DRIVER
M: Joern Engel <joern@lazybastard.org>
L: linux-mtd@lists.infradead.org
......@@ -3463,6 +3456,7 @@ T: git git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm.git
T: git git://git.linaro.org/people/vireshk/linux.git (For ARM Updates)
B: https://bugzilla.kernel.org
F: Documentation/cpu-freq/
F: Documentation/devicetree/bindings/cpufreq/
F: drivers/cpufreq/
F: include/linux/cpufreq.h
F: tools/testing/selftests/cpufreq/
......@@ -4707,6 +4701,7 @@ L: linux-edac@vger.kernel.org
L: linux-mips@linux-mips.org
S: Supported
F: drivers/edac/octeon_edac*
F: drivers/edac/thunderx_edac*
EDAC-E752X
M: Mark Gross <mark.gross@intel.com>
......@@ -5420,6 +5415,23 @@ F: fs/fuse/
F: include/uapi/linux/fuse.h
F: Documentation/filesystems/fuse.txt
FUTEX SUBSYSTEM
M: Thomas Gleixner <tglx@linutronix.de>
M: Ingo Molnar <mingo@redhat.com>
R: Peter Zijlstra <peterz@infradead.org>
R: Darren Hart <dvhart@infradead.org>
L: linux-kernel@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git locking/core
S: Maintained
F: kernel/futex.c
F: kernel/futex_compat.c
F: include/asm-generic/futex.h
F: include/linux/futex.h
F: include/uapi/linux/futex.h
F: tools/testing/selftests/futex/
F: tools/perf/bench/futex*
F: Documentation/*futex*
FUTURE DOMAIN TMC-16x0 SCSI DRIVER (16-bit)
M: Rik Faith <faith@cs.unc.edu>
L: linux-scsi@vger.kernel.org
......@@ -11124,6 +11136,7 @@ F: drivers/power/supply/bq27xxx_battery_i2c.c
TIMEKEEPING, CLOCKSOURCE CORE, NTP, ALARMTIMER
M: John Stultz <john.stultz@linaro.org>
M: Thomas Gleixner <tglx@linutronix.de>
R: Stephen Boyd <sboyd@codeaurora.org>
L: linux-kernel@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git timers/core
S: Supported
......
......@@ -700,6 +700,13 @@ config ARCH_MMAP_RND_COMPAT_BITS
This value can be changed after boot using the
/proc/sys/vm/mmap_rnd_compat_bits tunable
config HAVE_ARCH_COMPAT_MMAP_BASES
bool
help
This allows 64bit applications to invoke 32-bit mmap() syscall
and vice-versa 32-bit applications to call 64-bit mmap().
Required for applications doing different bitness syscalls.
config HAVE_COPY_THREAD_TLS
bool
help
......
#ifndef _ASM_EXTABLE_H
#define _ASM_EXTABLE_H
/*
* About the exception table:
*
* - insn is a 32-bit pc-relative offset from the faulting insn.
* - nextinsn is a 16-bit offset off of the faulting instruction
* (not off of the *next* instruction as branches are).
* - errreg is the register in which to place -EFAULT.
* - valreg is the final target register for the load sequence
* and will be zeroed.
*
* Either errreg or valreg may be $31, in which case nothing happens.
*
* The exception fixup information "just so happens" to be arranged
* as in a MEM format instruction. This lets us emit our three
* values like so:
*
* lda valreg, nextinsn(errreg)
*
*/
struct exception_table_entry
{
signed int insn;
union exception_fixup {
unsigned unit;
struct {
signed int nextinsn : 16;
unsigned int errreg : 5;
unsigned int valreg : 5;
} bits;
} fixup;
};
/* Returns the new pc */
#define fixup_exception(map_reg, _fixup, pc) \
({ \
if ((_fixup)->fixup.bits.valreg != 31) \
map_reg((_fixup)->fixup.bits.valreg) = 0; \
if ((_fixup)->fixup.bits.errreg != 31) \
map_reg((_fixup)->fixup.bits.errreg) = -EFAULT; \
(pc) + (_fixup)->fixup.bits.nextinsn; \
})
#define ARCH_HAS_RELATIVE_EXTABLE
#define swap_ex_entry_fixup(a, b, tmp, delta) \
do { \
(a)->fixup.unit = (b)->fixup.unit; \
(b)->fixup.unit = (tmp).fixup.unit; \
} while (0)
#endif
......@@ -19,12 +19,8 @@
"3: .subsection 2\n" \
"4: br 1b\n" \
" .previous\n" \
" .section __ex_table,\"a\"\n" \
" .long 1b-.\n" \
" lda $31,3b-1b(%1)\n" \
" .long 2b-.\n" \
" lda $31,3b-2b(%1)\n" \
" .previous\n" \
EXC(1b,3b,%1,$31) \
EXC(2b,3b,%1,$31) \
: "=&r" (oldval), "=&r"(ret) \
: "r" (uaddr), "r"(oparg) \
: "memory")
......@@ -101,12 +97,8 @@ futex_atomic_cmpxchg_inatomic(u32 *uval, u32 __user *uaddr,
"3: .subsection 2\n"
"4: br 1b\n"
" .previous\n"
" .section __ex_table,\"a\"\n"
" .long 1b-.\n"
" lda $31,3b-1b(%0)\n"
" .long 2b-.\n"
" lda $31,3b-2b(%0)\n"
" .previous\n"
EXC(1b,3b,%0,$31)
EXC(2b,3b,%0,$31)
: "+r"(ret), "=&r"(prev), "=&r"(cmp)
: "r"(uaddr), "r"((long)(int)oldval), "r"(newval)
: "memory");
......
#ifndef __ALPHA_UACCESS_H
#define __ALPHA_UACCESS_H
#include <linux/errno.h>
#include <linux/sched.h>
/*
* The fs value determines whether argument validity checking should be
* performed or not. If get_fs() == USER_DS, checking is performed, with
......@@ -20,9 +16,6 @@
#define KERNEL_DS ((mm_segment_t) { 0UL })
#define USER_DS ((mm_segment_t) { -0x40000000000UL })
#define VERIFY_READ 0
#define VERIFY_WRITE 1
#define get_fs() (current_thread_info()->addr_limit)
#define get_ds() (KERNEL_DS)
#define set_fs(x) (current_thread_info()->addr_limit = (x))
......@@ -39,13 +32,13 @@
* - AND "addr+size" doesn't have any high-bits set
* - OR we are in kernel mode.
*/
#define __access_ok(addr, size, segment) \
(((segment).seg & (addr | size | (addr+size))) == 0)
#define __access_ok(addr, size) \
((get_fs().seg & (addr | size | (addr+size))) == 0)
#define access_ok(type, addr, size) \
({ \
__chk_user_ptr(addr); \
__access_ok(((unsigned long)(addr)), (size), get_fs()); \
#define access_ok(type, addr, size) \
({ \
__chk_user_ptr(addr); \
__access_ok(((unsigned long)(addr)), (size)); \
})
/*
......@@ -61,9 +54,9 @@
* (b) require any knowledge of processes at this stage
*/
#define put_user(x, ptr) \
__put_user_check((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)), get_fs())
__put_user_check((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)))
#define get_user(x, ptr) \
__get_user_check((x), (ptr), sizeof(*(ptr)), get_fs())
__get_user_check((x), (ptr), sizeof(*(ptr)))
/*
* The "__xxx" versions do not do address space checking, useful when
......@@ -81,6 +74,11 @@
* more extensive comments with fixup_inline_exception below for
* more information.
*/
#define EXC(label,cont,res,err) \
".section __ex_table,\"a\"\n" \
" .long "#label"-.\n" \
" lda "#res","#cont"-"#label"("#err")\n" \
".previous\n"
extern void __get_user_unknown(void);
......@@ -100,23 +98,23 @@ extern void __get_user_unknown(void);
__gu_err; \
})
#define __get_user_check(x, ptr, size, segment) \
({ \
long __gu_err = -EFAULT; \
unsigned long __gu_val = 0; \
const __typeof__(*(ptr)) __user *__gu_addr = (ptr); \
if (__access_ok((unsigned long)__gu_addr, size, segment)) { \
__gu_err = 0; \
switch (size) { \
case 1: __get_user_8(__gu_addr); break; \
case 2: __get_user_16(__gu_addr); break; \
case 4: __get_user_32(__gu_addr); break; \
case 8: __get_user_64(__gu_addr); break; \
default: __get_user_unknown(); break; \
} \
} \
(x) = (__force __typeof__(*(ptr))) __gu_val; \
__gu_err; \
#define __get_user_check(x, ptr, size) \
({ \
long __gu_err = -EFAULT; \
unsigned long __gu_val = 0; \
const __typeof__(*(ptr)) __user *__gu_addr = (ptr); \
if (__access_ok((unsigned long)__gu_addr, size)) { \
__gu_err = 0; \
switch (size) { \
case 1: __get_user_8(__gu_addr); break; \
case 2: __get_user_16(__gu_addr); break; \
case 4: __get_user_32(__gu_addr); break; \
case 8: __get_user_64(__gu_addr); break; \
default: __get_user_unknown(); break; \
} \
} \
(x) = (__force __typeof__(*(ptr))) __gu_val; \
__gu_err; \
})
struct __large_struct { unsigned long buf[100]; };
......@@ -125,20 +123,14 @@ struct __large_struct { unsigned long buf[100]; };
#define __get_user_64(addr) \
__asm__("1: ldq %0,%2\n" \
"2:\n" \
".section __ex_table,\"a\"\n" \
" .long 1b - .\n" \
" lda %0, 2b-1b(%1)\n" \
".previous" \
EXC(1b,2b,%0,%1) \
: "=r"(__gu_val), "=r"(__gu_err) \
: "m"(__m(addr)), "1"(__gu_err))
#define __get_user_32(addr) \
__asm__("1: ldl %0,%2\n" \
"2:\n" \
".section __ex_table,\"a\"\n" \
" .long 1b - .\n" \
" lda %0, 2b-1b(%1)\n" \
".previous" \
EXC(1b,2b,%0,%1) \
: "=r"(__gu_val), "=r"(__gu_err) \
: "m"(__m(addr)), "1"(__gu_err))
......@@ -148,20 +140,14 @@ struct __large_struct { unsigned long buf[100]; };
#define __get_user_16(addr) \
__asm__("1: ldwu %0,%2\n" \
"2:\n" \
".section __ex_table,\"a\"\n" \
" .long 1b - .\n" \
" lda %0, 2b-1b(%1)\n" \
".previous" \
EXC(1b,2b,%0,%1) \
: "=r"(__gu_val), "=r"(__gu_err) \
: "m"(__m(addr)), "1"(__gu_err))
#define __get_user_8(addr) \
__asm__("1: ldbu %0,%2\n" \
"2:\n" \
".section __ex_table,\"a\"\n" \
" .long 1b - .\n" \
" lda %0, 2b-1b(%1)\n" \
".previous" \
EXC(1b,2b,%0,%1) \
: "=r"(__gu_val), "=r"(__gu_err) \
: "m"(__m(addr)), "1"(__gu_err))
#else
......@@ -177,12 +163,8 @@ struct __large_struct { unsigned long buf[100]; };
" extwh %1,%3,%1\n" \
" or %0,%1,%0\n" \
"3:\n" \
".section __ex_table,\"a\"\n" \
" .long 1b - .\n" \
" lda %0, 3b-1b(%2)\n" \
" .long 2b - .\n" \
" lda %0, 3b-2b(%2)\n" \
".previous" \
EXC(1b,3b,%0,%2) \
EXC(2b,3b,%0,%2) \
: "=&r"(__gu_val), "=&r"(__gu_tmp), "=r"(__gu_err) \
: "r"(addr), "2"(__gu_err)); \
}
......@@ -191,10 +173,7 @@ struct __large_struct { unsigned long buf[100]; };
__asm__("1: ldq_u %0,0(%2)\n" \
" extbl %0,%2,%0\n" \
"2:\n" \
".section __ex_table,\"a\"\n" \
" .long 1b - .\n" \
" lda %0, 2b-1b(%1)\n" \
".previous" \
EXC(1b,2b,%0,%1) \
: "=&r"(__gu_val), "=r"(__gu_err) \
: "r"(addr), "1"(__gu_err))
#endif
......@@ -215,21 +194,21 @@ extern void __put_user_unknown(void);
__pu_err; \
})
#define __put_user_check(x, ptr, size, segment) \
({ \
long __pu_err = -EFAULT; \
__typeof__(*(ptr)) __user *__pu_addr = (ptr); \
if (__access_ok((unsigned long)__pu_addr, size, segment)) { \
__pu_err = 0; \
switch (size) { \
case 1: __put_user_8(x, __pu_addr); break; \
case 2: __put_user_16(x, __pu_addr); break; \
case 4: __put_user_32(x, __pu_addr); break; \
case 8: __put_user_64(x, __pu_addr); break; \
default: __put_user_unknown(); break; \
} \
} \
__pu_err; \
#define __put_user_check(x, ptr, size) \
({ \
long __pu_err = -EFAULT; \
__typeof__(*(ptr)) __user *__pu_addr = (ptr); \
if (__access_ok((unsigned long)__pu_addr, size)) { \
__pu_err = 0; \
switch (size) { \
case 1: __put_user_8(x, __pu_addr); break; \
case 2: __put_user_16(x, __pu_addr); break; \
case 4: __put_user_32(x, __pu_addr); break; \
case 8: __put_user_64(x, __pu_addr); break; \
default: __put_user_unknown(); break; \
} \
} \
__pu_err; \
})
/*
......@@ -240,20 +219,14 @@ extern void __put_user_unknown(void);
#define __put_user_64(x, addr) \
__asm__ __volatile__("1: stq %r2,%1\n" \
"2:\n" \
".section __ex_table,\"a\"\n" \
" .long 1b - .\n" \
" lda $31,2b-1b(%0)\n" \
".previous" \
EXC(1b,2b,$31,%0) \
: "=r"(__pu_err) \
: "m" (__m(addr)), "rJ" (x), "0"(__pu_err))
#define __put_user_32(x, addr) \
__asm__ __volatile__("1: stl %r2,%1\n" \
"2:\n" \
".section __ex_table,\"a\"\n" \
" .long 1b - .\n" \
" lda $31,2b-1b(%0)\n" \
".previous" \
EXC(1b,2b,$31,%0) \
: "=r"(__pu_err) \
: "m"(__m(addr)), "rJ"(x), "0"(__pu_err))
......@@ -263,20 +236,14 @@ __asm__ __volatile__("1: stl %r2,%1\n" \
#define __put_user_16(x, addr) \
__asm__ __volatile__("1: stw %r2,%1\n" \
"2:\n" \
".section __ex_table,\"a\"\n" \
" .long 1b - .\n" \
" lda $31,2b-1b(%0)\n" \
".previous" \
EXC(1b,2b,$31,%0) \
: "=r"(__pu_err) \
: "m"(__m(addr)), "rJ"(x), "0"(__pu_err))
#define __put_user_8(x, addr) \
__asm__ __volatile__("1: stb %r2,%1\n" \
"2:\n" \
".section __ex_table,\"a\"\n" \
" .long 1b - .\n" \
" lda $31,2b-1b(%0)\n" \
".previous" \
EXC(1b,2b,$31,%0) \
: "=r"(__pu_err) \
: "m"(__m(addr)), "rJ"(x), "0"(__pu_err))
#else
......@@ -298,16 +265,10 @@ __asm__ __volatile__("1: stb %r2,%1\n" \
"3: stq_u %2,1(%5)\n" \
"4: stq_u %1,0(%5)\n" \
"5:\n" \
".section __ex_table,\"a\"\n" \
" .long 1b - .\n" \
" lda $31, 5b-1b(%0)\n" \
" .long 2b - .\n" \
" lda $31, 5b-2b(%0)\n" \
" .long 3b - .\n" \
" lda $31, 5b-3b(%0)\n" \
" .long 4b - .\n" \
" lda $31, 5b-4b(%0)\n" \
".previous" \
EXC(1b,5b,$31,%0) \
EXC(2b,5b,$31,%0) \
EXC(3b,5b,$31,%0) \
EXC(4b,5b,$31,%0) \
: "=r"(__pu_err), "=&r"(__pu_tmp1), \
"=&r"(__pu_tmp2), "=&r"(__pu_tmp3), \
"=&r"(__pu_tmp4) \
......@@ -324,12 +285,8 @@ __asm__ __volatile__("1: stb %r2,%1\n" \
" or %1,%2,%1\n" \
"2: stq_u %1,0(%4)\n" \
"3:\n" \
".section __ex_table,\"a\"\n" \
" .long 1b - .\n" \
" lda $31, 3b-1b(%0)\n" \
" .long 2b - .\n" \
" lda $31, 3b-2b(%0)\n" \
".previous" \
EXC(1b,3b,$31,%0) \
EXC(2b,3b,$31,%0) \
: "=r"(__pu_err), \
"=&r"(__pu_tmp1), "=&r"(__pu_tmp2) \
: "r"((unsigned long)(x)), "r"(addr), "0"(__pu_err)); \
......@@ -341,153 +298,37 @@ __asm__ __volatile__("1: stb %r2,%1\n" \
* Complex access routines
*/
/* This little bit of silliness is to get the GP loaded for a function
that ordinarily wouldn't. Otherwise we could have it done by the macro
directly, which can be optimized the linker. */
#ifdef MODULE
#define __module_address(sym) "r"(sym),
#define __module_call(ra, arg, sym) "jsr $" #ra ",(%" #arg ")," #sym
#else
#define __module_address(sym)
#define __module_call(ra, arg, sym) "bsr $" #ra "," #sym " !samegp"
#endif
extern void __copy_user(void);
extern inline long
__copy_tofrom_user_nocheck(void *to, const void *from, long len)
{
register void * __cu_to __asm__("$6") = to;
register const void * __cu_from __asm__("$7") = from;
register long __cu_len __asm__("$0") = len;
__asm__ __volatile__(
__module_call(28, 3, __copy_user)
: "=r" (__cu_len), "=r" (__cu_from), "=r" (__cu_to)
: __module_address(__copy_user)
"0" (__cu_len), "1" (__cu_from), "2" (__cu_to)
: "$1", "$2", "$3", "$4", "$5", "$28", "memory");
return __cu_len;
}
#define __copy_to_user(to, from, n) \
({ \
__chk_user_ptr(to); \
__copy_tofrom_user_nocheck((__force void *)(to), (from), (n)); \
})
#define __copy_from_user(to, from, n) \
({ \
__chk_user_ptr(from); \
__copy_tofrom_user_nocheck((to), (__force void *)(from), (n)); \
})
#define __copy_to_user_inatomic __copy_to_user
#define __copy_from_user_inatomic __copy_from_user
extern long __copy_user(void *to, const void *from, long len);
extern inline long
copy_to_user(void __user *to, const void *from, long n)
static inline unsigned long
raw_copy_from_user(void *to, const void __user *from, unsigned long len)
{
if (likely(__access_ok((unsigned long)to, n, get_fs())))
n = __copy_tofrom_user_nocheck((__force void *)to, from, n);
return n;
return __copy_user(to, (__force const void *)from, len);
}
extern inline long
copy_from_user(void *to, const void __user *from, long n)
static inline unsigned long
raw_copy_to_user(void __user *to, const void *from, unsigned long len)
{
long res = n;
if (likely(__access_ok((unsigned long)from, n, get_fs())))
res = __copy_from_user_inatomic(to, from, n);
if (unlikely(res))
memset(to + (n - res), 0, res);
return res;
return __copy_user((__force void *)to, from, len);
}
extern void __do_clear_user(void);
extern inline long
__clear_user(void __user *to, long len)
{
register void __user * __cl_to __asm__("$6") = to;
register long __cl_len __asm__("$0") = len;
__asm__ __volatile__(
__module_call(28, 2, __do_clear_user)
: "=r"(__cl_len), "=r"(__cl_to)
: __module_address(__do_clear_user)
"0"(__cl_len), "1"(__cl_to)
: "$1", "$2", "$3", "$4", "$5", "$28", "memory");
return __cl_len;
}
extern long __clear_user(void __user *to, long len);
extern inline long
clear_user(void __user *to, long len)
{
if (__access_ok((unsigned long)to, len, get_fs()))
if (__access_ok((unsigned long)to, len))
len = __clear_user(to, len);
return len;
}
#undef __module_address
#undef __module_call
#define user_addr_max() \
(segment_eq(get_fs(), USER_DS) ? TASK_SIZE : ~0UL)
(uaccess_kernel() ? ~0UL : TASK_SIZE)
extern long strncpy_from_user(char *dest, const char __user *src, long count);
extern __must_check long strlen_user(const char __user *str);
extern __must_check long strnlen_user(const char __user *str, long n);
/*
* About the exception table:
*
* - insn is a 32-bit pc-relative offset from the faulting insn.
* - nextinsn is a 16-bit offset off of the faulting instruction
* (not off of the *next* instruction as branches are).
* - errreg is the register in which to place -EFAULT.
* - valreg is the final target register for the load sequence
* and will be zeroed.
*
* Either errreg or valreg may be $31, in which case nothing happens.
*
* The exception fixup information "just so happens" to be arranged
* as in a MEM format instruction. This lets us emit our three
* values like so:
*
* lda valreg, nextinsn(errreg)
*
*/
struct exception_table_entry
{
signed int insn;
union exception_fixup {
unsigned unit;
struct {
signed int nextinsn : 16;
unsigned int errreg : 5;
unsigned int valreg : 5;
} bits;
} fixup;
};
/* Returns the new pc */
#define fixup_exception(map_reg, _fixup, pc) \
({ \
if ((_fixup)->fixup.bits.valreg != 31) \
map_reg((_fixup)->fixup.bits.valreg) = 0; \
if ((_fixup)->fixup.bits.errreg != 31) \
map_reg((_fixup)->fixup.bits.errreg) = -EFAULT; \
(pc) + (_fixup)->fixup.bits.nextinsn; \
})
#define ARCH_HAS_RELATIVE_EXTABLE
#define swap_ex_entry_fixup(a, b, tmp, delta) \
do { \
(a)->fixup.unit = (b)->fixup.unit; \
(b)->fixup.unit = (tmp).fixup.unit; \
} while (0)
#include <asm/extable.h>
#endif /* __ALPHA_UACCESS_H */
......@@ -1016,6 +1016,7 @@ SYSCALL_DEFINE2(osf_gettimeofday, struct timeval32 __user *, tv,
SYSCALL_DEFINE2(osf_settimeofday, struct timeval32 __user *, tv,
struct timezone __user *, tz)
{
struct timespec64 kts64;
struct timespec kts;
struct timezone ktz;
......@@ -1023,13 +1024,14 @@ SYSCALL_DEFINE2(osf_settimeofday, struct timeval32 __user *, tv,
if (get_tv32((struct timeval *)&kts, tv))
return -EFAULT;
kts.tv_nsec *= 1000;
kts64 = timespec_to_timespec64(kts);
}
if (tz) {
if (copy_from_user(&ktz, tz, sizeof(*tz)))
return -EFAULT;
}
return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL);
return do_sys_settimeofday64(tv ? &kts64 : NULL, tz ? &ktz : NULL);
}
asmlinkage long sys_ni_posix_timers(void);
......
......@@ -482,12 +482,8 @@ do_entUna(void * va, unsigned long opcode, unsigned long reg,
" extwl %1,%3,%1\n"
" extwh %2,%3,%2\n"
"3:\n"
".section __ex_table,\"a\"\n"
" .long 1b - .\n"
" lda %1,3b-1b(%0)\n"
" .long 2b - .\n"
" lda %2,3b-2b(%0)\n"
".previous"
EXC(1b,3b,%1,%0)
EXC(2b,3b,%2,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
: "r"(va), "0"(0));
if (error)
......@@ -502,12 +498,8 @@ do_entUna(void * va, unsigned long opcode, unsigned long reg,
" extll %1,%3,%1\n"
" extlh %2,%3,%2\n"
"3:\n"
".section __ex_table,\"a\"\n"
" .long 1b - .\n"
" lda %1,3b-1b(%0)\n"
" .long 2b - .\n"
" lda %2,3b-2b(%0)\n"
".previous"
EXC(1b,3b,%1,%0)
EXC(2b,3b,%2,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
: "r"(va), "0"(0));
if (error)
......@@ -522,12 +514,8 @@ do_entUna(void * va, unsigned long opcode, unsigned long reg,
" extql %1,%3,%1\n"
" extqh %2,%3,%2\n"
"3:\n"
".section __ex_table,\"a\"\n"
" .long 1b - .\n"
" lda %1,3b-1b(%0)\n"
" .long 2b - .\n"
" lda %2,3b-2b(%0)\n"
".previous"
EXC(1b,3b,%1,%0)
EXC(2b,3b,%2,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
: "r"(va), "0"(0));
if (error)
......@@ -551,16 +539,10 @@ do_entUna(void * va, unsigned long opcode, unsigned long reg,
"3: stq_u %2,1(%5)\n"
"4: stq_u %1,0(%5)\n"
"5:\n"
".section __ex_table,\"a\"\n"
" .long 1b - .\n"
" lda %2,5b-1b(%0)\n"
" .long 2b - .\n"
" lda %1,5b-2b(%0)\n"
" .long 3b - .\n"
" lda $31,5b-3b(%0)\n"
" .long 4b - .\n"
" lda $31,5b-4b(%0)\n"
".previous"
EXC(1b,5b,%2,%0)
EXC(2b,5b,%1,%0)
EXC(3b,5b,$31,%0)
EXC(4b,5b,$31,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
"=&r"(tmp3), "=&r"(tmp4)
: "r"(va), "r"(una_reg(reg)), "0"(0));
......@@ -581,16 +563,10 @@ do_entUna(void * va, unsigned long opcode, unsigned long reg,
"3: stq_u %2,3(%5)\n"
"4: stq_u %1,0(%5)\n"
"5:\n"
".section __ex_table,\"a\"\n"
" .long 1b - .\n"
" lda %2,5b-1b(%0)\n"
" .long 2b - .\n"
" lda %1,5b-2b(%0)\n"
" .long 3b - .\n"
" lda $31,5b-3b(%0)\n"
" .long 4b - .\n"
" lda $31,5b-4b(%0)\n"
".previous"
EXC(1b,5b,%2,%0)
EXC(2b,5b,%1,%0)
EXC(3b,5b,$31,%0)
EXC(4b,5b,$31,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
"=&r"(tmp3), "=&r"(tmp4)
: "r"(va), "r"(una_reg(reg)), "0"(0));
......@@ -611,16 +587,10 @@ do_entUna(void * va, unsigned long opcode, unsigned long reg,
"3: stq_u %2,7(%5)\n"
"4: stq_u %1,0(%5)\n"
"5:\n"
".section __ex_table,\"a\"\n\t"
" .long 1b - .\n"
" lda %2,5b-1b(%0)\n"
" .long 2b - .\n"
" lda %1,5b-2b(%0)\n"
" .long 3b - .\n"
" lda $31,5b-3b(%0)\n"
" .long 4b - .\n"
" lda $31,5b-4b(%0)\n"
".previous"
EXC(1b,5b,%2,%0)
EXC(2b,5b,%1,%0)
EXC(3b,5b,$31,%0)
EXC(4b,5b,$31,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
"=&r"(tmp3), "=&r"(tmp4)
: "r"(va), "r"(una_reg(reg)), "0"(0));
......@@ -802,7 +772,7 @@ do_entUnaUser(void __user * va, unsigned long opcode,
/* Don't bother reading ds in the access check since we already
know that this came from the user. Also rely on the fact that
the page at TASK_SIZE is unmapped and so can't be touched anyway. */
if (!__access_ok((unsigned long)va, 0, USER_DS))
if ((unsigned long)va >= TASK_SIZE)
goto give_sigsegv;
++unaligned[1].count;
......@@ -835,12 +805,8 @@ do_entUnaUser(void __user * va, unsigned long opcode,
" extwl %1,%3,%1\n"
" extwh %2,%3,%2\n"
"3:\n"
".section __ex_table,\"a\"\n"
" .long 1b - .\n"
" lda %1,3b-1b(%0)\n"
" .long 2b - .\n"
" lda %2,3b-2b(%0)\n"
".previous"
EXC(1b,3b,%1,%0)
EXC(2b,3b,%2,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
: "r"(va), "0"(0));
if (error)
......@@ -855,12 +821,8 @@ do_entUnaUser(void __user * va, unsigned long opcode,
" extll %1,%3,%1\n"
" extlh %2,%3,%2\n"
"3:\n"
".section __ex_table,\"a\"\n"
" .long 1b - .\n"
" lda %1,3b-1b(%0)\n"
" .long 2b - .\n"
" lda %2,3b-2b(%0)\n"
".previous"
EXC(1b,3b,%1,%0)
EXC(2b,3b,%2,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
: "r"(va), "0"(0));
if (error)
......@@ -875,12 +837,8 @@ do_entUnaUser(void __user * va, unsigned long opcode,
" extql %1,%3,%1\n"
" extqh %2,%3,%2\n"
"3:\n"
".section __ex_table,\"a\"\n"
" .long 1b - .\n"
" lda %1,3b-1b(%0)\n"
" .long 2b - .\n"
" lda %2,3b-2b(%0)\n"
".previous"
EXC(1b,3b,%1,%0)
EXC(2b,3b,%2,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
: "r"(va), "0"(0));
if (error)
......@@ -895,12 +853,8 @@ do_entUnaUser(void __user * va, unsigned long opcode,
" extll %1,%3,%1\n"
" extlh %2,%3,%2\n"
"3:\n"
".section __ex_table,\"a\"\n"
" .long 1b - .\n"
" lda %1,3b-1b(%0)\n"
" .long 2b - .\n"
" lda %2,3b-2b(%0)\n"
".previous"
EXC(1b,3b,%1,%0)
EXC(2b,3b,%2,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
: "r"(va), "0"(0));
if (error)
......@@ -915,12 +869,8 @@ do_entUnaUser(void __user * va, unsigned long opcode,
" extql %1,%3,%1\n"
" extqh %2,%3,%2\n"
"3:\n"
".section __ex_table,\"a\"\n"
" .long 1b - .\n"
" lda %1,3b-1b(%0)\n"
" .long 2b - .\n"
" lda %2,3b-2b(%0)\n"
".previous"
EXC(1b,3b,%1,%0)
EXC(2b,3b,%2,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
: "r"(va), "0"(0));
if (error)
......@@ -944,16 +894,10 @@ do_entUnaUser(void __user * va, unsigned long opcode,
"3: stq_u %2,1(%5)\n"
"4: stq_u %1,0(%5)\n"
"5:\n"
".section __ex_table,\"a\"\n"
" .long 1b - .\n"
" lda %2,5b-1b(%0)\n"
" .long 2b - .\n"
" lda %1,5b-2b(%0)\n"
" .long 3b - .\n"
" lda $31,5b-3b(%0)\n"
" .long 4b - .\n"
" lda $31,5b-4b(%0)\n"
".previous"
EXC(1b,5b,%2,%0)
EXC(2b,5b,%1,%0)
EXC(3b,5b,$31,%0)
EXC(4b,5b,$31,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
"=&r"(tmp3), "=&r"(tmp4)
: "r"(va), "r"(*reg_addr), "0"(0));
......@@ -978,16 +922,10 @@ do_entUnaUser(void __user * va, unsigned long opcode,
"3: stq_u %2,3(%5)\n"
"4: stq_u %1,0(%5)\n"
"5:\n"
".section __ex_table,\"a\"\n"
" .long 1b - .\n"
" lda %2,5b-1b(%0)\n"
" .long 2b - .\n"
" lda %1,5b-2b(%0)\n"
" .long 3b - .\n"
" lda $31,5b-3b(%0)\n"
" .long 4b - .\n"
" lda $31,5b-4b(%0)\n"
".previous"
EXC(1b,5b,%2,%0)
EXC(2b,5b,%1,%0)
EXC(3b,5b,$31,%0)
EXC(4b,5b,$31,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
"=&r"(tmp3), "=&r"(tmp4)
: "r"(va), "r"(*reg_addr), "0"(0));
......@@ -1012,16 +950,10 @@ do_entUnaUser(void __user * va, unsigned long opcode,
"3: stq_u %2,7(%5)\n"
"4: stq_u %1,0(%5)\n"
"5:\n"
".section __ex_table,\"a\"\n\t"
" .long 1b - .\n"
" lda %2,5b-1b(%0)\n"
" .long 2b - .\n"
" lda %1,5b-2b(%0)\n"
" .long 3b - .\n"
" lda $31,5b-3b(%0)\n"
" .long 4b - .\n"
" lda $31,5b-4b(%0)\n"
".previous"
EXC(1b,5b,%2,%0)
EXC(2b,5b,%1,%0)
EXC(3b,5b,$31,%0)
EXC(4b,5b,$31,%0)
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
"=&r"(tmp3), "=&r"(tmp4)
: "r"(va), "r"(*reg_addr), "0"(0));
......@@ -1047,7 +979,7 @@ do_entUnaUser(void __user * va, unsigned long opcode,
/* We need to replicate some of the logic in mm/fault.c,
since we don't have access to the fault code in the
exception handling return path. */
if (!__access_ok((unsigned long)va, 0, USER_DS))
if ((unsigned long)va >= TASK_SIZE)
info.si_code = SEGV_ACCERR;
else {
struct mm_struct *mm = current->mm;
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册