提交 1beef3c1 编写于 作者: J Jarod Wilson 提交者: Mauro Carvalho Chehab

V4L/DVB: staging/lirc: add lirc_serial driver

Signed-off-by: NJarod Wilson <jarod@redhat.com>
Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
上级 c5ac4571
/*
* lirc_serial.c
*
* lirc_serial - Device driver that records pulse- and pause-lengths
* (space-lengths) between DDCD event on a serial port.
*
* Copyright (C) 1996,97 Ralph Metzler <rjkm@thp.uni-koeln.de>
* Copyright (C) 1998 Trent Piepho <xyzzy@u.washington.edu>
* Copyright (C) 1998 Ben Pfaff <blp@gnu.org>
* Copyright (C) 1999 Christoph Bartelmus <lirc@bartelmus.de>
* Copyright (C) 2007 Andrei Tanas <andrei@tanas.ca> (suspend/resume support)
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*
* Steve's changes to improve transmission fidelity:
* - for systems with the rdtsc instruction and the clock counter, a
* send_pule that times the pulses directly using the counter.
* This means that the LIRC_SERIAL_TRANSMITTER_LATENCY fudge is
* not needed. Measurement shows very stable waveform, even where
* PCI activity slows the access to the UART, which trips up other
* versions.
* - For other system, non-integer-microsecond pulse/space lengths,
* done using fixed point binary. So, much more accurate carrier
* frequency.
* - fine tuned transmitter latency, taking advantage of fractional
* microseconds in previous change
* - Fixed bug in the way transmitter latency was accounted for by
* tuning the pulse lengths down - the send_pulse routine ignored
* this overhead as it timed the overall pulse length - so the
* pulse frequency was right but overall pulse length was too
* long. Fixed by accounting for latency on each pulse/space
* iteration.
*
* Steve Davies <steve@daviesfam.org> July 2001
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/serial_reg.h>
#include <linux/time.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/wait.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/platform_device.h>
#include <asm/system.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/fcntl.h>
#include <linux/spinlock.h>
#ifdef CONFIG_LIRC_SERIAL_NSLU2
#include <asm/hardware.h>
#endif
/* From Intel IXP42X Developer's Manual (#252480-005): */
/* ftp://download.intel.com/design/network/manuals/25248005.pdf */
#define UART_IE_IXP42X_UUE 0x40 /* IXP42X UART Unit enable */
#define UART_IE_IXP42X_RTOIE 0x10 /* IXP42X Receiver Data Timeout int.enable */
#include <media/lirc.h>
#include <media/lirc_dev.h>
#define LIRC_DRIVER_NAME "lirc_serial"
struct lirc_serial {
int signal_pin;
int signal_pin_change;
u8 on;
u8 off;
long (*send_pulse)(unsigned long length);
void (*send_space)(long length);
int features;
spinlock_t lock;
};
#define LIRC_HOMEBREW 0
#define LIRC_IRDEO 1
#define LIRC_IRDEO_REMOTE 2
#define LIRC_ANIMAX 3
#define LIRC_IGOR 4
#define LIRC_NSLU2 5
/*** module parameters ***/
static int type;
static int io;
static int irq;
static int iommap;
static int ioshift;
static int softcarrier = 1;
static int share_irq;
static int debug;
static int sense = -1; /* -1 = auto, 0 = active high, 1 = active low */
static int txsense; /* 0 = active high, 1 = active low */
#define dprintk(fmt, args...) \
do { \
if (debug) \
printk(KERN_DEBUG LIRC_DRIVER_NAME ": " \
fmt, ## args); \
} while (0)
/* forward declarations */
static long send_pulse_irdeo(unsigned long length);
static long send_pulse_homebrew(unsigned long length);
static void send_space_irdeo(long length);
static void send_space_homebrew(long length);
static struct lirc_serial hardware[] = {
[LIRC_HOMEBREW] = {
.signal_pin = UART_MSR_DCD,
.signal_pin_change = UART_MSR_DDCD,
.on = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
.off = (UART_MCR_RTS | UART_MCR_OUT2),
.send_pulse = send_pulse_homebrew,
.send_space = send_space_homebrew,
#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
.features = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
LIRC_CAN_SET_SEND_CARRIER |
LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
#else
.features = LIRC_CAN_REC_MODE2
#endif
},
[LIRC_IRDEO] = {
.signal_pin = UART_MSR_DSR,
.signal_pin_change = UART_MSR_DDSR,
.on = UART_MCR_OUT2,
.off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
.send_pulse = send_pulse_irdeo,
.send_space = send_space_irdeo,
.features = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
},
[LIRC_IRDEO_REMOTE] = {
.signal_pin = UART_MSR_DSR,
.signal_pin_change = UART_MSR_DDSR,
.on = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
.off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
.send_pulse = send_pulse_irdeo,
.send_space = send_space_irdeo,
.features = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
},
[LIRC_ANIMAX] = {
.signal_pin = UART_MSR_DCD,
.signal_pin_change = UART_MSR_DDCD,
.on = 0,
.off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
.send_pulse = NULL,
.send_space = NULL,
.features = LIRC_CAN_REC_MODE2
},
[LIRC_IGOR] = {
.signal_pin = UART_MSR_DSR,
.signal_pin_change = UART_MSR_DDSR,
.on = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
.off = (UART_MCR_RTS | UART_MCR_OUT2),
.send_pulse = send_pulse_homebrew,
.send_space = send_space_homebrew,
#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
.features = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
LIRC_CAN_SET_SEND_CARRIER |
LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
#else
.features = LIRC_CAN_REC_MODE2
#endif
},
#ifdef CONFIG_LIRC_SERIAL_NSLU2
/*
* Modified Linksys Network Storage Link USB 2.0 (NSLU2):
* We receive on CTS of the 2nd serial port (R142,LHS), we
* transmit with a IR diode between GPIO[1] (green status LED),
* and ground (Matthias Goebl <matthias.goebl@goebl.net>).
* See also http://www.nslu2-linux.org for this device
*/
[LIRC_NSLU2] = {
.signal_pin = UART_MSR_CTS,
.signal_pin_change = UART_MSR_DCTS,
.on = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
.off = (UART_MCR_RTS | UART_MCR_OUT2),
.send_pulse = send_pulse_homebrew,
.send_space = send_space_homebrew,
#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
.features = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
LIRC_CAN_SET_SEND_CARRIER |
LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
#else
.features = LIRC_CAN_REC_MODE2
#endif
},
#endif
};
#define RS_ISR_PASS_LIMIT 256
/*
* A long pulse code from a remote might take up to 300 bytes. The
* daemon should read the bytes as soon as they are generated, so take
* the number of keys you think you can push before the daemon runs
* and multiply by 300. The driver will warn you if you overrun this
* buffer. If you have a slow computer or non-busmastering IDE disks,
* maybe you will need to increase this.
*/
/* This MUST be a power of two! It has to be larger than 1 as well. */
#define RBUF_LEN 256
static struct timeval lasttv = {0, 0};
static struct lirc_buffer rbuf;
static unsigned int freq = 38000;
static unsigned int duty_cycle = 50;
/* Initialized in init_timing_params() */
static unsigned long period;
static unsigned long pulse_width;
static unsigned long space_width;
#if defined(__i386__)
/*
* From:
* Linux I/O port programming mini-HOWTO
* Author: Riku Saikkonen <Riku.Saikkonen@hut.fi>
* v, 28 December 1997
*
* [...]
* Actually, a port I/O instruction on most ports in the 0-0x3ff range
* takes almost exactly 1 microsecond, so if you're, for example, using
* the parallel port directly, just do additional inb()s from that port
* to delay.
* [...]
*/
/* transmitter latency 1.5625us 0x1.90 - this figure arrived at from
* comment above plus trimming to match actual measured frequency.
* This will be sensitive to cpu speed, though hopefully most of the 1.5us
* is spent in the uart access. Still - for reference test machine was a
* 1.13GHz Athlon system - Steve
*/
/*
* changed from 400 to 450 as this works better on slower machines;
* faster machines will use the rdtsc code anyway
*/
#define LIRC_SERIAL_TRANSMITTER_LATENCY 450
#else
/* does anybody have information on other platforms ? */
/* 256 = 1<<8 */
#define LIRC_SERIAL_TRANSMITTER_LATENCY 256
#endif /* __i386__ */
/*
* FIXME: should we be using hrtimers instead of this
* LIRC_SERIAL_TRANSMITTER_LATENCY nonsense?
*/
/* fetch serial input packet (1 byte) from register offset */
static u8 sinp(int offset)
{
if (iommap != 0)
/* the register is memory-mapped */
offset <<= ioshift;
return inb(io + offset);
}
/* write serial output packet (1 byte) of value to register offset */
static void soutp(int offset, u8 value)
{
if (iommap != 0)
/* the register is memory-mapped */
offset <<= ioshift;
outb(value, io + offset);
}
static void on(void)
{
#ifdef CONFIG_LIRC_SERIAL_NSLU2
/*
* On NSLU2, we put the transmit diode between the output of the green
* status LED and ground
*/
if (type == LIRC_NSLU2) {
gpio_line_set(NSLU2_LED_GRN, IXP4XX_GPIO_LOW);
return;
}
#endif
if (txsense)
soutp(UART_MCR, hardware[type].off);
else
soutp(UART_MCR, hardware[type].on);
}
static void off(void)
{
#ifdef CONFIG_LIRC_SERIAL_NSLU2
if (type == LIRC_NSLU2) {
gpio_line_set(NSLU2_LED_GRN, IXP4XX_GPIO_HIGH);
return;
}
#endif
if (txsense)
soutp(UART_MCR, hardware[type].on);
else
soutp(UART_MCR, hardware[type].off);
}
#ifndef MAX_UDELAY_MS
#define MAX_UDELAY_US 5000
#else
#define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
#endif
static void safe_udelay(unsigned long usecs)
{
while (usecs > MAX_UDELAY_US) {
udelay(MAX_UDELAY_US);
usecs -= MAX_UDELAY_US;
}
udelay(usecs);
}
#ifdef USE_RDTSC
/*
* This is an overflow/precision juggle, complicated in that we can't
* do long long divide in the kernel
*/
/*
* When we use the rdtsc instruction to measure clocks, we keep the
* pulse and space widths as clock cycles. As this is CPU speed
* dependent, the widths must be calculated in init_port and ioctl
* time
*/
/* So send_pulse can quickly convert microseconds to clocks */
static unsigned long conv_us_to_clocks;
static int init_timing_params(unsigned int new_duty_cycle,
unsigned int new_freq)
{
unsigned long long loops_per_sec, work;
duty_cycle = new_duty_cycle;
freq = new_freq;
loops_per_sec = current_cpu_data.loops_per_jiffy;
loops_per_sec *= HZ;
/* How many clocks in a microsecond?, avoiding long long divide */
work = loops_per_sec;
work *= 4295; /* 4295 = 2^32 / 1e6 */
conv_us_to_clocks = (work >> 32);
/*
* Carrier period in clocks, approach good up to 32GHz clock,
* gets carrier frequency within 8Hz
*/
period = loops_per_sec >> 3;
period /= (freq >> 3);
/* Derive pulse and space from the period */
pulse_width = period * duty_cycle / 100;
space_width = period - pulse_width;
dprintk("in init_timing_params, freq=%d, duty_cycle=%d, "
"clk/jiffy=%ld, pulse=%ld, space=%ld, "
"conv_us_to_clocks=%ld\n",
freq, duty_cycle, current_cpu_data.loops_per_jiffy,
pulse_width, space_width, conv_us_to_clocks);
return 0;
}
#else /* ! USE_RDTSC */
static int init_timing_params(unsigned int new_duty_cycle,
unsigned int new_freq)
{
/*
* period, pulse/space width are kept with 8 binary places -
* IE multiplied by 256.
*/
if (256 * 1000000L / new_freq * new_duty_cycle / 100 <=
LIRC_SERIAL_TRANSMITTER_LATENCY)
return -EINVAL;
if (256 * 1000000L / new_freq * (100 - new_duty_cycle) / 100 <=
LIRC_SERIAL_TRANSMITTER_LATENCY)
return -EINVAL;
duty_cycle = new_duty_cycle;
freq = new_freq;
period = 256 * 1000000L / freq;
pulse_width = period * duty_cycle / 100;
space_width = period - pulse_width;
dprintk("in init_timing_params, freq=%d pulse=%ld, "
"space=%ld\n", freq, pulse_width, space_width);
return 0;
}
#endif /* USE_RDTSC */
/* return value: space length delta */
static long send_pulse_irdeo(unsigned long length)
{
long rawbits, ret;
int i;
unsigned char output;
unsigned char chunk, shifted;
/* how many bits have to be sent ? */
rawbits = length * 1152 / 10000;
if (duty_cycle > 50)
chunk = 3;
else
chunk = 1;
for (i = 0, output = 0x7f; rawbits > 0; rawbits -= 3) {
shifted = chunk << (i * 3);
shifted >>= 1;
output &= (~shifted);
i++;
if (i == 3) {
soutp(UART_TX, output);
while (!(sinp(UART_LSR) & UART_LSR_THRE))
;
output = 0x7f;
i = 0;
}
}
if (i != 0) {
soutp(UART_TX, output);
while (!(sinp(UART_LSR) & UART_LSR_TEMT))
;
}
if (i == 0)
ret = (-rawbits) * 10000 / 1152;
else
ret = (3 - i) * 3 * 10000 / 1152 + (-rawbits) * 10000 / 1152;
return ret;
}
#ifdef USE_RDTSC
/* Version that uses Pentium rdtsc instruction to measure clocks */
/*
* This version does sub-microsecond timing using rdtsc instruction,
* and does away with the fudged LIRC_SERIAL_TRANSMITTER_LATENCY
* Implicitly i586 architecture... - Steve
*/
static long send_pulse_homebrew_softcarrier(unsigned long length)
{
int flag;
unsigned long target, start, now;
/* Get going quick as we can */
rdtscl(start);
on();
/* Convert length from microseconds to clocks */
length *= conv_us_to_clocks;
/* And loop till time is up - flipping at right intervals */
now = start;
target = pulse_width;
flag = 1;
/*
* FIXME: This looks like a hard busy wait, without even an occasional,
* polite, cpu_relax() call. There's got to be a better way?
*
* The i2c code has the result of a lot of bit-banging work, I wonder if
* there's something there which could be helpful here.
*/
while ((now - start) < length) {
/* Delay till flip time */
do {
rdtscl(now);
} while ((now - start) < target);
/* flip */
if (flag) {
rdtscl(now);
off();
target += space_width;
} else {
rdtscl(now); on();
target += pulse_width;
}
flag = !flag;
}
rdtscl(now);
return ((now - start) - length) / conv_us_to_clocks;
}
#else /* ! USE_RDTSC */
/* Version using udelay() */
/*
* here we use fixed point arithmetic, with 8
* fractional bits. that gets us within 0.1% or so of the right average
* frequency, albeit with some jitter in pulse length - Steve
*/
/* To match 8 fractional bits used for pulse/space length */
static long send_pulse_homebrew_softcarrier(unsigned long length)
{
int flag;
unsigned long actual, target, d;
length <<= 8;
actual = 0; target = 0; flag = 0;
while (actual < length) {
if (flag) {
off();
target += space_width;
} else {
on();
target += pulse_width;
}
d = (target - actual -
LIRC_SERIAL_TRANSMITTER_LATENCY + 128) >> 8;
/*
* Note - we've checked in ioctl that the pulse/space
* widths are big enough so that d is > 0
*/
udelay(d);
actual += (d << 8) + LIRC_SERIAL_TRANSMITTER_LATENCY;
flag = !flag;
}
return (actual-length) >> 8;
}
#endif /* USE_RDTSC */
static long send_pulse_homebrew(unsigned long length)
{
if (length <= 0)
return 0;
if (softcarrier)
return send_pulse_homebrew_softcarrier(length);
else {
on();
safe_udelay(length);
return 0;
}
}
static void send_space_irdeo(long length)
{
if (length <= 0)
return;
safe_udelay(length);
}
static void send_space_homebrew(long length)
{
off();
if (length <= 0)
return;
safe_udelay(length);
}
static void rbwrite(int l)
{
if (lirc_buffer_full(&rbuf)) {
/* no new signals will be accepted */
dprintk("Buffer overrun\n");
return;
}
lirc_buffer_write(&rbuf, (void *)&l);
}
static void frbwrite(int l)
{
/* simple noise filter */
static int pulse, space;
static unsigned int ptr;
if (ptr > 0 && (l & PULSE_BIT)) {
pulse += l & PULSE_MASK;
if (pulse > 250) {
rbwrite(space);
rbwrite(pulse | PULSE_BIT);
ptr = 0;
pulse = 0;
}
return;
}
if (!(l & PULSE_BIT)) {
if (ptr == 0) {
if (l > 20000) {
space = l;
ptr++;
return;
}
} else {
if (l > 20000) {
space += pulse;
if (space > PULSE_MASK)
space = PULSE_MASK;
space += l;
if (space > PULSE_MASK)
space = PULSE_MASK;
pulse = 0;
return;
}
rbwrite(space);
rbwrite(pulse | PULSE_BIT);
ptr = 0;
pulse = 0;
}
}
rbwrite(l);
}
static irqreturn_t irq_handler(int i, void *blah)
{
struct timeval tv;
int counter, dcd;
u8 status;
long deltv;
int data;
static int last_dcd = -1;
if ((sinp(UART_IIR) & UART_IIR_NO_INT)) {
/* not our interrupt */
return IRQ_NONE;
}
counter = 0;
do {
counter++;
status = sinp(UART_MSR);
if (counter > RS_ISR_PASS_LIMIT) {
printk(KERN_WARNING LIRC_DRIVER_NAME ": AIEEEE: "
"We're caught!\n");
break;
}
if ((status & hardware[type].signal_pin_change)
&& sense != -1) {
/* get current time */
do_gettimeofday(&tv);
/* New mode, written by Trent Piepho
<xyzzy@u.washington.edu>. */
/*
* The old format was not very portable.
* We now use an int to pass pulses
* and spaces to user space.
*
* If PULSE_BIT is set a pulse has been
* received, otherwise a space has been
* received. The driver needs to know if your
* receiver is active high or active low, or
* the space/pulse sense could be
* inverted. The bits denoted by PULSE_MASK are
* the length in microseconds. Lengths greater
* than or equal to 16 seconds are clamped to
* PULSE_MASK. All other bits are unused.
* This is a much simpler interface for user
* programs, as well as eliminating "out of
* phase" errors with space/pulse
* autodetection.
*/
/* calc time since last interrupt in microseconds */
dcd = (status & hardware[type].signal_pin) ? 1 : 0;
if (dcd == last_dcd) {
printk(KERN_WARNING LIRC_DRIVER_NAME
": ignoring spike: %d %d %lx %lx %lx %lx\n",
dcd, sense,
tv.tv_sec, lasttv.tv_sec,
tv.tv_usec, lasttv.tv_usec);
continue;
}
deltv = tv.tv_sec-lasttv.tv_sec;
if (tv.tv_sec < lasttv.tv_sec ||
(tv.tv_sec == lasttv.tv_sec &&
tv.tv_usec < lasttv.tv_usec)) {
printk(KERN_WARNING LIRC_DRIVER_NAME
": AIEEEE: your clock just jumped "
"backwards\n");
printk(KERN_WARNING LIRC_DRIVER_NAME
": %d %d %lx %lx %lx %lx\n",
dcd, sense,
tv.tv_sec, lasttv.tv_sec,
tv.tv_usec, lasttv.tv_usec);
data = PULSE_MASK;
} else if (deltv > 15) {
data = PULSE_MASK; /* really long time */
if (!(dcd^sense)) {
/* sanity check */
printk(KERN_WARNING LIRC_DRIVER_NAME
": AIEEEE: "
"%d %d %lx %lx %lx %lx\n",
dcd, sense,
tv.tv_sec, lasttv.tv_sec,
tv.tv_usec, lasttv.tv_usec);
/*
* detecting pulse while this
* MUST be a space!
*/
sense = sense ? 0 : 1;
}
} else
data = (int) (deltv*1000000 +
tv.tv_usec -
lasttv.tv_usec);
frbwrite(dcd^sense ? data : (data|PULSE_BIT));
lasttv = tv;
last_dcd = dcd;
wake_up_interruptible(&rbuf.wait_poll);
}
} while (!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */
return IRQ_HANDLED;
}
static int hardware_init_port(void)
{
u8 scratch, scratch2, scratch3;
/*
* This is a simple port existence test, borrowed from the autoconfig
* function in drivers/serial/8250.c
*/
scratch = sinp(UART_IER);
soutp(UART_IER, 0);
#ifdef __i386__
outb(0xff, 0x080);
#endif
scratch2 = sinp(UART_IER) & 0x0f;
soutp(UART_IER, 0x0f);
#ifdef __i386__
outb(0x00, 0x080);
#endif
scratch3 = sinp(UART_IER) & 0x0f;
soutp(UART_IER, scratch);
if (scratch2 != 0 || scratch3 != 0x0f) {
/* we fail, there's nothing here */
printk(KERN_ERR LIRC_DRIVER_NAME ": port existence test "
"failed, cannot continue\n");
return -EINVAL;
}
/* Set DLAB 0. */
soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
/* First of all, disable all interrupts */
soutp(UART_IER, sinp(UART_IER) &
(~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
/* Clear registers. */
sinp(UART_LSR);
sinp(UART_RX);
sinp(UART_IIR);
sinp(UART_MSR);
#ifdef CONFIG_LIRC_SERIAL_NSLU2
if (type == LIRC_NSLU2) {
/* Setup NSLU2 UART */
/* Enable UART */
soutp(UART_IER, sinp(UART_IER) | UART_IE_IXP42X_UUE);
/* Disable Receiver data Time out interrupt */
soutp(UART_IER, sinp(UART_IER) & ~UART_IE_IXP42X_RTOIE);
/* set out2 = interrupt unmask; off() doesn't set MCR
on NSLU2 */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
}
#endif
/* Set line for power source */
off();
/* Clear registers again to be sure. */
sinp(UART_LSR);
sinp(UART_RX);
sinp(UART_IIR);
sinp(UART_MSR);
switch (type) {
case LIRC_IRDEO:
case LIRC_IRDEO_REMOTE:
/* setup port to 7N1 @ 115200 Baud */
/* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */
/* Set DLAB 1. */
soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
/* Set divisor to 1 => 115200 Baud */
soutp(UART_DLM, 0);
soutp(UART_DLL, 1);
/* Set DLAB 0 + 7N1 */
soutp(UART_LCR, UART_LCR_WLEN7);
/* THR interrupt already disabled at this point */
break;
default:
break;
}
return 0;
}
static int init_port(void)
{
int i, nlow, nhigh;
/* Reserve io region. */
/*
* Future MMAP-Developers: Attention!
* For memory mapped I/O you *might* need to use ioremap() first,
* for the NSLU2 it's done in boot code.
*/
if (((iommap != 0)
&& (request_mem_region(iommap, 8 << ioshift,
LIRC_DRIVER_NAME) == NULL))
|| ((iommap == 0)
&& (request_region(io, 8, LIRC_DRIVER_NAME) == NULL))) {
printk(KERN_ERR LIRC_DRIVER_NAME
": port %04x already in use\n", io);
printk(KERN_WARNING LIRC_DRIVER_NAME
": use 'setserial /dev/ttySX uart none'\n");
printk(KERN_WARNING LIRC_DRIVER_NAME
": or compile the serial port driver as module and\n");
printk(KERN_WARNING LIRC_DRIVER_NAME
": make sure this module is loaded first\n");
return -EBUSY;
}
if (hardware_init_port() < 0)
return -EINVAL;
/* Initialize pulse/space widths */
init_timing_params(duty_cycle, freq);
/* If pin is high, then this must be an active low receiver. */
if (sense == -1) {
/* wait 1/2 sec for the power supply */
msleep(500);
/*
* probe 9 times every 0.04s, collect "votes" for
* active high/low
*/
nlow = 0;
nhigh = 0;
for (i = 0; i < 9; i++) {
if (sinp(UART_MSR) & hardware[type].signal_pin)
nlow++;
else
nhigh++;
msleep(40);
}
sense = (nlow >= nhigh ? 1 : 0);
printk(KERN_INFO LIRC_DRIVER_NAME ": auto-detected active "
"%s receiver\n", sense ? "low" : "high");
} else
printk(KERN_INFO LIRC_DRIVER_NAME ": Manually using active "
"%s receiver\n", sense ? "low" : "high");
return 0;
}
static int set_use_inc(void *data)
{
int result;
unsigned long flags;
/* initialize timestamp */
do_gettimeofday(&lasttv);
result = request_irq(irq, irq_handler,
IRQF_DISABLED | (share_irq ? IRQF_SHARED : 0),
LIRC_DRIVER_NAME, (void *)&hardware);
switch (result) {
case -EBUSY:
printk(KERN_ERR LIRC_DRIVER_NAME ": IRQ %d busy\n", irq);
return -EBUSY;
case -EINVAL:
printk(KERN_ERR LIRC_DRIVER_NAME
": Bad irq number or handler\n");
return -EINVAL;
default:
dprintk("Interrupt %d, port %04x obtained\n", irq, io);
break;
};
spin_lock_irqsave(&hardware[type].lock, flags);
/* Set DLAB 0. */
soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
spin_unlock_irqrestore(&hardware[type].lock, flags);
return 0;
}
static void set_use_dec(void *data)
{ unsigned long flags;
spin_lock_irqsave(&hardware[type].lock, flags);
/* Set DLAB 0. */
soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
/* First of all, disable all interrupts */
soutp(UART_IER, sinp(UART_IER) &
(~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
spin_unlock_irqrestore(&hardware[type].lock, flags);
free_irq(irq, (void *)&hardware);
dprintk("freed IRQ %d\n", irq);
}
static ssize_t lirc_write(struct file *file, const char *buf,
size_t n, loff_t *ppos)
{
int i, count;
unsigned long flags;
long delta = 0;
int *wbuf;
if (!(hardware[type].features & LIRC_CAN_SEND_PULSE))
return -EBADF;
count = n / sizeof(int);
if (n % sizeof(int) || count % 2 == 0)
return -EINVAL;
wbuf = memdup_user(buf, n);
if (PTR_ERR(wbuf))
return PTR_ERR(wbuf);
spin_lock_irqsave(&hardware[type].lock, flags);
if (type == LIRC_IRDEO) {
/* DTR, RTS down */
on();
}
for (i = 0; i < count; i++) {
if (i%2)
hardware[type].send_space(wbuf[i] - delta);
else
delta = hardware[type].send_pulse(wbuf[i]);
}
off();
spin_unlock_irqrestore(&hardware[type].lock, flags);
return n;
}
static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
{
int result;
unsigned long value;
unsigned int ivalue;
switch (cmd) {
case LIRC_GET_SEND_MODE:
if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
return -ENOIOCTLCMD;
result = put_user(LIRC_SEND2MODE
(hardware[type].features&LIRC_CAN_SEND_MASK),
(unsigned long *) arg);
if (result)
return result;
break;
case LIRC_SET_SEND_MODE:
if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
return -ENOIOCTLCMD;
result = get_user(value, (unsigned long *) arg);
if (result)
return result;
/* only LIRC_MODE_PULSE supported */
if (value != LIRC_MODE_PULSE)
return -ENOSYS;
break;
case LIRC_GET_LENGTH:
return -ENOSYS;
break;
case LIRC_SET_SEND_DUTY_CYCLE:
dprintk("SET_SEND_DUTY_CYCLE\n");
if (!(hardware[type].features&LIRC_CAN_SET_SEND_DUTY_CYCLE))
return -ENOIOCTLCMD;
result = get_user(ivalue, (unsigned int *) arg);
if (result)
return result;
if (ivalue <= 0 || ivalue > 100)
return -EINVAL;
return init_timing_params(ivalue, freq);
break;
case LIRC_SET_SEND_CARRIER:
dprintk("SET_SEND_CARRIER\n");
if (!(hardware[type].features&LIRC_CAN_SET_SEND_CARRIER))
return -ENOIOCTLCMD;
result = get_user(ivalue, (unsigned int *) arg);
if (result)
return result;
if (ivalue > 500000 || ivalue < 20000)
return -EINVAL;
return init_timing_params(duty_cycle, ivalue);
break;
default:
return lirc_dev_fop_ioctl(filep, cmd, arg);
}
return 0;
}
static struct file_operations lirc_fops = {
.owner = THIS_MODULE,
.write = lirc_write,
.unlocked_ioctl = lirc_ioctl,
.read = lirc_dev_fop_read,
.poll = lirc_dev_fop_poll,
.open = lirc_dev_fop_open,
.release = lirc_dev_fop_close,
};
static struct lirc_driver driver = {
.name = LIRC_DRIVER_NAME,
.minor = -1,
.code_length = 1,
.sample_rate = 0,
.data = NULL,
.add_to_buf = NULL,
.rbuf = &rbuf,
.set_use_inc = set_use_inc,
.set_use_dec = set_use_dec,
.fops = &lirc_fops,
.dev = NULL,
.owner = THIS_MODULE,
};
static struct platform_device *lirc_serial_dev;
static int __devinit lirc_serial_probe(struct platform_device *dev)
{
return 0;
}
static int __devexit lirc_serial_remove(struct platform_device *dev)
{
return 0;
}
static int lirc_serial_suspend(struct platform_device *dev,
pm_message_t state)
{
/* Set DLAB 0. */
soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
/* Disable all interrupts */
soutp(UART_IER, sinp(UART_IER) &
(~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
/* Clear registers. */
sinp(UART_LSR);
sinp(UART_RX);
sinp(UART_IIR);
sinp(UART_MSR);
return 0;
}
/* twisty maze... need a forward-declaration here... */
static void lirc_serial_exit(void);
static int lirc_serial_resume(struct platform_device *dev)
{
unsigned long flags;
if (hardware_init_port() < 0) {
lirc_serial_exit();
return -EINVAL;
}
spin_lock_irqsave(&hardware[type].lock, flags);
/* Enable Interrupt */
do_gettimeofday(&lasttv);
soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
off();
lirc_buffer_clear(&rbuf);
spin_unlock_irqrestore(&hardware[type].lock, flags);
return 0;
}
static struct platform_driver lirc_serial_driver = {
.probe = lirc_serial_probe,
.remove = __devexit_p(lirc_serial_remove),
.suspend = lirc_serial_suspend,
.resume = lirc_serial_resume,
.driver = {
.name = "lirc_serial",
.owner = THIS_MODULE,
},
};
static int __init lirc_serial_init(void)
{
int result;
/* Init read buffer. */
result = lirc_buffer_init(&rbuf, sizeof(int), RBUF_LEN);
if (result < 0)
return -ENOMEM;
result = platform_driver_register(&lirc_serial_driver);
if (result) {
printk("lirc register returned %d\n", result);
goto exit_buffer_free;
}
lirc_serial_dev = platform_device_alloc("lirc_serial", 0);
if (!lirc_serial_dev) {
result = -ENOMEM;
goto exit_driver_unregister;
}
result = platform_device_add(lirc_serial_dev);
if (result)
goto exit_device_put;
return 0;
exit_device_put:
platform_device_put(lirc_serial_dev);
exit_driver_unregister:
platform_driver_unregister(&lirc_serial_driver);
exit_buffer_free:
lirc_buffer_free(&rbuf);
return result;
}
static void lirc_serial_exit(void)
{
platform_device_unregister(lirc_serial_dev);
platform_driver_unregister(&lirc_serial_driver);
lirc_buffer_free(&rbuf);
}
static int __init lirc_serial_init_module(void)
{
int result;
result = lirc_serial_init();
if (result)
return result;
switch (type) {
case LIRC_HOMEBREW:
case LIRC_IRDEO:
case LIRC_IRDEO_REMOTE:
case LIRC_ANIMAX:
case LIRC_IGOR:
/* if nothing specified, use ttyS0/com1 and irq 4 */
io = io ? io : 0x3f8;
irq = irq ? irq : 4;
break;
#ifdef CONFIG_LIRC_SERIAL_NSLU2
case LIRC_NSLU2:
io = io ? io : IRQ_IXP4XX_UART2;
irq = irq ? irq : (IXP4XX_UART2_BASE_VIRT + REG_OFFSET);
iommap = iommap ? iommap : IXP4XX_UART2_BASE_PHYS;
ioshift = ioshift ? ioshift : 2;
break;
#endif
default:
result = -EINVAL;
goto exit_serial_exit;
}
if (!softcarrier) {
switch (type) {
case LIRC_HOMEBREW:
case LIRC_IGOR:
#ifdef CONFIG_LIRC_SERIAL_NSLU2
case LIRC_NSLU2:
#endif
hardware[type].features &=
~(LIRC_CAN_SET_SEND_DUTY_CYCLE|
LIRC_CAN_SET_SEND_CARRIER);
break;
}
}
result = init_port();
if (result < 0)
goto exit_serial_exit;
driver.features = hardware[type].features;
driver.dev = &lirc_serial_dev->dev;
driver.minor = lirc_register_driver(&driver);
if (driver.minor < 0) {
printk(KERN_ERR LIRC_DRIVER_NAME
": register_chrdev failed!\n");
result = -EIO;
goto exit_release;
}
return 0;
exit_release:
release_region(io, 8);
exit_serial_exit:
lirc_serial_exit();
return result;
}
static void __exit lirc_serial_exit_module(void)
{
lirc_serial_exit();
if (iommap != 0)
release_mem_region(iommap, 8 << ioshift);
else
release_region(io, 8);
lirc_unregister_driver(driver.minor);
dprintk("cleaned up module\n");
}
module_init(lirc_serial_init_module);
module_exit(lirc_serial_exit_module);
MODULE_DESCRIPTION("Infra-red receiver driver for serial ports.");
MODULE_AUTHOR("Ralph Metzler, Trent Piepho, Ben Pfaff, "
"Christoph Bartelmus, Andrei Tanas");
MODULE_LICENSE("GPL");
module_param(type, int, S_IRUGO);
MODULE_PARM_DESC(type, "Hardware type (0 = home-brew, 1 = IRdeo,"
" 2 = IRdeo Remote, 3 = AnimaX, 4 = IgorPlug,"
" 5 = NSLU2 RX:CTS2/TX:GreenLED)");
module_param(io, int, S_IRUGO);
MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
/* some architectures (e.g. intel xscale) have memory mapped registers */
module_param(iommap, bool, S_IRUGO);
MODULE_PARM_DESC(iommap, "physical base for memory mapped I/O"
" (0 = no memory mapped io)");
/*
* some architectures (e.g. intel xscale) align the 8bit serial registers
* on 32bit word boundaries.
* See linux-kernel/serial/8250.c serial_in()/out()
*/
module_param(ioshift, int, S_IRUGO);
MODULE_PARM_DESC(ioshift, "shift I/O register offset (0 = no shift)");
module_param(irq, int, S_IRUGO);
MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
module_param(share_irq, bool, S_IRUGO);
MODULE_PARM_DESC(share_irq, "Share interrupts (0 = off, 1 = on)");
module_param(sense, bool, S_IRUGO);
MODULE_PARM_DESC(sense, "Override autodetection of IR receiver circuit"
" (0 = active high, 1 = active low )");
#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
module_param(txsense, bool, S_IRUGO);
MODULE_PARM_DESC(txsense, "Sense of transmitter circuit"
" (0 = active high, 1 = active low )");
#endif
module_param(softcarrier, bool, S_IRUGO);
MODULE_PARM_DESC(softcarrier, "Software carrier (0 = off, 1 = on, default on)");
module_param(debug, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Enable debugging messages");
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册