提交 2ac1c6e7 编写于 作者: S Stephen Warren 提交者: Greg Kroah-Hartman

net/mlx4: Get rid of page operation after dma_alloc_coherent

[ Upstream commit f65e192af35058e5c82da9e90871b472d24912bc ]

This patch solves a crash at the time of mlx4 driver unload or system
shutdown. The crash occurs because dma_alloc_coherent() returns one
value in mlx4_alloc_icm_coherent(), but a different value is passed to
dma_free_coherent() in mlx4_free_icm_coherent(). In turn this is because
when allocated, that pointer is passed to sg_set_buf() to record it,
then when freed it is re-calculated by calling
lowmem_page_address(sg_page()) which returns a different value. Solve
this by recording the value that dma_alloc_coherent() returns, and
passing this to dma_free_coherent().

This patch is roughly equivalent to commit 378efe79 ("RDMA/hns: Get
rid of page operation after dma_alloc_coherent").

Based-on-code-from: Christoph Hellwig <hch@lst.de>
Signed-off-by: NStephen Warren <swarren@nvidia.com>
Reviewed-by: NTariq Toukan <tariqt@mellanox.com>
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
Signed-off-by: NSasha Levin <sashal@kernel.org>
上级 b5f7ead8
......@@ -57,12 +57,12 @@ static void mlx4_free_icm_pages(struct mlx4_dev *dev, struct mlx4_icm_chunk *chu
int i;
if (chunk->nsg > 0)
pci_unmap_sg(dev->persist->pdev, chunk->mem, chunk->npages,
pci_unmap_sg(dev->persist->pdev, chunk->sg, chunk->npages,
PCI_DMA_BIDIRECTIONAL);
for (i = 0; i < chunk->npages; ++i)
__free_pages(sg_page(&chunk->mem[i]),
get_order(chunk->mem[i].length));
__free_pages(sg_page(&chunk->sg[i]),
get_order(chunk->sg[i].length));
}
static void mlx4_free_icm_coherent(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk)
......@@ -71,9 +71,9 @@ static void mlx4_free_icm_coherent(struct mlx4_dev *dev, struct mlx4_icm_chunk *
for (i = 0; i < chunk->npages; ++i)
dma_free_coherent(&dev->persist->pdev->dev,
chunk->mem[i].length,
lowmem_page_address(sg_page(&chunk->mem[i])),
sg_dma_address(&chunk->mem[i]));
chunk->buf[i].size,
chunk->buf[i].addr,
chunk->buf[i].dma_addr);
}
void mlx4_free_icm(struct mlx4_dev *dev, struct mlx4_icm *icm, int coherent)
......@@ -111,22 +111,21 @@ static int mlx4_alloc_icm_pages(struct scatterlist *mem, int order,
return 0;
}
static int mlx4_alloc_icm_coherent(struct device *dev, struct scatterlist *mem,
int order, gfp_t gfp_mask)
static int mlx4_alloc_icm_coherent(struct device *dev, struct mlx4_icm_buf *buf,
int order, gfp_t gfp_mask)
{
void *buf = dma_alloc_coherent(dev, PAGE_SIZE << order,
&sg_dma_address(mem), gfp_mask);
if (!buf)
buf->addr = dma_alloc_coherent(dev, PAGE_SIZE << order,
&buf->dma_addr, gfp_mask);
if (!buf->addr)
return -ENOMEM;
if (offset_in_page(buf)) {
dma_free_coherent(dev, PAGE_SIZE << order,
buf, sg_dma_address(mem));
if (offset_in_page(buf->addr)) {
dma_free_coherent(dev, PAGE_SIZE << order, buf->addr,
buf->dma_addr);
return -ENOMEM;
}
sg_set_buf(mem, buf, PAGE_SIZE << order);
sg_dma_len(mem) = PAGE_SIZE << order;
buf->size = PAGE_SIZE << order;
return 0;
}
......@@ -159,21 +158,21 @@ struct mlx4_icm *mlx4_alloc_icm(struct mlx4_dev *dev, int npages,
while (npages > 0) {
if (!chunk) {
chunk = kmalloc_node(sizeof(*chunk),
chunk = kzalloc_node(sizeof(*chunk),
gfp_mask & ~(__GFP_HIGHMEM |
__GFP_NOWARN),
dev->numa_node);
if (!chunk) {
chunk = kmalloc(sizeof(*chunk),
chunk = kzalloc(sizeof(*chunk),
gfp_mask & ~(__GFP_HIGHMEM |
__GFP_NOWARN));
if (!chunk)
goto fail;
}
chunk->coherent = coherent;
sg_init_table(chunk->mem, MLX4_ICM_CHUNK_LEN);
chunk->npages = 0;
chunk->nsg = 0;
if (!coherent)
sg_init_table(chunk->sg, MLX4_ICM_CHUNK_LEN);
list_add_tail(&chunk->list, &icm->chunk_list);
}
......@@ -186,10 +185,10 @@ struct mlx4_icm *mlx4_alloc_icm(struct mlx4_dev *dev, int npages,
if (coherent)
ret = mlx4_alloc_icm_coherent(&dev->persist->pdev->dev,
&chunk->mem[chunk->npages],
cur_order, mask);
&chunk->buf[chunk->npages],
cur_order, mask);
else
ret = mlx4_alloc_icm_pages(&chunk->mem[chunk->npages],
ret = mlx4_alloc_icm_pages(&chunk->sg[chunk->npages],
cur_order, mask,
dev->numa_node);
......@@ -205,7 +204,7 @@ struct mlx4_icm *mlx4_alloc_icm(struct mlx4_dev *dev, int npages,
if (coherent)
++chunk->nsg;
else if (chunk->npages == MLX4_ICM_CHUNK_LEN) {
chunk->nsg = pci_map_sg(dev->persist->pdev, chunk->mem,
chunk->nsg = pci_map_sg(dev->persist->pdev, chunk->sg,
chunk->npages,
PCI_DMA_BIDIRECTIONAL);
......@@ -220,7 +219,7 @@ struct mlx4_icm *mlx4_alloc_icm(struct mlx4_dev *dev, int npages,
}
if (!coherent && chunk) {
chunk->nsg = pci_map_sg(dev->persist->pdev, chunk->mem,
chunk->nsg = pci_map_sg(dev->persist->pdev, chunk->sg,
chunk->npages,
PCI_DMA_BIDIRECTIONAL);
......@@ -320,7 +319,7 @@ void *mlx4_table_find(struct mlx4_icm_table *table, u32 obj,
u64 idx;
struct mlx4_icm_chunk *chunk;
struct mlx4_icm *icm;
struct page *page = NULL;
void *addr = NULL;
if (!table->lowmem)
return NULL;
......@@ -336,28 +335,49 @@ void *mlx4_table_find(struct mlx4_icm_table *table, u32 obj,
list_for_each_entry(chunk, &icm->chunk_list, list) {
for (i = 0; i < chunk->npages; ++i) {
dma_addr_t dma_addr;
size_t len;
if (table->coherent) {
len = chunk->buf[i].size;
dma_addr = chunk->buf[i].dma_addr;
addr = chunk->buf[i].addr;
} else {
struct page *page;
len = sg_dma_len(&chunk->sg[i]);
dma_addr = sg_dma_address(&chunk->sg[i]);
/* XXX: we should never do this for highmem
* allocation. This function either needs
* to be split, or the kernel virtual address
* return needs to be made optional.
*/
page = sg_page(&chunk->sg[i]);
addr = lowmem_page_address(page);
}
if (dma_handle && dma_offset >= 0) {
if (sg_dma_len(&chunk->mem[i]) > dma_offset)
*dma_handle = sg_dma_address(&chunk->mem[i]) +
dma_offset;
dma_offset -= sg_dma_len(&chunk->mem[i]);
if (len > dma_offset)
*dma_handle = dma_addr + dma_offset;
dma_offset -= len;
}
/*
* DMA mapping can merge pages but not split them,
* so if we found the page, dma_handle has already
* been assigned to.
*/
if (chunk->mem[i].length > offset) {
page = sg_page(&chunk->mem[i]);
if (len > offset)
goto out;
}
offset -= chunk->mem[i].length;
offset -= len;
}
}
addr = NULL;
out:
mutex_unlock(&table->mutex);
return page ? lowmem_page_address(page) + offset : NULL;
return addr ? addr + offset : NULL;
}
int mlx4_table_get_range(struct mlx4_dev *dev, struct mlx4_icm_table *table,
......
......@@ -47,11 +47,21 @@ enum {
MLX4_ICM_PAGE_SIZE = 1 << MLX4_ICM_PAGE_SHIFT,
};
struct mlx4_icm_buf {
void *addr;
size_t size;
dma_addr_t dma_addr;
};
struct mlx4_icm_chunk {
struct list_head list;
int npages;
int nsg;
struct scatterlist mem[MLX4_ICM_CHUNK_LEN];
bool coherent;
union {
struct scatterlist sg[MLX4_ICM_CHUNK_LEN];
struct mlx4_icm_buf buf[MLX4_ICM_CHUNK_LEN];
};
};
struct mlx4_icm {
......@@ -114,12 +124,18 @@ static inline void mlx4_icm_next(struct mlx4_icm_iter *iter)
static inline dma_addr_t mlx4_icm_addr(struct mlx4_icm_iter *iter)
{
return sg_dma_address(&iter->chunk->mem[iter->page_idx]);
if (iter->chunk->coherent)
return iter->chunk->buf[iter->page_idx].dma_addr;
else
return sg_dma_address(&iter->chunk->sg[iter->page_idx]);
}
static inline unsigned long mlx4_icm_size(struct mlx4_icm_iter *iter)
{
return sg_dma_len(&iter->chunk->mem[iter->page_idx]);
if (iter->chunk->coherent)
return iter->chunk->buf[iter->page_idx].size;
else
return sg_dma_len(&iter->chunk->sg[iter->page_idx]);
}
int mlx4_MAP_ICM_AUX(struct mlx4_dev *dev, struct mlx4_icm *icm);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册