-
由 Karsten Blees 提交于
timespec_trunc() avoids rounding if granularity <= nanoseconds-per-jiffie (or TICK_NSEC). This optimization assumes that: 1. current_kernel_time().tv_nsec is already rounded to TICK_NSEC (i.e. with HZ=1000 you'd get 1000000, 2000000, 3000000... but never 1000001). This is no longer true (probably since hrtimers introduced in 2.6.16). 2. TICK_NSEC is evenly divisible by all possible granularities. This may be true for HZ=100, 250, 1000, but obviously not for HZ=300 / TICK_NSEC=3333333 (introduced in 2.6.20). Thus, sub-second portions of in-core file times are not rounded to on-disk granularity. I.e. file times may change when the inode is re-read from disk or when the file system is remounted. This affects all file systems with file time granularities > 1 ns and < 1s, e.g. CEPH (1000 ns), UDF (1000 ns), CIFS (100 ns), NTFS (100 ns) and FUSE (configurable from user mode via struct fuse_init_out.time_gran). Steps to reproduce with e.g. UDF: $ dd if=/dev/zero of=udfdisk count=10000 && mkudffs udfdisk $ mkdir udf && mount udfdisk udf $ touch udf/test && stat -c %y udf/test 2015-06-09 10:22:56.130006767 +0200 $ umount udf && mount udfdisk udf $ stat -c %y udf/test 2015-06-09 10:22:56.130006000 +0200 Remounting truncates the mtime to 1 µs. Fix the rounding in timespec_trunc() and update the documentation. timespec_trunc() is exclusively used to calculate inode's [acm]time (mostly via current_fs_time()), and always with super_block.s_time_gran as second argument. So this can safely be changed without side effects. Note: This does _not_ fix the issue for FAT's 2 second mtime resolution, as super_block.s_time_gran isn't prepared to handle different ctime / mtime / atime resolutions nor resolutions > 1 second. Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NKarsten Blees <blees@dcon.de> Signed-off-by: NJohn Stultz <john.stultz@linaro.org>
de4a95fa